The amplitude mode at the superfluid-Mott insulator transition

David Pekker (Caltech)
Event Date and Time: 
Fri, 2012-02-10 13:00 - 14:00
Hennings 318
Local Contact: 
Jean-Sébastien Bernier, Fei Zhou
Intended Audience: 

We study a two dimensional gas of repulsively interacting bosons in the presence of both an optical lattice and a trap using optical lattice modulation spectroscopy. The strongly interacting superfluid supports two types of low energy modes associated with the symmetry breaking at the phase transition: gapless phase (Goldstone) modes and gapped amplitude (Anderson-Higgs) modes. Both experimentally and in theoretical simulations lattice modulation spectroscopy shows an onset of absorption at a frequency associated with the amplitude mode gap, followed by a broad absorption peak at higher frequencies. From the simulations, we learn that energy is being absorbed by amplitude modes, which inside a trap resemble the modes of a (gapped) drum. Our main results are: (1) despite coupling to the phase modes, modulation spectroscopy shows a sharp absorption onset at the frequency associated with the amplitude mode gap; (2) as we approach the Mott transition the gap softens and finally disappears at the transition point.

Website development by Checkmark Media. Designed by Armada.

a place of mind, The University of British Columbia

Faculty of Science
Department of Physics and Astronomy
6224 Agricultural Road
Vancouver, BC V6T 1Z1
Tel 604.822.3853
Fax 604.822.5324

Emergency Procedures | Accessibility | Contact UBC | © Copyright The University of British Columbia