
INTRODUCTION to PHASE TRANSITIONS

The simplest kinds of phase, and the names given in English 
to the transitions between them, are shown at right.

The classic phase transitions are the one between the 
liquid, solid, and gaseous phases of a system.  In this 
case one can plot the boundaries between these phases 
in a P,T phase diagram. 

Standard phase diagram 
for simple system

Another common kind of phase diagram 
involves magnetic phases (FM = Ferromagnet, 
AFM = Antiferromagnet, and PM = paramagnet) 

PM

Different Thermodynamic Phases in Nature are a 
consequence of INTERACTIONS.



CO2

N2

CH4

Here are some 
phase diagrams 
for some simple 
Systems
(NB: note logarithmic 
pressure scales)

EXAMPLES of SIMPLE PHASE DIAGRAMS



Water is not such a simple system. 
The liquid-ice transition temperature 
actually goes down in T as P increases; 
and the liquid is denser than the solid.

These properties can be explained 
by looking at the “cage-like” structure 
of the solid on the atomic scale.

Alloys have very complex phase diagrams 
as a function of the concentration of the 
relevant constituents. The example 
of the phase dagram for Al-Ni alloys 
gives a hint of this complexity. 

The understanding of these has been 
a crucial part of the development of 
early technology and tools. 

MORE COMPLICATED PHASE DIAGRAMS



PHASE DIAGRAMS for 
QUANTUM LIQUIDS/SOLIDS

The He-4 phase diagram is a simple 
example – the low-pressure phase at T=0 
is superfluid

The He-3 phase diagram is much more complex, because 
the He-3 atoms have a spin, and are fermions (and can 
form Cooper pairs to give superluid phases. The spin 
makes the system magnetic

Now we have quantum fluctuations, as well 
as thermal fluctuations, playing a role



EHRENFEST CLASSIFICATION 
for PHASE TRANSITIONS

This starts by asking how the thermodynamic state 
functions (here the Gibbs free energy G) vary as 
we pass through the transition. A 1st order transition 
has a kink, & its derivative is discontinuous. A 2nd order 
transition has a kink in the derivative; and so on.  

One then gets the characteristic features shown.
Here the parameter being varied to take us through the 
transition is temperature T. But it could be many other 
things (B, p, concentration, etc).  

If we then work out how all the thermodynamic 
functions vary with whatever parameter is being varied, 
we get the typical results shown below (varying with T )

(a) 1st-order transition: kinks in 
G(T), µ(T); jumps in V, H, S; & 
a delta-function in Cp(T)

(b) 2nd-order transition: kinks in 1st

derivatives of G(T), µ(T); kinks in 
V, H, S; & a jump in Cp(T)



1st ORDER PHASE TRANSITIONS

In a 1st order phase transition, the chemical potentials of 
the 2 phases cross (as do the free energies, etc.). Thus we 
can have the 2 phases in equilibrium with each other at the 
transition, which is thus defined by the condition 

µ1 = µ2       (phase eqlbm)
Suppose, eg., we deal with a gas, so that the phase eqlbm. 

condition can be written as
µ1 (p,T) =  µ2 (p,T)

We can then define the phase diagram by differentiating this expression with 
respect to, eg., T, to get

=

However, we know from elementary thermodynamics that 

(per unit volume)

so that the phase line is defined by 

Moreover, it is clear that the “latent heat” developed in going from the higher 
entropy to the lower entropy state is just

q = T(s2 – s1)     from which we get (Clausius-Clapeyron)



EXAMPLE:  Van der Waals gas

In this simple model we correct the ideal gas eqtn of state with terms which 
account for (i) the volume of the gas particles (modelled as hard spheres) and 
(ii) their interactions; we have 

It is then an interesting exercise to plot the 
“isotherms” directly from this equation, which 
give the relation between p and V for this model
of a liquid-gas system. These are shown at left. 
At high T we see only weak deviations from the 
ideal gas law (for which p = NkT/V). As we lower 
T the pressure is lowered for a given V, as 
compared to the ideal gas, and eventually we get
an instability - for a given V one has 2 values of p. 

Maxwell dealt with this ambiguity using the “Maxwell 
construction”, in which the horizontal line indicates we can 
have some fraction of one phase coexisting with the other, 
each having its own respective molar volume. 

To decide where to draw the line, note 
that between he 2 end-points we have 

so that

Thus the shaded regions shown 
at right have equal area. 



KINETICS of 1st ORDER PHASE TRANSITIONS
There is a famous model for the kinematics and dynamics of 1st order phase 

transitions, sometimes called the droplet model for reasons that will become 
obvious. Suppose we have a simple problem in which 2 phases A and B have different 
bulk free energies.  Phase B with the lowest free energy is thermodynamically 
favoured – but if we start with A, we have to find a way of growing or “nucleating” 
a region of phase B inside it. 

AB

The idea is that this can happen anywhere – but to 
create the “bubble” of new phase, we need to create 
a transition regime, in the form if a surface of finite 
thickness, between them. This surface has a finite 
energy per unit area, which we call the  surface 
energy – it is responsible for the “surface tension”.  

Example:   gas-liquid interface

Energetics: The total Gibbs free energy for a bubble 
of radius R is  

where we define

G(R)

R

Note if we are growing a bubble of gas in the liquid  (so the liquid is unstable), then
∆g > 0 (this is the case of boiling or even superheating, where gas bubbles grow in 
the liquid). On the other hand if the liquid bubble is growing in the gas (ie, we have
condensation of the liquid, or even supercooling), then ∆g < 0 .

g1(λ)

g2(λ)
The thermodynamic phase transition is where the 2 free 
energy lines cross. Here λ = p,T,V,H, etc.. is some control 
parameter (which could be T or p for the gas-liquid system). 

λ



Because of this energy barrier, one can in principle go well into the unstable phase, to 
give either superheating or supercooling. 

giving a ‘critical radius’                        , & barrier height

The top of this energy barrier caused by surface tension is defined by

The analysis so far has been thermodynamic. One can also 
analyse it microscopically, by looking at how gaseous 
clusters of particles (the incipient liquid) can form or 
dissociate into a gas.

Let’s suppose that the gas dynamics is diffusive, implying 
that the rate of change of mass of the liquid droplet will go like

gas

liquid 
droplet

Dynamics:

Fick’s law (diffusion)

which leads to

and integrating: 

so finally we get

or, using the ideal gas law

The point here is that the 
gas pressure must be 
higher at the bubble 
surface than at infinity. 
This can be seen from the 
remark that energy is 
associated with the surface 
curvature (NB: 
this is not obvious from 
this derivation).

Now  let’s look at all this 
in another way



ANOTHER WAY of looking at REACTION RATES
Obviously the topic of reaction rates is an important one in physics, chemistry & 
biology. So it is worth asking how else we can approach it. 

n = 0
1

3
2
0

M

Now the transitions of the system out of the 
potential well can go in one of 2 ways, viz.,  

(1) by direct tunneling from the ground state  (n = M), 
or by thermal activation from the ground state to 
some level n, followed by tunneling from level n

(3) by thermal activation to states above the barrier 
(at which point the system is no longer bound).

The WKB tunneling rate is

tunneling

Let’s ignore process (2) for the moment, and focus on (1). 
Then we can write that the rate of barrier traversal will be    

which multiplies the probability that the system is in the n-th level, by the tunneling 
rate through the barrier from that level (whose energy is En).    
Obviously we have 

where V(x) is the barrier potential, m is 
the effective mass of the object, x1 and 
x2 are entry and exit points through this 
potential, and Ωo is an ‘attempt frequency’

For an inverted parabolic potential one 
has  

The exponential increase with E of Γo
fights against the exponential decrease 
of pT(E), with a crossover between the 
two when  ∆o kT ~ 1 . 

The growth & nucleation of a critical 
bubble is a special case of this analysis. 
At low T we have “quantum nucleation”



2nd ORDER PHASE TRANSITIONS
In a 2nd-order phase transition, thermodynamic quantities like the entropy S

or volume V vary continuously – only their derivatives, like the specific heat CV(T)
have junps or other discontinuities.  To describe these Landau (starting in 1937) 
introduced the idea of an “order parameter”, and wrote the free energy as 

F (T)
where ψ (x,T) is the order parameter.  Consider the example of magnetization 
density m(x,T), and write

where by symmetry of F under m  -m, we only have 
even powers.  Minimizing F gives an eqlbm (uniform) 
magnetization according to

so that

Let’s then write: 

We then have

and the magnetization goes like

0 for (T > Tc)



If we add an external field B we get a new free energy density going like

and we now find that 

as well as recovering the Curie susceptibility

SUPERFLUIDS & SUPERCONDUCTORS
What about systems like He-4 superfluid, or a superconductor? The 

Ginzburg-Landau theory (1950) and the later Gross-Pitaevskii theory (1961) 
generalized the Landau theory to these systems. 

For a charged superfluid (where the bosons that condense are formed by 
“Cooper pairs” of electrons), the Ginzburg Landau Free energy density is 

and we see that the generalization involves the following features:
(i) the order parameter is now a complex function ψ (x,t; T) which is related 

to the macroscopic wave-function we previously encountered; 
(ii) we use the “covariant derivative”                       instead of the simple 

gradient term, since the electrons couple to the EM field; and we add the 
Maxwell field energy to the free energy density; and 

(iii) we have effective mass m* and an effective charge e* for the charge 
carriers (the Cooper pairs).   

The incredible predictive success of these theories, along with that of the 
Landau Fermi liquid theory and the Landau theory of superfluidity, convinced 
the world that these “effective field” theories were here to stay. 
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