PHYS 403 HW4 Model Solution

Rui Wen

1 Degenerate Fermions

1(a): You are given a metal which has a density of conducting electrons of $10^{29} \mathrm{~m}^{-3}$. Treating these electrons as though they were a non-interacting gas of fermions, find the $T \rightarrow 0$ values for (i) the Fermi energy, in eV; (ii) the Fermi wavelength of electrons at the Fermi surface, and (iii) the density of states at the Fermi energy.

Solution:

The particle number is given by:

$$
\begin{equation*}
N=V \int_{0}^{+\infty} d E g(E) f_{F}(E, \mu, T) \tag{1.1}
\end{equation*}
$$

where $g(E)$ is the density of state function, and f_{F} is the fermion distribution function. In the limit $T \rightarrow 0$, the funciton f_{F} reduces to a theta function: $f_{F}=0$ if $E>E_{f}$ and $f_{F}=1$ if $E<E_{f}$, where E_{f} is the fermi energy. Therefore the integral (1.1) reduces to

$$
\begin{equation*}
N=V \int_{0}^{E_{f}} d E g(E) \tag{1.2}
\end{equation*}
$$

in the $T \rightarrow 0$ limit. The density of state $g(E)$ in 3d is $g(E)=\frac{1}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} E^{1 / 2}$. Thus the integral is

$$
\begin{align*}
N & =V \frac{1}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \int_{0}^{E_{f}} d E E^{1 / 2} \tag{1.3}\\
& =V \frac{1}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \frac{2}{3} E_{f}^{3 / 2}=V \frac{1}{3 \pi^{2}}\left(\frac{2 m E_{f}}{\hbar^{2}}\right)^{3 / 2} \tag{1.4}\\
\Rightarrow & E_{f}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} \frac{N}{V}\right)^{2 / 3}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n\right)^{2 / 3} \tag{1.5}
\end{align*}
$$

The fermi wavelength is defined via $E_{f}=\frac{\hbar^{2} k_{f}^{2}}{2 m}, \lambda_{f}=2 \pi / k_{f}$, therefore $k_{f}^{2}=\left(3 \pi^{2} n\right)^{2 / 3} \Rightarrow k_{f}=$ $\left(3 \pi^{2} n\right)^{1 / 3}$. Finally we evaluate the density of state at the fermi energy: $g\left(E_{f}\right)=\frac{1}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} E_{f}^{1 / 2}=$ $\frac{1}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2}\left(\frac{\hbar^{2}}{2 m}\right)^{1 / 2}\left(3 \pi^{2} n\right)^{1 / 3}=\frac{3 m}{\left(3 \pi^{2}\right)^{2 / 3} \hbar^{2}} n^{1 / 3}$.
Substitute $n=10^{29}$ in the above expressions, we have $E_{f}=7.86 \mathrm{eV}, k_{f}=1.44 \times 10^{10} \mathrm{~m}^{-1} \Rightarrow \lambda_{f}=$ $2 \pi / k_{f}=4.375 \times 10^{-10} m, g\left(E_{f}\right)=1.19 \times 10^{47} J^{-1} m^{-3}=1.91 \times 10^{28} \mathrm{eV}^{-1} m^{-3}$

Marking scheme:

1. 5 for knowing the relation (1.2)
2. 5 for getting the expression for E_{f}
3. 5 for getting the expression for λ_{f}
4. 5 for getting the expression for $g\left(E_{f}\right)$

1(b): A popular model for a metal (because it is so simple) is to pick a density of states:

$$
\begin{equation*}
g(E)=\frac{N_{0}}{D_{0}}\left[\theta\left(E+D_{0}\right)-\theta\left(E-D_{0}\right)\right] \tag{1.6}
\end{equation*}
$$

Here the energy $2 D_{0}$ is called the bandwidth of the metal, and N_{0} is the number of conduction electrons per unit volume; we also assume that the $T=0$ chemical potential is at energy $\mu=0$.

Derive, for this system, the electronic specific heat $C_{V}(T)$ and the temperature dependence of the chemical potential $\mu(T)$, for low temperatures (ie., for $k_{B} T \ll D_{0}$), up to terms $\propto T^{2}$.

Solution:

The chemical potential is determined by

$$
\begin{equation*}
n=\int_{-D_{o}}^{+D_{o}} d E g(E) f_{F}(E, \mu, T) \tag{1.7}
\end{equation*}
$$

To use the Sommerfeld expansion, define $h(E):=\int_{-D_{o}}^{E} g(\epsilon) d \epsilon$. Then the integration can be approximated by:

$$
\begin{equation*}
n=h(\mu)+\frac{\pi^{2}}{6}(k T)^{2} h^{\prime \prime}(\mu) \tag{1.8}
\end{equation*}
$$

The function h can be found by integrating the density of state:

$$
\begin{equation*}
h(E)=\int_{-D_{o}}^{E} \frac{N_{0}}{D_{0}}\left[\theta\left(E+D_{0}\right)-\theta\left(E-D_{0}\right)\right]=\frac{N_{0}}{D_{0}}\left(E+D_{o}\right), \forall-D_{0} \leq E \leq D_{0} \tag{1.9}
\end{equation*}
$$

Therefore we have $h^{\prime \prime}=0$ (in the region $-D_{0} \leq E \leq D_{0}$), and $n=\frac{N_{0}}{D_{0}}\left(\mu+D_{o}\right) \Rightarrow \mu=n \frac{D_{0}}{N_{0}}-D_{o}=$ 0.

For the energy, we use

$$
\begin{equation*}
h_{U}:=\int_{-D_{o}}^{E} d \epsilon \epsilon g(\epsilon)=\frac{N_{0}}{2 D_{0}}\left(E^{2}-D_{o}^{2}\right),-D_{0} \leq E \leq D_{0} \tag{1.10}
\end{equation*}
$$

Then energy density is given by

$$
\begin{align*}
U / V & =\int_{0}^{+\infty} d E E g(E) f_{F}(E, \nu, T) \cong h_{U}(\mu)+\frac{\pi^{2}}{6}(k T)^{2} h_{U}^{\prime \prime}(\mu) \tag{1.11}\\
& =-\frac{N_{0} D_{o}}{2}+\frac{\pi^{2}}{6}(k T)^{2} \frac{N_{0}}{D_{0}} \tag{1.12}
\end{align*}
$$

C_{V} is found by taking a derivative of U :

$$
\begin{equation*}
C_{V}=d U / d T=V\left(\frac{\pi^{2}}{3} k^{2} \frac{N_{0}}{D_{0}}\right) T \tag{1.13}
\end{equation*}
$$

Marking scheme:

1. 5 for knowing the Sommerfeld expansion.
2. 5 for getting μ via Sommerfeld expansion.(As long as it's a constant)
3. 5 for getting U via Sommerfeld expansion. (As long as it's quadratic in T)
4. Since $\mu=0$ exactly in this question, you also get full points if you complete the integral for n without using Sommerfeld expansion and get the correct μ equation.

1(c): A popular model for a semiconductor has a density of states (with A_{o}, B_{o} both constants):

$$
\begin{equation*}
g(E)=g_{o}\left[A_{o} \theta\left(E-\Delta_{0}\right) \sqrt{E-A \Delta_{o}}+B_{o} \theta\left(-E-\Delta_{o}\right) \sqrt{-E-\Delta_{o}}\right] \tag{1.14}
\end{equation*}
$$

We assume that at $T=0$, all states are in the lower "valence band" are full, whereas all states in the upper "conduction band" are empty. Show that (i) if $A_{o}=B_{o}$, then $\mu(T)=0$ for all $T>0$, whereas if $A_{o}>B_{o}, \mu(T)<0$, for $T>0$.

Solution:

This question needs to be handled with proper care. At $T=0$, the $E<-\Delta_{o}$ brance of the density of state is full, which could host infinite many electrons. For example, if one calculates the electron density N / V at $T=0$:

$$
\begin{equation*}
N / V=\int_{-\infty}^{-\Delta_{o}} d E g_{o} B_{0} \sqrt{-E-\Delta_{o}} \tag{1.15}
\end{equation*}
$$

it's easily seen that the integral diverges. In fact, the integral for the lower branch diverges for nonzero T as well. We can introduce a cutoff Λ to "renormalize" the integral:

$$
\begin{equation*}
n=\int_{-\Lambda}^{-\Delta_{o}} d E g_{0} B_{0} \sqrt{-E-\Delta_{o}} \tag{1.16}
\end{equation*}
$$

In the end of the calculation we will take the cutoff Λ to $+\infty$ but keep it finite in intermidiate steps.
Now at finite temperature we have relation

$$
\begin{equation*}
n=g_{o} A_{o} \int_{\Delta_{o}}^{+\infty} \frac{\sqrt{E-\Delta_{o}}}{e^{\beta(E-\mu)}+1} d E+g_{o} B_{o} \int_{-\Lambda}^{-\Delta_{o}} \frac{\sqrt{-E-\Delta_{o}}}{e^{\beta(E-\mu)}+1} d E \tag{1.17}
\end{equation*}
$$

use the relation (1.16) at zero T, we have:

$$
\begin{align*}
& \int_{-\Lambda}^{-\Delta_{o}} d E g_{0} B_{0} \sqrt{-E-\Delta_{o}}=g_{o} A_{o} \int_{\Delta_{o}}^{+\infty} \frac{\sqrt{E-\Delta_{o}}}{e^{\beta(E-\mu)}+1} d E+g_{o} B_{o} \int_{-\Lambda}^{-\Delta_{o}} \frac{\sqrt{-E-\Delta_{o}}}{e^{\beta(E-\mu)}+1} d E \tag{1.18}\\
\Rightarrow & \int_{-\Lambda}^{-\Delta_{o}} d E g_{o} B_{o}\left(1-\frac{1}{e^{\beta(E-\mu)}+1}\right) \sqrt{-E-\Delta_{o}}=g_{o} A_{o} \int_{\Delta_{o}}^{+\infty} \frac{\sqrt{E-\Delta_{o}}}{e^{\beta(E-\mu)}+1} d E \tag{1.19}\\
\Rightarrow & \int_{-\Lambda}^{-\Delta_{o}} d E g_{o} B_{o}\left(\frac{\sqrt{-E-\Delta_{o}}}{e^{-\beta(E-\mu)}+1}\right)=g_{o} A_{o} \int_{\Delta_{o}}^{+\infty} \frac{\sqrt{E-\Delta_{o}}}{e^{\beta(E-\mu)}+1} d E \tag{1.20}
\end{align*}
$$

Notice now the LHS is convergent when we take $\Lambda \rightarrow+\infty$, because the sign of E on the expoential is now negative. Take $\Lambda \rightarrow \infty$, and define $\epsilon=-E-\Delta_{o}$ on the LHS and $\epsilon=E-\Delta_{o}$ on the RHS, we have:

$$
\begin{equation*}
g_{o} A_{o} \int_{0}^{+\infty} \frac{\sqrt{\epsilon} d \epsilon}{e^{\beta\left(\epsilon+\Delta_{o}-\mu\right)}+1}=g_{o} B_{o} \int_{0}^{+\infty} \frac{\sqrt{\epsilon} d \epsilon}{e^{\beta\left(\epsilon+\Delta_{o}+\mu\right)}+1} \tag{1.21}
\end{equation*}
$$

when $A_{o}=B_{o}$ the equation has the obvious solution $\mu=0$; when $A_{o}>B_{o}$, notice LHS is an increasing function of μ while the RHS is a decreasing function of μ, therefore μ must decrease from zero when A_{o} increases from B_{o}, i.e. $\mu<0$ when $A_{o}>B_{o}$.

Marking scheme

1. 5 for knowing relation (1.2).
2. 5 for showing $\mu=0$.
3. 5 for showing $\mu<0$.
4. you get full marks if you are able to argue that the number of particles in the upper band equals the number of holes in the lower band.
5. 10 points off for any sort of approximate analysis, since the question is about "any $T>0$ ".

2(a): For a particle in the n-th level in the well, at energy $-n \epsilon_{o}$, find the WKB tunneling probability $\Gamma_{Q}^{(n)}$ through the barrier at this energy (assume the particle has mass M), using the form given for the barrier potential $V(X)$.

Solution:

The WKB tunneling probability is

$$
\begin{equation*}
\Gamma=\exp \left(-\frac{2}{\hbar} \int_{x_{0}}^{x_{1}} d x \sqrt{2 m(V(x)-E)}\right) \tag{1.22}
\end{equation*}
$$

where x_{0}, x_{1} is found by solving $V(x)=E$, here we have $V(x)=-\alpha x^{2}$, giving two solutions
$x_{0}=-\sqrt{\frac{-E}{\alpha}}, x_{1}=\sqrt{\frac{-E}{\alpha}}$, denote them as $\pm x_{E}$, then

$$
\begin{align*}
\Gamma & =\exp \left(-\frac{2}{\hbar} \int_{-x_{E}}^{x_{E}} d x \sqrt{2 m\left(-\alpha x^{2}-E\right)}\right) \tag{1.23}\\
& =\exp \left(-\frac{2}{\hbar} \sqrt{-2 m E} \int_{-x_{E}}^{x_{E}} d x \sqrt{1+\frac{\alpha}{E} x^{2}}\right) \tag{1.24}\\
& =\exp \left(-\frac{2}{\hbar} \sqrt{-2 m E} \sqrt{\frac{E}{-\alpha}} \int_{-1}^{1} d y \sqrt{1-y^{2}}\right) \tag{1.25}\\
& =\exp \left(\sqrt{\frac{2 m}{\alpha}} \frac{E}{\hbar} \pi\right) \tag{1.26}
\end{align*}
$$

where defined $y=\sqrt{\frac{-\alpha}{E}} x$ and notice the integral over y is the area of upper half of a unit circle.
Now plug in $E_{n}=-n \epsilon$, we have

$$
\begin{equation*}
\Gamma_{Q}^{(n)}=\exp \left(-\frac{n \epsilon_{o} \pi}{\hbar} \sqrt{\frac{2 m}{\alpha}}\right) \tag{1.27}
\end{equation*}
$$

Marking scheme

1. 10 for knowing the WKB approximation (1.22).
2. 5 for getting the correct x_{0}, x_{1}.
3. 5 for completing the integral and getting the correct $\Gamma_{Q}^{(n)}$.

2(b): Now, let us assume that the total transition rate $\Gamma(T)$ out of the potential well is given by

$$
\begin{equation*}
\Gamma(T)=\sum_{n=0}^{N} \Gamma_{Q}^{(n)} \exp \left[-\beta \epsilon_{n}\right] \tag{1.28}
\end{equation*}
$$

Here $\beta=1 / k_{B} T$, and we sum over all the levels from the lowest energy state at energy $E_{N}=-N \epsilon_{o}$, up to the highest energy state at top of the barrier, at energy $E_{o}=0$.

Show that at low T the transition is dominated by the transitions from the lowest state at energy $E_{N}=-N \epsilon_{o}$ whereas at high T, it is dominated by transitions from the state at the top of the barrier, at energy $E_{o}=0$. Show also that there is an intermediate 'crossover' temperature Tc at which the transition rate from each of the levels is roughly the same; and find T_{c} as a function of the parameters α and k_{B}.

Solution

Write $\Gamma_{Q}^{(n)}=e^{-n \Delta}$ with $\Delta=\frac{\epsilon_{o} \pi}{\hbar} \sqrt{\frac{2 m}{\alpha}}$. The total probability is

$$
\begin{equation*}
\Gamma(T)=\sum_{n=0}^{N} \Gamma_{Q}^{(n)} e^{\beta n \epsilon_{o}}=\sum_{n=0}^{N} e^{n\left(-\Delta+\beta \epsilon_{o}\right)} \tag{1.29}
\end{equation*}
$$

At low T, β is large, the overall coefficient $-\Delta+\beta \epsilon_{o}$ is positive, therefore the $n=N$ term is largest. At high $T,-\Delta+\beta \epsilon_{o} \simeq-\Delta$ is negative, therefore the term with $n=0$ is largest. When $-\Delta+\beta \epsilon_{o}=0$, all terms contribute equally. The solution is

$$
\begin{equation*}
\beta=\frac{\Delta}{\epsilon_{o}}=\frac{\pi}{\hbar} \sqrt{\frac{2 m}{\alpha}} \Rightarrow T_{c}=\frac{\hbar}{\pi k_{B}} \sqrt{\frac{\alpha}{2 m}} \tag{1.30}
\end{equation*}
$$

Marking scheme

1. 10 for arriving at the correct $\Gamma(T)$ expression.
2. 10 for showing the correct large and small T analysis.
3. 10 for getting the crossover value T_{c}.
