INTRODUCTION to PHASE TRANSITIONS

Different Thermodynamic Phases in Nature are a
consequence of INTERACTIONS.

The simplest kinds of phase, and the names given in English Gas c

to the transitions between them, are shown at right.

The classic phase transitions are the one between the
liquid, solid, and gaseous phases of a system. In this
case one can plot the boundaries between these phases
in a P,T phase diagram.

Another common kind of phase diagram
involves magnetic phases (FM = Ferromagnet,
AFM = Antiferromagnet, and PM = paramagnet)
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EXAMPLES of SIMPLE PHASE DIAGRAMS
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The freezing point of water depends on its pressure. (image: Cmglee, CC 3.0)



MORE COMPLICATED PHASE DIAGRAMS

Phase Diagram of Water
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Water is not such a simple system.

The liquid-ice transition temperature
actually goes down in T as P increases;
and the liquid is denser than the solid.

These properties can be explained
by looking at the “cage-like” structure
of the solid on the atomic scale.
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Alloys have very complex phase diagrams
as a function of the concentration of the

relevant constituents. The example
of the phase dagram for Al-Ni alloys
gives a hint of this complexity.

The understanding of these has been
a crucial part of the development of
early technology and tools.



PHASE DIAGRAMS for

QUANTUM LIQUIDS/SOLIDS

Now we have quantum fluctuations, as well
as thermal fluctuations, playing a role
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The He-4 phase diagram is a simple 100 = I
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is superfluid

The He-3 phase diagram is much more complex, because
the He-3 atoms have a spin, and are fermions (and can
form Cooper pairs to give superluid phases. The spin

makes the system magnetic
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EHRENFEST CLASSIFICATION
for PHASE TRANSITIONS

First order Second order

G I I
This starts by asking how the thermodynamic state \\ \.'\
functions (here the Gibbs free energy G) vary as : . : .
we pass through the transition. A 1st order transition T
has a kink, & its derivative is discontinuous. A 2"d order . % 4
transition has a kink in the derivative; and so on. a E/
One then gets the characteristic features shown. //:

Here the parameter being varied to take us through the
transition is temperature T. But it could be many other

T
1 T >
things (B, p, concentration, etc). %6 | t |
aT? ‘J// :/
If we then work out how all the thermodynamic | i
functions vary with whatever parameter is being varied, T T
we get the typical results shown below (varying with T)
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(a) 1st-order transition: kinks in

| P e G(T), i(T); jumps in V, H, S; &

a delta-function in C (T)

(b) 2"d-order transition: kinks in 1st

derivatives of G(T), u(T); kinks in
V; H, S; & a jump in C(T)

Temperature, T ——>



1st ORDER PHASE TRANSITIONS

In a 15t order phase transition, the chemical potentials of
the 2 phases cross (as do the free energies, etc.). Thus we
can have the 2 phases in equilibrium with each other at the
transition, which is thus defined by the condition

3 hy=H, (phase eqlbm)

Suppose, eg., we deal with a gas, so that the phase eqlbm.
condition can be written as

wy (P, T) = pa(p,T)

We can then define the phase diagram by differentiating this expression with
respect to, eg., T, to get
3]42 dP

oP dT

Opt +8‘u1 P _ Opts
oT ~ opP dT or

However, we know from elementary thermodynamics that

(Qu/oT)p = —s (Qu/oP), = v (per unit volume)

+

dP  s§—5

so that the phase line is defined by ar = p—
1— %2

Moreover, it is clear that the “latent heat” developed in going from the higher
entropy to the lower entropy state is just
q

dT ~ T(vs—v1)

(Clausius-Clapeyron)

g=T(S, —S4) from which we get



EXAMPLE: Van der Waals gas

In this simple model we correct the ideal gas eqtn of state with terms which

account for (i) the volume of the gas particles (modelled as hard spheres) and

(ii) their interactions; we have N2
(P+ d

v )(V—Nb) _ KT

It is then an interesting exercise to plot the
“isotherms” directly from this equation, which
give the relation between p and V for this model
of a liquid-gas system. These are shown at left.

At high T we see only weak deviations from the

ideal gas law (for which p = NkT/V). As we lower

T the pressure is lowered for a given V, as

varf: der Waals isotherms compared to the ideal gas, and eventually we get
N-b vV an instability - for a given V one has 2 values of p.

Maxwell dealt with this ambiguity using the “Maxwell
construction”, in which the horizontal line indicates we can
P4 have some fraction of one phase coexisting with the other,
each having its own respective molar volume.

To decide where to draw the line, note
that between he 2 end-points we have

2 2
Pyap(Ty) [ fdu=0 sothat [VdaP=0
1 1

Thus the shaded regions shown
Viig Vias v at right have equal area.




KINETICS of 1st ORDER PHASE TRANSITIONS

There is a famous model for the kinematics and dynamics of 15t order phase
transitions, sometimes called the droplet model for reasons that will become
obvious. Suppose we have a simple problem in which 2 phases A and B have different
bulk free energies. Phase B with the lowest free energy is thermodynamically
favoured - but if we start with A, we have to find a way of growing or “nucleating”
a region of phase B inside it.

The idea is that this can happen anywhere - but to
create the “bubble” of new phase, we need to create
a transition regime, in the form if a surface of finite
A thickness, between them. This surface has a finite
energy per unit area, which we call the surface
energy - it is responsible for the “surface tension”.
Example: gas-liquid interface

Energetics: The total Gibbs free enerqy for a bubble

: " G(R
of radius Ris (R = ¢, M (R) + g,M,(R) + AnyR? (R)
4
= —ﬂpL AgR? + 47nvR? + const R
d4(7) 3
where we define Ag = (g1 —g,) \
A
9:(1) The thermodynamic phase transition is where the 2 free
> A energy lines cross. Here A = p,T,V,H, etc.. is some control

parameter (which could be T or p for the gas-liquid system).

Note if we are growing a bubble of gas in the liquid (so the liquid is unstable), then
Ag > O (this is the case of boiling or even superheating, where gas bubbles grow in

the liquid). On the other hand if the liquid bubble is growing in the gas (ie, we have

condensation of the liquid, or even supercooling), then Ag <0.



Dynamics: The top of this energy barrier caused by surface tension is defined by

dG 5
= = dr(prAg R + 2vR)
. . ] —2y . ] 160 A3
giving a ‘critical radius’ R, = & barrier height [, = G(R,) =
© pLlg ] (o) 3 (pLAg)?

Because of this energy barrier, one can in principle go well into the unstable phase, to
give either superheating or supercooling.

The analysis so far has been thermodynamic. One can also gas

analyse it microscopically, by looking at how gaseous
clusters of particles (the incipient liquid) can form or \

. . . liquid
dissociate into a gas. 9

droplet
Let’s suppose that the gas dynamics is diffusive, implying
that the rate of change of mass of the liquid droplet will go like

_dm
[ = y tL — —D,Vp,(r) Fick’s law (diffusion)
- o dp The point here is that the
which leads to T — —dnr Dod_rg gas pressure must be
o g ~o higher at the bubble
and integrating: F/ —g = —47TDO/ dpy(r) surface than at infinity.
R. T R. This can be seen from the
remark that energy is
so finally we get T = 47xR.D, [p,(R.) — ngO)] associated with the surface
curvature (NB:
. _ m this is not obvious from
or, using the idealgas law T = 47TRCDOk—T[pg(RC) _pgoo)] this derivation).

Now let’s look at all this
in another way



ANOTHER WAY of looking at REACTION RATES

Obviously the topic of reaction rates is an important one in physics, chemistry &
biology. So it is worth asking how else we can approach it.

Now the transitions of the system out of the
0 ‘ n=0 L potential well can go in one of 2 ways, viz.,
; A '_'_'_E (1) by direct tunneling from the ground state (n = M),
3 yy f—--\-- > or by thermal activation from the ground state to
........ > -
1 > some level n, followed by tunneling from level n
.' ______ ——> (3) by thermal activation to states above the barrier
A Jg o > (at which point the system is no longer bound).
M A > Let’s ignore process (2) for the moment, and focus on (1).
¢ - Then we can write that the rate of barrier traversal will be
unneling
| I(T)

= j{:pT(E%)FOCE%)

which multiplies the probability that the system is in the n-th level, by the tunneling
rate through the barrier from that level (whose energy is E,).

Obviously we have
pr(E) < exp|—FE/kT)]
The WKB tunneling rate is

Iy(E) = Q,exp|-L / " o2V @) = B)]

xry

where V(x) is the barrier potential, m is
the effective mass of the object, x, and
X, are entry and exit points through this

potential, and Qo is an ‘attempt frequency’

For an inverted parabolic potential one
has

[o(E,) o exp[lAo(E, — En)]

The exponential increase with Eof I,
fights against the exponential decrease
of p,(E), with a crossover between the
two when A kT ~1.

The growth & nucleation of a critical
bubble is a special case of this analysis.
At low T we have “quantum nucleation”



2" ORDER PHASE TRANSITIONS

In a 2"d-order phase transition, thermodynamic quantities like the entropy S
or volume V vary continuously - only their derivatives, like the specific heat C,(T)
have junps or other discontinuities. To describe these Landau (starting in 1937)
introduced the idea of an “order parameter”, and wrote the free energy as

F(T) = / &’x f(,T)
where ¥ (x,T) is the order parameter. Consider the example of magnetization
i ,T), i 1 - >
donsify mbuTh andWrte  fon, 1) = £o(@) +a(@ym® + > B(Dm* +y(T)m - I

where by symmetry of F under m - -m, we only have

T, even powers. Minimizing F gives an eqlbm (uniform)
magnetization according to am + ,Brﬁ3 —0
so that 11_1=:|:\/T/ﬂ for <0
=0 for o>0.
Let’s then write: o(T)~a(T —T,)+---
B(T)~b+---
yI)~y+---

1 -
We then have f >~ f,(T)+ a(T — T.)m? + Ebm4 + )/(Vm)2

g - - a\1/2 1/2
and the magnetization goes like m ~ (3) (T.-T) 2 for T <T,

0 for (T > Tc)



If we add an external field B we get a new free energy density going like

f(m, T, B) = fo(T) + a(T — T,)m? + %bm”' +y(Vm)? —mB.

1\13
and we now find that m = (i) B3

1
as well as recovering the Curie susceptibility x =

m
—| =—T-1T)7!
Bz, 2a( )

SUPERFLUIDS & SUPERCONDUCTORS

What about systems like He-4 superfluid, or a superconductor? The
Ginzburg-Landau theory (1950) and the later Gross-Pitaevskii theory (1961)
generalized the Landau theory to these systems.

For a charged superfluid (where the bosons that condense are formed by
“Cooper pairs” of electrons), the Ginzburg Landau Free energy density is

£ £ + ol + Eput + >

. * 2
v |(—iRV — e* A) ¢|” + 2o
and we see that the generalization involves the following features:
(i) the order parameter is now a complex function y (x,t; T) which is related
to the macroscopic wave-function we previouslv encountered;

(ii) we use the “covariant derivative” (—iAV — e*A) instead of the simple
gradient term, since the electrons couple to the EM field; and we add the
Maxwell field energy to the free energy density; and

(iii) we have effective mass m* and an effective charge e* for the charge
carriers (the Cooper pairs).

The incredible predictive success of these theories, along with that of the
Landau Fermi liquid theory and the Landau theory of superfluidity, convinced
the world that these “effective field” theories were here to stay.
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