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2.  Microstates & Macrostates        
 
Goal: To define microstates in a macroscopic system, and learn how to count them; 
and formulate our basic probabilistic assumptions.  
 
We will for the most part deal here with systems as described by quantum mechanics, 
where it is more obvious how to count states. The basic idea is pretty simple – we 
imagine a macroscopic system to be built up from a set of microscopic systems, and we 
wish to find out how many individual quantum states of the system (the ‘microstates’) are 
associated with a given macrostate. As we saw in the last chapter, the macrostate will be 
specified by fixing a few extensive and intensive thermodynamics variables such as  
density, volume, pressure, magnetization etc.  The question then is to count all of the 
different microstates which give the same macrostate.  
 
At first glance this problem seems pretty straightforward, provided the individual 
constituents of the quantum system are simple enough. Suppose, eg., we have a set of N 
elementary constituents (particles, oscillators, spins, etc.); then if we now how to count 
states for one of these, then it seems a fairly simple problem to to do this for N of them. 
Let’s see how we might do this.  
 
 
Examples of individual sub-systems: In QM a microstate is specified by the 
giving the quantum numbers of each relevant system. Let’s see how to do this for a few 
simple systems.   
 

(i) Non-relativistic particle in a 1d box:                                    

The allowed energies are:     2
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with quantum numbers:        ...3,2,1=n  
 
 

(ii)  Relativistic particle in a 1d box:                           

The allowed energies are:     
L
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with quantum numbers:       ...3,2,1=n       
 
 

(iii)  Spin S particle in magnetic field B = zB:  
The allowed energies are:     mBEm γ−=                                                 (3) 
with quantum numbers:         m  =  -S, -S+1, ….+S 

 
 where µ = sγ is the magnetic moment, and m is the z component of spin (in units of  ). 
Thus there are 2S+1 possible values for m . Notice the simplest example of a spin S 
system – this is the two-level system (TLS), or spin-½ particle (often known these days 
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as a ‘qubit’). There are then two possible states,  ↑  or ↓ (which then give a 
magnetization  µ=M  or µ−  for this TLS).  
 
 

(iv)   1-d simple harmonic oscillator (SHO):  

The allowed energies are:      νhnEn )
2
1( += ,                                       (4) 

                  with quantum numbers:         ...2,1,0=n  
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ν  and a  is the restoring force constant: i.e.  axF −= . 

 
 

(v) quantum rotator e.g. diatomic molecule: 
    

The allowed energies are:       0)1( EjjE j +=                                        (5) 
 
 With quantum numbers:         ...2,1,0=j  
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=    is the basic energy unit, where j is the angular momentum quantum 

number,  and where I is the moment of inertia about the center of mass – if we have 2 
masses m1 and m2 at distances r1 and r2 from the com, then 2

22
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that 0E is around 10-4  eV for typical small molecules.   
 
We observe here that the important inputs from quantum mechanics are the energy 
spectrum – the eigenvalues - and their associated degeneracies. The particle wave 
functions are of lesser importance in SM. This is good because it is often much easier to 
determine the energy eigenvalues of a quantum system than the eigenstates.  
 
For more details of some of these Hamiltonians, see the Appendix at the end of this 
chapter.  
 
 
 
   
2(a)    An N-Particle System: the Spin ½ Magnet  (N qubits) 
 

Probably the simplest example of a thermodynamic system that can be described 
microscopically is a set of N qubits, or spin-1/2 systems. These may or may not be 
coupled together, and/or in an external magnetic field – the exact form of the 
Hamiltonian does not change how we count the states. .  
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 Let’s start off by letting N=2, so that we have a pair of qubits. Let’s also put them in a 
field so as to classify the states according to their projection along the z-axis. Then for 
this pair of spins there are 4 states: one state ↓↓( ) with µ2−=M , two states 
( ↑↓↓↑ and ) with 0=M and one state ( ↑↑ ) with µ2=M .  
 
In the same way we can count 8 states for 3 spins: there is one state  ( ↓↓↓ ) with 

µ3−=M ,  3 states ),,( ↓↑↓↑↓↓↓↓↑ with µ−=M  , 3 states ),,( ↑↓↑↓↑↑↑↑↓  with 
M= µ  and one state ( ↑↑↑ ) with µ3=M .   
 
It is should be obvious by now that to classify and then count the states for N qubits, one 
is dealing with the same problem as that of a run of N coin tosses, where the states 
‘heads’ and ‘tails’ correspond to the two spin states for a single spin. Thus of we flip a 
coin  N times and determine the number of heads hN  and tails tN , we see that this is the 
same problem, with th NNn −≡  , and where ),( nNP is the probability of observing the 
difference n. 
 
Let’s therefore define ↓↑ −= NNn .  Since ↓↑ += NNN  one can rewrite 

2/)( nNN +=↑  and 2/)( nNN −=↓ . The number of states for which we have net 
magnetization µnM =  is then: 
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This number is sometimes called the “multiplicity” for the set of states corresponding to 
this fixed value of magnetization. Note that fixing the magnetization in this way is 
essentially fixing the macroscopic state for the system; and the multiplicity then counts 
the number of microstates associated with this macrostate.  
 
The probability for the system to have magnetization µnM =  can then be found if we 
make some assumption about how likely each one of the microstates is. Suppose we 
assume here that all of the 2N microstates are equally likely. Then the probability of 
getting this particular macrostate is just 
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This result may not appear to be very helpful – but if N is large we can use Stirling’s 
approximation (see Appendix for more details), according to which 
 

 )2ln(
2
1ln!ln NNNNN π+−≅ .                                                                                        



 4 

 

Now let us write:       
N
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So that for small  x,  ie., for x << 1, one has:     
2
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It is then straightforward to show that the logarithm of the probability P(N, n) given in 
eqtn (1) above is just 
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To get the desired result for P(N, n) we then exponentiate this expression for )],(ln[ nNP  
to get 
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and for the multiplicity    ]
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To get some feeling for these numbers, let’s consider a simple example. A human body 
contains about 1026 proton spins, of spin-1/2 each, and each carrying a magnetic 
moment µ . In zero magnetic field the average moment is zero.  The maximum moment is 

µN  so the rms deviation from zero is 
 

 µµµ NN
N

N 13101 −== .   

 
This is a very sharp distribution due to the large number of spins. Note that this means 
that as a function of time, the magnetic moment will ber fluctuating, mostly in this very 
small range around zero.  
 
       Notice that we can think of the result (10) for the multiplicity in a somewhat different 
way. Suppose we ask how many microstates there are as a function of total energy of the 
system. According to equation (3), in the absence of any interactions between the spins, 
the energy of each spin-1/2 system is given by εm = -mµB, where m is the polarization  
along the field axis (ie., m= 1 or -1).  
      It is then clear that the energy of N spins in a state with net polarization n must be 
given by En = -nµB, with n = N, N-1, N-2, …,– N.  These are the only allowed energies. 
We can then define the “N-particle density of states” for the system as the sum 
 
                     N( E)   =   Σn Ω (N, n)  δ(E – En

(N))                                                          (11) 
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where δ(x) is just the Dirac delta function, and  En

(N)  refers to the allowed energies of the 
N-particle system; and the sum is over the different energy levels of the system, labelled 
by the quantum number n. This density of states is just a sequence of equally-spaced delta 
functions, with magnitude given by the Gaussian in (10), peaked around n = 0, so that the 
n-particle density of states N( E) is peaked around E = 0.  
 
 
Related Systems: Clearly there are going to be a lot of 2-state systems in Nature, so 
that assemblages of N of any of these will have their states counted in the same way. 
Thus we can say that the spin ½ magnet ‘maps onto’ or is closely related to many other 
systems. Here are two examples: 
   

1. Random walk in 1D: We will assume a total of N steps, with lN  steps to the left 
and RN  steps to the right. lr NNn −≡ .  The probability for taking a net total of n 
steps to the right is again ),( nNP  
 
2.   Binary Alloy:  Consider a bcc lattice of CuZn with 50% Zn and 50% Cu.  The 
ordered state has all the Cu at the body center of each cubic elementary cell, and only 
Zn at the corners of the cube. Assume there are a total of 2N sites – ie., N regular Cu 
sites and N regular Zn sites. The total multiplicity in the fully ordered state is then just 
Ω  =1.  
 
Now define ≡f fraction of correctly positioned Cu atoms on the N regular Cu sites. 
Let 1Ω  be the number of ways (multiplicity) of arranging these fN   Cu atoms on the 
N regular Cu sites. Correspondingly let 2Ω  be the number of ways of arranging 
incorrectly positioned Nf )1( − Cu atoms on the N Zn sites. We don’t have to worry 
about the Zn atoms since once the Cu are positioned that determines where the Zn 
are. The total multiplicity is the product of 1Ω and 2Ω , ie., we have  
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As expected  11 =Ω  for 10 orf = .  Note in this problem fN corresponds to the number 
of up spins in the spin ½ magnet and Nf )1( − corresponds to the number of down spins. 
The difference ψNfNNffNn =−=−−= )12()1( , where 12 −≡ fψ , may be 
considered to be an order parameter. Finally, we see that for large N one has 
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So that the total multiplicity   
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We will come to the idea of an order parameter in more detail later in these notes.  
 
 
 
 
 
2(b) Other Simple N-Body Systems 
 
We mentioned above that there were various N-body systems that could be described in 
terms of simple constituents. Here I make a few brief remarks on some of these – we will 
look in more detail at them in later chapters.  
 
 
N Particles in a Box: We saw that a 1-d SHO has a spectrum given by eqtn. (1) for a 
non-relativistic particle, and by (2) for a relativistic particle. There is then a crucial 
difference between the two, for the energy increases quadratically with quantum number 
n for the non-relativistic particle, but linearly for the relativistic particle. There is also a 
key difference between both of these systems and the set of TLS we have just been 
studying – this is that the energy of each particle is unbounded from above.  
      Let’s look first at the easiest case to analyze, the relativistic particle. With the 
spectrum given in eqtn. (2), we can start off by plotting a simple graph of the allowed 
values for a pair of particles. Note that a pair of 1-d particles is also equivalent to a single 
particle moving in a 2-dimensional box of side L; and we can also generalize to the 
problem of a single particle moving in a 2-dimensional box with sides L1 and L2.  
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       Let us look first at two 1-d particles, so that in the the 2-D box analogy, we have 
equal sides, ie., L1 = L2 = L. The allowed states of the system are now classified by 
integers n1 and n2, and the allowed energies are 
 
E (n1, n2)  =   (hc/2L) [n1 + n2]   =  (hc/2L) p     =   E0 p      =   Ep                                (14) 
 
where E0 = hc/2L, and where p = (n1 + n2)   =   2, 3, 4, …etc.; this last result follows 
because the sum of any pair of integers is also an integer (see Figure).  
 
We see easily from the figure that the degeneracy of a state with quantum number p and 
corresponding energy Ep is just p-1, and so if we want to write the density of states for 
this 2-oscillator system system, we just have the result 
 
                             N( E)  =   Σp (p)  Ω2 (p) δ(E – Ep)          (2  1d particles )                (15) 
 
where  Ω2 (p)  =  p-1.  If p >> 1, then we can just write Ω2 (p) = p for all practical 
purposes. In any case we see that the density of states is just a series of delta-functions, 
spaced by energy E0, with magnitude increasing linearly with energy.  
     Note that we have made a rather special assumption here, viz., that L1 = L2 = L. If 
instead we look at a particle in a 2-D box, and the sides of the box are not equal in size, 
we will no longer have the degeneracy we just found – the spectrum will be  
 
E (n1, n2)    =    ( hc/2L1)  n1   +  ( hc/2L2)  n2                                                                (16) 
 
and we no longer have all the accidental degeneracy we had when L1 = L2 = L. However 
it will be clear that when we go to large energies, the number of states in some finite 
energy interval will still increase linearly with E. We can then define a ‘smoothed density 
of states, which will be linear in E.  
 
So much for the 2-dimenstional problem. Now suppose we go to the problem of N one-
dimensional particles. It is easy to see how the results will generalize; the energy 
spectrum will now be  
 
       E ({nj})  =   (hc/2L) [n1 + n2  + … + nN]   =  (hc/2L) p     =   E0 p      =   Ep           (17) 
 
where now we have p = N-1, N, N+1, …etc. (so that the minimum energy of the set of N 
particles is (N-1) E0), and p is now defined as 
 
      p   =   (n1 + n2 + … +  nN)                                                                                         (18) 
 
We saw in the case of the pair of particles that the allowed values of the total energy 
could be defined by diagonal lines in the 2-d plane in the figure above; now we can see 
that for N particles, we have the allowed energies defined by a set of (N-1)-dimensional 
hyperplanes, and with a bit of thought you will see that the number of allowed states or 
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“points” in a hyperplane corresponding to energy Ep will be grow very fast – in fact we 
have   
 
                ΩΝ (p)       pN-1 /(N-1)!            (N  1d particles, for  p >> 1)                    (19) 
 
so that the N-particle density of states increases incredibly fast with energy. If you want 
to amuse yourself, try finding the formula for ΩΝ (p) valid for all p.  
 
    You can now see that the problem for a non-relativistic particle will look quite 
different, simply because the allowed energies for the paticle are no longer spaced 
linearly in the quantum number, but quadratically. I will not go through this case  - if you 
are interested, try figuring out what the N-particle density of states looks like for this 
case.  
 
         
N spin-S particles: the spectrum for a single spin s in a magnetic field was given in eqtn. 
(3), and we see that to treat this problem, we must generalize in a straightforward way 
what was done for the spin-1/2 magnet. We see immediately now that the total number of 
states for an N-spin system will be (2S+1)N, and that the problem of counting the states 
and determining the probabilities is isomorphic to that of putting N balls in 2S+1 
different boxes – we get a multinomial distribution instead of the binomial distribution 
appropriate to spin-1/2 systems.  
 
N Non-Relativistic Oscillators: Just as with the particle in a box, the spectrum here 
(given in eqtn. (4))  is unbounded from above, and in the same way we can, if we wish, 
impose an upper cut-off to the spectrum. In fact the problem here is very much like that 
for a set of N relativistic particles moving in 1 dimension – the only difference is that the 
lowest energy state for each oscillator is one half the splitting between the higher levels, 
rather than being equal to it as in the case of the relativistic particle. Otherwise the 
counting goes through as before.  
 
N quantum rotators: Here the spectrum is given by eqtn. (5), and is again unbounded 
from above. This case is very similar to the non-relativistic particle in a box, and we will 
say no more about it here.  
 
 
 
 
2(c)    Assignment of Probabilities 
 
It will not have escaped your notice that we have made an assumption in writing equation 
(7), viz., that the probability of getting any one of the microstates is equal to that for all 
the others. This assumption of equal weight for all the microstates is one we need to 
unravel – it involves several components.  
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A priori Probabilities:  The first question we have to deal with is what a priori 
probability we will assign to each microstate. We will see that the answer to this question 
depends on the ensemble of microstates we choose. In the example chosen above, it was 
assumed that all the microstates in a given macrostate have the same energy. In this case 
we assigned equal probability to each of them. In the language of SM this ensemble of 
equal energy states is called the Microcanonical Ensemble. We will deal with it in a 
more formal and precise way in a subsequent chapter. It corresponds to an ensemble 
where the total energy is fixed, so we require very strict boundary conditions on the 
system – no energy is allowed in or out of the system.  
    This still leaves the question of what reason we have for assigning equal probability to 
each microstate state in this microcanonical ensemble. We come to this below. 
 
However, the microcanonical ensemble is not the only ensemble we can choose. We can, 
for example, require that energy is allowed to flow in and out of the system, but that the 
macroscopic temperature T be fixed (such a macrostate will then incorporate microstates 
whose energies are NOT all the same). The relevant ensemble of microstates here is then 
called the Canonical ensemble. In this case, as we will see, the probabilities for different 
microstates corresponding to a state of given T will not be the same; in fact they will be 
proportional to exp(-E/kT) for a microstate of energy E.  
 
As we will see, one can define many other ensembles, depending on what is held to be 
constant. Another popular one is the Grand Canonical ensemble, for which one even 
allows particles as well as energy to move in and out of the system – in this case it is the 
chemical potential that is held constant, as well as, eg., the temperature. In a later chapter 
we will specify what probabilities are then assigned to the microstates for this ensemble.  
 
At this point you will see that each of these different ensembles of microstates, 
corresponding to some macrostate, can also be described in terms of the macroscopic 
states defined by TD (as discussed in Chapter 1). Again, we will discuss this in detail in 
subsequent chapters.  
 
Notice again that I have not yet given you a reason for believing in these assignments of 
a priori probabilities – I am just telling you what they are assumed to be.  
 
 
Ergodicity – Partial or Complete: There is another assumption we must discuss 
which is also important in the foundations of SM. It concerns the assumption that a given 
system, which has available to it some set of microstates, will actually sample all of those 
microstates according to the probabilities assigned to them.  
 
Now it is crucial to understand that this is a question about the dynamics of the 
macrosystem. Suppose that in some experiment, one looks at the system for some period 
of time Texp, starting at time t = 0, and continuing to time t = Texp. At t = 0, the 
macrosystem will start in some microstate. Will, it during the time period Texp , then visit 
all the other states with equal probability? And, will it visit a reasonable fraction of these 
states within the time Texp?  Old-style SM theory argued that it would, so that time 
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averages for the macroscopic state would be equivalent to ensemble averages over the 
available microstates. This is known as the “ergodic hypothesis” (which can actually 
come in various forms).  
 
Note how convenient the ergodic hypothesis would be if it were true! For if true, it means 
that we can assume that not only are the states all a priori equally likely, but that the 
system will visit them all with equal likelihood over a period of time which one hopes is 
quite short, ie.,less than Texp. In this case, if we measure any quantity for the system, it 
will accurately reflect the probabilities for the microstates, in that it will average over all 
of them according to these probabilities.   
 
The reason why old-style SM theory assumed the ergodic hypothesis, and why quite a 
few theorists even tried to turn it into a fundamental hypothesis underlying all of SM, is 
that these theorists spent too much time looking at simple models or at very simple many-
body systems for which it was more or less true. Thus they looked at the dynamics of 
weakly-interacting gases, or weakly-interacting oscillators, or spin systems with simple 
interactions.  These systems were chosen because they were simple, not because they 
were necessarily realistic, or representative of the real world.   
        However it was already well understood in the 1950s, at least by some, that the 
ergodic hypothesis is highly unlikely to be true for most physical systems – and that in 
fact most realistic physical system depart very strongly from ergodic behavior. Let’s see 
what is actually involved here.  

T
The figure shows a schematic description of the space of possible microstates for a 
physical system (in reality this is the phase space for the system, and phase space 
language can be used to describe both classical and quantum systems). Suppose the 
allowed microstates, corresponding to a given macrostate, are those shown in the pink 
region. We imagine that at time t = 0 the system finds itself in some particular microstate, 
and evolves in time following the hatched trajectory shown, to finish at a later time Texp 
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at a rather different point. Now if the ergodic hypothesis is correct, the system will move 
rapidly all around the pink regions, so that it covers them pretty uniformly, and all 
memory of where it began is lost after a time less than Texp.  
 
How likely is this? Well, for a simple system like a gas in a box, it is pretty accurate – if 
we start the gas in some microstate, it will very rapidly cycle through many other states, 
and spend an amount of time in any one region which is proportional to the ‘size’ of that 
region (ie., to the number of microstates in that region). Even if we start the gas in some 
highly organized (and very special) initial state (eg., with all particles moving in the same 
direction), collisions between the gas particles and with the walls will rapidly cause it to 
lose memory of this initial state (actually this is not entirely true – 3-body interactions, 
even in a dilute weakly-interacting gas, cause long-time memory effects and a weak 
breakdown of ergodicity).  
 
However, the picture also makes clear that the example of a gas is way too special. More 
often it is not so easy – or for all practical purposes impossible – for the system to make 
the transition from one pink region to another (notice that some regions in the figure are 
disconnected from others). Alternatively, the required trajectories to get from one region 
to another may be so convoluted that they just take a really long time – how this might 
happen is also obvious from the figure.  
        From these considerations it is clear that the ergodic hypothesis is only going to be 
valid if the dynamics of the system allows it.  And the simple fact is that this is not the 
case for almost all solid systems, and for a large variety of other systems where non-
linearities are important in the dynamics.  
 
Consider, eg., the systems we mentioned at the beginning of Chapter 1. For these systems 
we can make the following remarks: 
 
a litre of gas: The dynamics here becomes almost completely ergodic in the limit where 
interactions between the gas particles are very weak.  
 
a wafer of Si: the phonons relax quickly – depending on the temperature, they behave 
quasi-ergodically over timescales ranging from seconds to microseconds. However at low 
T, much of the entropy is in nuclear spins and defects. At low T, in a magnetic field, it 
may take the nuclear spins days to relax; and the defects may not relax to thermal 
equilibrium for months or years. If there are lots of defects, interacting with each other, 
some of them may not relax for astronomically long times. Thus, only a sector of the 
degrees of freedom behave ergodically (with a slow communication to the other degrees 
of freedom) 
 
a bar magnet: The same remarks as above apply to the phonons, nuclear spins, and 
defects. Magnets also have ‘domain wall’ cofigurations in them. These are ina  
metastable state but may not relax for astronomical times. They also interact with each 
other strongly, and this means that there are ‘glassy modes’ connected with their 
dynamics which may never relax (except over timescales proportional to exp[Nα] τ0, 
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where N is the number of domain walls, α is a number > 1, and τ0 is a relaxation times 
which might be milliseconds. Very far from ergodic. 
 
a melting block of ice: This is not really in equilibrium – however over timescales of 
minutes or hours (depending on how big the block is) it will behave according to 
thermodynamics. However only some of the microstates are involved in this – notably the 
phonons. Again, defects in the ice will relax very inefficiently, even though they are 
intimately involved in the melting process.  Far from ergodic. 
 
a piece of wood: Here the phonons relax quickly, and it is the phonons that define the 
thermodynamics. There are other modes in the system that are weakly coupled to the 
phonons, and so should not be included in the definition of the microstates. Far from 
ergodic. 
 
a piece of glass: Again, only the phonons define the thermodynamics. But here, the 
behaviour of the glass even up to high temperatures is to a great extent controlled by the 
coupled dynamics of the defects in the glass (which is highly disordered at the atomic 
level. This coupled dynamics involves a whole hierarchy of relaxation times, ranging up 
to exp[Nα] τ0, where now N is basically the number of particles in the system. No matter 
what the value of τ0, this timescale is far far larger than the age of the universe. It should 
be noted that disordered solid systems like glasses are the rule rather than the exception 
in nature (at least on solid bodies like planets). As far away from ergodic as you can 
possibly get.  
 
a galaxy: The dynamics of the stars in the galaxy is very far from being ergodic. TD can 
be applied to certain features of this dynamics – but a proper description, following the 
KAM theorem, shoes that some sectors of the dynamics (ie., some sectors of the phase 
space) are quasi-ergodic, and others not at all.  
 
a star: Not in equilibrium obviously! And yet TD and SM are extremely useful in 
analyzing a star’s behavior. This is because for long periods it is in a steady state, with 
energy coming from nuclear fusion being radiated away, mostly as photons. The time it 
takes the photons to travel from the stellar core to the surface can be millions of years; 
and the time taken for the macroscopic properties of the star to change ranges from 105 
up to 1014 years, depending on the stellar type. So, astonishingly, if we use TD and SM to 
treat only the microstates connected with the gaseous degrees of freedom, it works very 
well (we have to exclude, eg., the nuclear degrees of freedom from our discussion). The 
behavior is far from ergodic except in small local regions of the star.  
 
the earth: The same remarks apply to the earth, considered as a very large body, this 
time over timescales of months or years – energy comes from the sun and is reradiated in 
the form of IR photons. Again, wee exclude most of the real microstates from this 
description. Very far from ergodic.  
 
a lake: Same remarks again, but this time over shorter periods (which depend on the size 
of the lake). Very far from ergodic.  
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a fire: This is very far from equilibrium! TD and SM might seem essentially useless for 
systems like this, undergoing rapid chemical reactions. And yet paradoxically, TD can be 
applied for very short timescales! This is because even in a fire or a shock wave, there are 
heat flows which are quasi-adiabatic or quasi-isothermal (depending on the conditions) 
over short timescales. Very far from ergodic 
 
a person sleeping in a chair: Again, not in equilibrium. But as with a star, if we only 
look at certain degrees of freedom (here phonons), then for a period of minutes, we can 
apply TD. Very far from ergodic 
 
a bacterium: Again, not in equilibrium. However, one can apply TD over timescales of 
milliseconds (to describe the phonons). Very far from ergodic – actually, the bacterial TD 
is determined largely by the surroundings (ie., the heat bath) 
 
a virus:  The same as a bacterium, but now over timescales of microseconds.  
 
 
 
     So, what have we learned from this, and why does anyone care about the ergodic 
hypothesis anyway if it so obviously wrong? 
     There are really three things to take away from this discussion.  
 

(i) First, that real macroscopic systems are complicated, and that they usually have 
many different sorts of excitations (excited states, in quantum language), 
which may or may not communicate with each other or with the external 
world very effectively; so that they may or may not partake in the 
thermodynamics and statistical physics. If, over some timescale, some set of 
internal modes does not couple to those other modes that are determining the 
thermodynamics behaviour, then these internal modes can be ignored when 
defining the microstates. The relevant timescales for the coupling between 
modes can range from microscopic times (less than nanoseconds) to super-
astronomical times (immeasurably greater than the lifetime of the universe). 
 

(ii) Second, that we may assign a priori probabilities to the different microstates, but 
these probabilities are only meaningful if the system is actually capable of 
visiting these states – whether they do or not depends on the detailed 
dynamics of the system. 

 
(iii) Finally, the description we give of some macroscopic system (using, eg., a 

Hamiltonian) depends on which modes we are interested in. We can describe 
an atom without describing the internal modes of the nucleus – these are 
simply not active or relevant to atomic behavior except in very unusual cases. 
It is often said that “all Hamiltonians are effective Hamiltonians”. The same is 
true of microstates for a real system – we select the ones that are relevant to 
the behavior we are interested in.    
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2(d)   Relation between TD and SM 
 
Let’s try and summarize the relationship between thermodynamics (TD) and statistical 
mechanics (SM). The following table will begin this process – as we go on in the course 
you will see more of how it goes. 
 
 
Thermodynamics  Statistical Mechanics 
Establishes relationships between 
macroscopic variables using empirical 
information 

Macroscopic quantities  are calculated from 
assumptions about microscopic 
constituents (atoms, molecules, etc.)  

 4  basic laws or axioms – related to the 
definition of the macroscopic variables   
 

Axioms of probability, and the assumption 
of microstates for macroscopic systems, 
with assigned weighting for the 
microstates. The microstates are described 
using, e.g. quantum mechanics, with 
assigned Hamiltonians 

0 th law : If systems A and B are in 
equilibrium with C then A is in equilibrium 
with B. Assumes an operational definition 
of equilibrium 

Equilibrium derived by maximization of 
probability for collections of microstates, 
for one or more systems. Temperature 
defined statistically. 

1rst law: heat and work  are equivalent and 
total energy is conserved 

Total Energy is conserved.   

2nd law: Entropy in an isolated system can 
only increase. Changes in entropy are well 
defined. Entropy defined in terms of heat.  

Entropy defined for a given collection of 
microstates – measures the number of such 
states. System evolve to their most 
probable states (highest entropy)  

3rd law:  At absolute zero  (T=0) the 
entropy approaches a constant value.   

At T=0 the system is in its ground state and   
entropy is zero (for unique ground state) or 
finite otherwise.   

Only average quantities are calculated – to 
give the macroscopic variables 

Fluctuations and correlations can also be 
calculated.  

Widely applicable, to all macroscopic 
systems in equilibrium or moving slowly 
between equilibrium states. 
   Not applicable to systems out of 
equilibrium.  

Even more widely applicable – can treat 
systems near equilibrium subject to time- 
and space-dependent perturbations, and 
their dynamics, correlations, and 
fluctuations 
    Not applicable to system far from 
equilibrium. 

The underlying microscopic dynamics 
(quantum, classical, etc.) does not play a 
role..  

Dynamics plays a key role. Quantum 
mechanics – and indistinguishability -  
naturally fit in, and play a key role. 

 
As noted above, in TD one deals entirely with quantities that are defined 
macroscopically, for a system or set of systems, and with the relations between them; we 
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may also introduce a heat bath as well. The foundations of the subject can be formalized 
using the 4 laws of TD (and in other ways as well).  
  

In contrast, we shall see that in SM we incorporate in some cases very detailed 
knowledge of the microscopic constituents. Nevertheless we will be able, from SM, to 
derive all the thermodynamic state quantities U, T, S, F etc., using probabilistic 
arguments.  
 
Actually, SM gives us far more than TD. Quite apart from ‘explaining’ TD for systems at 
equilibrium (in a way that we will see as we go along), it also allows us to look at the 
microscopic basis of the idea of equilibrium and to look at fluctuations around it, and to 
look at the properties of a system near to equilibrium which may be subject to time-
dependent perturbations. In this latter circumstance it allows us to look at the time-
dependent behavior of the system, and at all the correlation functions or ‘response 
functions’ (written as functions of space and time) which describe how the system reacts 
to such perturbations.  
 
The only limiting condition on the methods used in SM is that we still require that the 
system be near equilibrium. Why this is will become clearer as we go along. This is, as 
far as the real world goes, a significant limiting factor – some key features of what are 
referred to as ‘far from equilibrium’ behaviour are beyond the reach of SM. Not as far as 
one might often think, however – it is amazing how much of the dynamics of, eg., shock 
waves and explosions, can be understood using the methods of SM.  
 
We will in subsequent sections discuss the foundations of SM, and from this delineate its 
limitations. However, even before we do this, it is interesting and useful to give a brief 
preview, in which we compare some of the key features of the 2 different approaches to 
the behavior of macroscopic systems near equilibrium. We do this in tabular form, as 
shown above. 
 
 

 
 
Appendix:  Some Derivations 
 
In the text a number of results are given without explicit demonstration – here I fill in the 
gaps. We look first at two of the simple Hamiltonians discussed in the beginning of the 
chapter, and then look at the derivation of Stirling’s approximation.  
 
 
 
Simple Model Hamiltonians:  At the beginning of the chapter model Hamiltonians 
are given for a number of simple systems, and we amplify here on two of these, for those 
who have not met them: 
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(i)  Relativistic Particle: in the absence of any charge, a relativistic particle has an 
energy-momentum dispersion relation given by  
 
                                       E2  =  m2c4 + p2c2                                                                    (A.1) 
 
Where m is the rest mass of the particle. We do not prove this result here since it relies on 
detailed knowledge of special relativity, which is beyond the scope of this course. We 
note two limiting cases of this relation. First, when the momentum p is small, ie., when  
p2 << m2c2 , then we can expand the energy as 
 
       E   =   mc2 [1 + (p/mc)2]1/2     =    mc2 [1 + (v/c)2]1/2   
                                                      =    mc2[1 + ½(v/c)2  +  ….]     
                                                      =    mc2 + ½ mv2   + …              (v << c)                 (A.2) 
 
Second, when the momentum is very high, so that p2 >> m2c2, we have 
 
                              E   =   pc [1 + (mc/p)2]1/2     =     pc + …..         (v ~ c)                   (A.3) 
 
This latter result is in the relativistic limit, and is used in eqtn (2) at the beginning of this 
chapter.  
 
(ii(  Quantum Rotator:  Here we imagine a pair of masses m1 and m2, separated from 
each other by a distance R  =  r1 + r2, where r1 and r2 are the distances of each from the 
centre of mass. The Hamiltonian of the system when rotating is then given by 
 

                        

                                                                (A.4) 
                           
where the latter expression is just the usual result in spherical coordinates. The moment 
of inertia  of the system is I = µR2  (which is the same as 2

22
2

11 rmrmI += ) , and the 
reduced mass µ is given in terms of the original masses by 
 

                                                                                                                (A.5) 
 
 
(for which see any classical mechanics text). We can then solve Schrodinger’s eqtn for 
the system in the usual way – it is just like that for a particle ina  spherically symmetric 
potential. Once the radial term has been extracted, we are left with an angular equation 
given by  
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                                                                                (A.6) 
 
 
so that the energy eigenvalues are just those given in eqtn (5) of the main text. 
 
 
 
Stirling’s Approximation:   Stirling’s approximation is a typical example of the 
lowest terms in an “asymptotic expansion” of an integral. The full expansion is  
 

         (A.7) 
 
 
There are varous ways of deriving this systematic expansion. The simplest is to start from 
the standard expression for the factorial in terms of the Gamma function; for integer n, 
we have n! = Γ(n+1), so that 
 

                                                                             (A.8) 
 
which can be verified directly by integrating the right-hand side by parts. We can now 
treat this integral by “steepest descents”, which amounts to expanding the function about 
its maximum. The maximum of the integrand is when x = n, and so we write x = n + y, 
and expand in y, ie., write 
 

                                                                              (A.9) 
 
so that we have 
 

                                           (A.10) 
 
Notice that the term linear in y makes no contribution here, so we can approximate the 
result as 
 

                                (A.11) 
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where we use the standard result for a Gaussian integral. This is the desired result. If we 
continue the expanion in eqtn (A.9) to higher orders in y we can get the higher-order 
terms appearing in (A.7).  
 
Note that a quick and dirty way to get the leading term in (A.11) is to just write  
 

                                          
 
And then to approximate this by an integral, as 
 
 

                          
 
Which gives a correct approximation except for the last term on the right hand-side. 
 
The more general method here is useful. Suppose we wish to integrate the function  
exp [Mf(x)] over x, between limits a and b, where M is some constant (typically M >> 1). 
Let us suppose that f(x) has a maximum for a < x < b, at the point xo, so that the the 
exponential is very sharply peaked around xo. We write 
 

                                                                          (A.12) 
 
so that 
 

                                                    (A.13) 
 
 
Again we have a Gaussian integral, and the result is  
 

                                                                        (A.14) 
 
 
for M >> 1. Again, we can extend this to higher orders by continuing the expansion oin 
(A.12 to higher orders. Note tha the limits a and b do not appear in the final answer, since 
the are supposed to be sufficiently far from the maximum in the integrand.  
 
  
 


