Event Time: Thursday, December 13, 2018 | 2:00 pm - 3:00 pm
Event Location:
BRIM 311
Stewart Blusson Quantum Matter Institute
2355 East Mall
Vancouver BC
V6T 1Z4
Add to Calendar 2018-12-13T14:00:00 2018-12-13T15:00:00 CM Seminar: The field theory of specific heat Event Information: The finite temperature field theory for condensed matter physics, based on the kernel of the evolution equation, was recently proposed. The field theory is scale-free formalism, so it denies the absolute scale of thermodynamic temperature and uses dimensionless thermal variables, which are defined by the group velocities of sound and the interatomic distances, combined with the defining constants of the New SI. The universal thermal functional is obtained and used to derive the specific heat of condensed matter. The field theory of specific heat predicts the fourth power of temperature at sufficiently low temperature instead of the Debye theory’s cubic law. Experimental data for various condensed matter systems, including diamond lattice crystals, glasses and even solid helium-4, confirm the quartic law. The range of temperature with the fourth order behaviour varies, so it is called the quasi-low temperature regime specified by the characteristic temperature and the dimensionless constant. The critique of the Debye theory of specific heat is given. Event Location: BRIM 311 Stewart Blusson Quantum Matter Institute 2355 East Mall Vancouver BC V6T 1Z4
Event Time: Thursday, December 20, 2018 | 2:00 pm - 3:00 pm
Event Location:
BRIM 311
2355 East Mall
Vancouver BC
V6T 1Z4
Add to Calendar 2018-12-20T14:00:00 2018-12-20T15:00:00 CM Seminar: Cavity Spintronics Event Information: Cavity spintronics (also known as spin cavitronics) is a newly developing, interdisciplinary field that brings together microwave and optical communities with researchers in spintronics and magnetism. The field started around 2014 when it was found that ferromagnets in cavities hybridize with both microwaves and light by light-matter interaction [1]. Since then, the emergence of cavity spintronics has attracted broad interest from groups studying quantum electrodynamics, cavity polaritons, optomechanics, superconductivity, plasmonics, and phononics. At the center stage of the topic is the physics of magnon-photon coupling: Via the quantum physics of spin-photon entanglement on the one hand and classical electrodynamic coupling on the other, magnon-photon coupling connects some of the most exciting concepts in modern physics, such as quantum information and quantum optics, with one of the oldest sciences on earth, magnetism.  This talk aims to provide an introduction to this new frontier of condensed matter physics to researhers working in magnetism, spintronics, quantum information, and microwave technologies. The talk starts with a historical review, tracing this new field back to some of the most courageous work in the history of magnetism, spintronics, cavity quantum electrodynamics,  and polaritons. Recent experiments focusing on the development of new cavity-mediated techniques, such as coupling of magnetic moments, distant manipulation of spin current, qubit-magnon coupling, and conversion between optical and microwave photons, will be highlighted.   [1] Can-Ming Hu, “Dawn of cavity spintronics,” https://arxiv.org/abs/1508.01966 Event Location: BRIM 311 2355 East Mall Vancouver BC V6T 1Z4
Event Time: Thursday, January 24, 2019 | 2:00 pm - 3:00 pm
Event Location:
BRIM 311, Stewart Blusson Quantum Matter Institute, 2355 East Mall
Add to Calendar 2019-01-24T14:00:00 2019-01-24T15:00:00 CM Seminar: CHIRAL ANOMALY AND CLASSICAL NEGATIVE MAGNETORESISTANCE OF WEYL METAL Event Information: We present a theory of magnetotransport phenomena related to the chiral anomaly in Weyl semimetals. We show that conductivity, thermal conductivity, thermoelectric and the sound absorption coefficients exhibit strong and anisotropic magnetic field dependences. In the presence of a magnetic field the Wiedeman-Franz law in these materials can be violated. We also discuss properties of magneto-plasmons and magneto-polaritons, whose existence is entirely determined by the chiral anomaly. Finally, we discuss the conditions of applicability of the quasi-classical description of electron transport phenomena related to the chiral anomaly. Event Location: BRIM 311, Stewart Blusson Quantum Matter Institute, 2355 East Mall