
Special Relativity as a symmetry of nature

Einstein’s Principle of Relativity states that the laws of physics are the same in all
frames of reference. To understand the implications of this for quantum field theories, it
is crucial to realize that this statement implies that there is a symmetry of nature above
and beyond the usual translations, time translations, and rotations. Specifically, if we
have any physical scenario (which satisfies the equations of motion/ the Schrodinger
equation) and we consider another scenario equivalent to how the first scenario would
appear to an observer moving at constant velocity, then the new scenario must also
satisfy the same equations of motion / Schrodinger equation.

The transformation from one physical configuration to another one equivalent to
how the first would appear in another frame of reference is known as a BOOST. For
example, applying a boost to a state with a particle at rest gives us a state with a par-
ticle moving at some constant velocity. The set of all possible boosts, together with all
possible rotations is known as the set of LORENTZ TRANSFORMATIONS. Mathe-
matically, these transformations form a group, known as the LORENTZ GROUP. The
set of all possible boosts, rotations and translations form the POINCARÉ TRANS-
FORMATIONS, which are the elements of the POINCARÉ GROUP.

Explicit form of the Poincaré transformations

To describe explicitly how the Poincare transformations affect coordinates and fields,
it is useful to collect the time and space coordinates into a 4-VECTOR

xµ =


ct
x
y
z

 ,

where µ is taken to run from 0 (for the time coordinate) to 3. With this notation, we
can write the action of a general Poincare transformation as

xµ → Λµ
νx

ν + aµ (1)

where aµ parameterize the translations and time translations, and Λµ
ν is a matrix

describing the rotations and boosts. For example, a rotation around the z axis corre-
sponds to

Λµ
ν =


1 0 0 0
0 cos(θ) − sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1


while a boost with velocity v in the x direction corresponds to

Λµ
ν =


γ −γβ 0 0

−γβ γ 0 0
0 0 1 0
0 0 0 1

 .
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Here, we define β = v/c, γ = 1/
√
1− β2.

Transformation of physical quantities under Lorentz tranfor-
mations

Physical quantities all have some particular transformation rule under Lorentz trans-
formations. For certain quantities, such as proper time and total charge, there is no
change when we do a Lorentz transformation. Other quantities, such as energy and
momentum transform in the same way as the coordinates once we combine them into
a 4-vector

pµ =


E/c
px
py
pz

 .

For constructing quantum field theories, we will be mostly interested in the transfor-
mation properties of fields. Just as for the more restricted case of rotations (see class
notes), we can have SCALAR FIELDS that transform as

ϕ̃(Λx) = ϕ(x) ,

defined so that the new field at a transformed coordinate location is equal to the old
field at the old location. We can also have 4-VECTOR fields whose components are
transformed like the coordinates (in a similar way to the rotational vector fields)

ϕ̃µ(Λx) = Λµ
νϕ

ν(x) .

Eventually, we’ll want to understand all the possibilities for Lorentz transformation
rules on fields.

General Lorentz Transformations

The most general Lorentz transformation can be obtained by a combination of boosts
and rotations in the various directions. It would be very ugly to write a matrix for
the most general such transformation, but there is a very nice way to characterize the
Lorentz transformations in general. First recall that rotations may be defined as the
group of transformations x⃗ → Rx⃗ that preserve distances ∆x⃗ · ∆x⃗ (so that distances
are preserved). In special relativity, you learned that distances between events could
be different in different frames of reference. Thus, general Lorentz transformations do
not preserve dot products, but they do preserve the special combination known as the
INVARIANT INTERVAL

(∆s)2 = c2(∆t)2 − (∆x⃗)2 = ∆xµηµν∆xν

where we have defined

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .
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In fact, the Lorentz transformations can be defined as the set of transformations
which preserve (∆s)2, in the same way that the rotations can be defined as the set
of transformations x⃗ → Rx⃗ that preserve distances.1 It is simple to show that a
transformation (1) will preserve (∆s)2 if and only if

Λα
µηαβΛ

β
ν = ηµν ,

or in matrix language
ΛTηΛ = η . (2)

Notation

In expressions involving 4-vectors, we frequently have the matrix ηµν multiplying a
vector (or sandwiched between two vectors as in the invariant interval). To make
equations simpler, it is convenient to use the notation

xµ = ηµνx
ν .

Then, for example, we can write ∆s2 = ∆xµ∆xµ.
By it’s definition, xµ is the same as x with minus signs on its spatial components.

This difference means that the transformation rule for xµ is slightly different:

xµ → Λµ
νxν

where we have defined Λµ
ν = ηµαΛ

α
βη

βν (here ηµν is the same matrix as ηµν).
This notation is also used often in writing actions for fields. For example

∂µϕ∂
µϕ ≡ ∂µϕη

µν∂νϕ ≡ ∂ϕ

∂xµ
ηµν

∂ϕ

∂xν
=

1

c2

(
∂ϕ

∂t

)2

− ∇⃗ϕ · ∇⃗ϕ

It turns out that the components of the derivative of a field ∂µϕ = ∂ϕ
∂xµ transform in

the same way as xµ, so the derivative is normally written with a lower index.

Infinitesimal Lorentz Transformations

It is very useful to understand what the infinitesimal Lorentz transformations look
like. Suppose that we have a family of Lorentz transformations Λ(a), where Λ(0) is the
identity matrix (which we call 1). Then we must have

Λ(ϵ) = 1 + ϵω +O(ϵ2)

for some matrix ω. Plugging this into (2) we find that ω must satisfy

ωTη = −ηω

1By this definition, Lorentz transformations include not only rotations and boosts, but two special
transformations known as PARITY (t, x, y, z) → (t,−x,−y,−z) and TIME REVERSAL (t, x, y, z) →
(−t, x, y, z).
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or
−ηωTη = ω .

It is easy to show that the general solution of this equation is

ω =


0 a1 a2 a3
a1 0 b3 −b2
a2 −b3 0 b1
a3 b2 −b1 0

 ≡ iaiKi + ibiJi

where the matrices J and K are defined by the last equivalence, and the factor of i is
just a convention. It is easy to show that the matrices Ji are the infinitesimal rotation
generators and the Ki matrices are the infinitesimal boost generators. For example,
K2 is the matrix

(K2)
µ
ν = −i


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


and under an infinitesimal boost in the y direction, the coordinates change by

δxµ = iϵ(K2)
µ
νx

ν .

Since all the possible infinitesimal Lorentz transformations are either rotations or
boosts, we may conclude that all Λs satisfying (2) are some combinations of boosts
and rotations.2

The Lorentz Algebra

By explicit calculation, we can find the commutation relations of the Lorentz genera-
tors. We have

[Ji, Jj] = iϵijkJk
[Ji, Kj] = iϵijkKk

[Ki, Kj] = −iϵijkJk

where ϵijk is defined to be 1 for (ijk) = (123), (231), (312) and -1 for (ijk) = (213), (321), (132).
These commutation relations will be important for determining the possible ways

the field variables can transform under Lorentz transformations. To do this, we’ll want
to determine all possible ways to find matrices (not necessarily 4 by 4) that have the
same commutation relations as these.

2Again, to be precise, we should say that this is true for any Lorentz transformation that can
be deformed smoothly to the identity transformation. The most general transformation is some
combination of these plus a possible parity transformation and/or time reversal.
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Exercises

a) Write out all the terms in the expression xµ∂µϕ.

b) Write out all the terms in the expression xµp
µ.

c) The scalar and vector potentials in electromagnetism form a four-vector field

Aµ(t, x⃗) =


ϕ/c
Ax

Ay

Az


under Lorentz transformations. Starting with the potential

Aµ(t, x⃗) =


Ey/c
0
0
0

 ,

(i.e. a constant electric field), what is the potential after a boost by velocity v in the
x direction (last equation on page 1 of the notes)?
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