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PHYS 403 HW4Model Solution

Rui Wen

1 Degenerate Fermions

1(a): You are given a metal which has a density of conducting electrons of 1029m−3. Treating these
electrons as though they were a non-interacting gas of fermions, find the T → 0 values for (i) the
Fermi energy, in eV; (ii) the Fermi wavelength of electrons at the Fermi surface, and (iii) the density
of states at the Fermi energy.
Solution:

The particle number is given by:

N = V

∫ +∞

0

dE g(E) fF (E, µ, T ) (1.1)

where g(E) is the density of state function, and fF is the fermion distribution function. In the
limit T → 0, the funciton fF reduces to a theta function: fF = 0 if E > Ef and fF = 1 if E < Ef ,
where Ef is the fermi energy. Therefore the integral (1.1) reduces to

N = V

∫ Ef

0

dEg(E) (1.2)

in the T → 0 limit. The density of state g(E) in 3d is g(E) = 1
2π2

(
2m
ℏ2
)3/2

E1/2. Thus the integral
is

N = V
1

2π2

(
2m

ℏ2

)3/2 ∫ Ef

0

dE E1/2 (1.3)

= V
1

2π2

(
2m

ℏ2

)3/2
2

3
E

3/2
f = V

1

3π2

(
2mEf

ℏ2

)3/2

(1.4)

⇒Ef =
ℏ2

2m

(
3π2N

V

)2/3

=
ℏ2

2m

(
3π2n

)2/3 (1.5)

The fermi wavelength is defined via Ef =
ℏ2k2f
2m

, λf = 2π/kf , therefore k2
f = (3π2n)2/3 ⇒ kf =

(3π2n)1/3. Finallywe evaluate the density of state at the fermi energy: g(Ef ) =
1

2π2

(
2m
ℏ2
)3/2

E
1/2
f =

1
2π2

(
2m
ℏ2
)3/2 ( ℏ2

2m

)1/2
(3π2n)1/3 = 3m

(3π2)2/3ℏ2n
1/3.

Substitute n = 1029 in the above expressions, we haveEf = 7.86 eV, kf = 1.44×1010m−1 ⇒ λf =

2π/kf = 4.375× 10−10m, g(Ef ) = 1.19× 1047J−1m−3 = 1.91× 1028eV−1m−3



Marking scheme:

1. 5 for knowing the relation (1.2)

2. 5 for getting the expression for Ef

3. 5 for getting the expression for λf

4. 5 for getting the expression for g(Ef )

1(b): A popular model for a metal (because it is so simple) is to pick a density of states:

g(E) =
N0

D0

[θ(E +D0)− θ(E −D0)] (1.6)

Here the energy 2D0 is called the bandwidth of the metal, and N0 is the number of conduction
electrons per unit volume; we also assume that the T = 0 chemical potential is at energy µ = 0.

Derive, for this system, the electronic specific heat CV (T ) and the temperature dependence of the
chemical potential µ(T ), for low temperatures (ie., for kBT ≪ D0), up to terms ∝ T 2.
Solution:

The chemical potential is determined by

n =

∫ +Do

−Do

dE g(E)fF (E, µ, T ) (1.7)

To use the Sommerfeld expansion, define h(E) :=
∫ E

−Do
g(ϵ)dϵ. Then the integration can be

approximated by:

n = h(µ) +
π2

6
(kT )2h′′(µ) (1.8)

The function h can be found by integrating the density of state:

h(E) =

∫ E

−Do

N0

D0

[θ(E +D0)− θ(E −D0)] =
N0

D0

(E +Do), ∀ −D0 ≤ E ≤ D0 (1.9)

Therefore we have h′′ = 0(in the region−D0 ≤ E ≤ D0), and n = N0

D0
(µ+Do) ⇒ µ = nD0

N0
−Do =

0.
For the energy, we use

hU :=

∫ E

−Do

dϵ ϵg(ϵ) =
N0

2D0

(E2 −D2
o), −D0 ≤ E ≤ D0 (1.10)

Then energy density is given by

U/V =

∫ +∞

0

dE Eg(E)fF (E, ν, T ) ∼= hU(µ) +
π2

6
(kT )2h′′

U(µ) (1.11)

= −N0Do

2
+

π2

6
(kT )2

N0

D0

(1.12)

2



CV is found by taking a derivative of U :

CV = dU/dT = V

(
π2

3
k2N0

D0

)
T (1.13)

Marking scheme:

1. 5 for knowing the Sommerfeld expansion.

2. 5 for getting µ via Sommerfeld expansion.(As long as it’s a constant)

3. 5 for getting U via Sommerfeld expansion. (As long as it’s quadratic in T )

4. Since µ = 0 exactly in this question, you also get full points if you complete the integral
for n without using Sommerfeld expansion and get the correct µ equation.

1(c): A popular model for a semiconductor has a density of states (with Ao, Bo both constants):

g(E) = go[Aoθ(E −∆0)
√

E − A∆o +Boθ(−E −∆o)
√
−E −∆o] (1.14)

We assume that at T = 0, all states are in the lower “valence band" are full, whereas all states in the
upper “conduction band” are empty. Show that (i) if Ao = Bo, then µ(T ) = 0 for all T > 0, whereas
if Ao > Bo, µ(T ) < 0, for T > 0.
Solution:

This question needs to be handled with proper care. At T = 0, the E < −∆o brance of the
density of state is full, which could host infinite many electrons. For example, if one calculates
the electron density N/V at T = 0:

N/V =

∫ −∆o

−∞
dEgoB0

√
−E −∆o (1.15)

it’s easily seen that the integral diverges. In fact, the integral for the lower branch diverges for
nonzero T as well. We can introduce a cutoff Λ to “renormalize” the integral:

n =

∫ −∆o

−Λ

dEg0B0

√
−E −∆o (1.16)

In the end of the calculation we will take the cutoff Λ to +∞ but keep it finite in intermidiate
steps.
Now at finite temperature we have relation

n = goAo

∫ +∞

∆o

√
E −∆o

eβ(E−µ) + 1
dE + goBo

∫ −∆o

−Λ

√
−E −∆o

eβ(E−µ) + 1
dE (1.17)
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use the relation (1.16) at zero T ,we have:∫ −∆o

−Λ

dEg0B0

√
−E −∆o = goAo

∫ +∞

∆o

√
E −∆o

eβ(E−µ) + 1
dE + goBo

∫ −∆o

−Λ

√
−E −∆o

eβ(E−µ) + 1
dE (1.18)

⇒
∫ −∆o

−Λ

dEgoBo

(
1− 1

eβ(E−µ) + 1

)√
−E −∆o = goAo

∫ +∞

∆o

√
E −∆o

eβ(E−µ) + 1
dE (1.19)

⇒
∫ −∆o

−Λ

dEgoBo

( √
−E −∆o

e−β(E−µ) + 1

)
= goAo

∫ +∞

∆o

√
E −∆o

eβ(E−µ) + 1
dE (1.20)

Notice now the LHS is convergent when we take Λ → +∞, because the sign of E on the
expoential is now negative. Take Λ → ∞, and define ϵ = −E −∆o on the LHS and ϵ = E −∆o

on the RHS, we have:

goAo

∫ +∞

0

√
ϵdϵ

eβ(ϵ+∆o−µ) + 1
= goBo

∫ +∞

0

√
ϵdϵ

eβ(ϵ+∆o+µ) + 1
(1.21)

when Ao = Bo the equation has the obvious solution µ = 0; when Ao > Bo, notice LHS is an
increasing function of µwhile the RHS is a decreasing function of µ, therefore µmust decrease
from zero when Ao increases from Bo, i.e. µ < 0 when Ao > Bo.

Marking scheme

1. 5 for knowing relation (1.2).

2. 5 for showing µ = 0.

3. 5 for showing µ < 0.

4. you get full marks if you are able to argue that the number of particles in the upper band
equals the number of holes in the lower band.

5. 10 points off for any sort of approximate analysis, since the question is about “any T > 0”.

2(a): For a particle in the n-th level in thewell, at energy−nϵo, find theWKB tunneling probability
Γ
(n)
Q through the barrier at this energy (assume the particle has massM), using the form given for the

barrier potential V (X).
Solution:

The WKB tunneling probability is

Γ = exp

(
−2

ℏ

∫ x1

x0

dx
√

2m(V (x)− E)

)
(1.22)

where x0, x1 is found by solving V (x) = E, here we have V (x) = −αx2, giving two solutions
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x0 = −
√

−E
α
, x1 =

√
−E
α
, denote them as ±xE , then

Γ = exp

(
−2

ℏ

∫ xE

−xE

dx
√
2m(−αx2 − E)

)
(1.23)

= exp

(
−2

ℏ
√
−2mE

∫ xE

−xE

dx

√
1 +

α

E
x2

)
(1.24)

= exp

(
−2

ℏ
√
−2mE

√
E

−α

∫ 1

−1

dy
√
1− y2

)
(1.25)

= exp

(√
2m

α

E

ℏ
π

)
(1.26)

where defined y =
√

−α
E
x and notice the integral over y is the area of upper half of a unit circle.

Now plug in En = −nϵ, we have

Γ
(n)
Q = exp

(
−nϵoπ

ℏ

√
2m

α

)
(1.27)

Marking scheme

1. 10 for knowing the WKB approximation (1.22).

2. 5 for getting the correct x0, x1.

3. 5 for completing the integral and getting the correct Γ(n)
Q .

2(b): Now, let us assume that the total transition rate Γ(T ) out of the potential well is given by

Γ(T ) =
N∑

n=0

Γ
(n)
Q exp [−βϵn] (1.28)

Here β = 1/kBT , and we sum over all the levels from the lowest energy state at energy EN = −Nϵo,
up to the highest energy state at top of the barrier, at energy Eo = 0.

Show that at low T the transition is dominated by the transitions from the lowest state at energy
EN = −Nϵo whereas at high T , it is dominated by transitions from the state at the top of the barrier,
at energy Eo = 0. Show also that there is an intermediate ’crossover’ temperature Tc at which the
transition rate from each of the levels is roughly the same; and find Tc as a function of the parameters
α and kB.
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Solution

Write Γ(n)
Q = e−n∆ with ∆ = ϵoπ

ℏ

√
2m
α
. The total probability is

Γ(T ) =
N∑

n=0

Γ
(n)
Q eβnϵo =

N∑
n=0

en(−∆+βϵo) (1.29)

At low T , β is large, the overall coefficient −∆ + βϵo is positive, therefore the n = N term is
largest. At high T , −∆+ βϵo ≃ −∆ is negative, therefore the term with n = 0 is largest. When
−∆+ βϵo = 0, all terms contribute equally. The solution is

β =
∆

ϵo
=

π

ℏ

√
2m

α
⇒ Tc =

ℏ
πkB

√
α

2m
(1.30)

Marking scheme

1. 10 for arriving at the correct Γ(T ) expression.

2. 10 for showing the correct large and small T analysis.

3. 10 for getting the crossover value Tc.
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