1 A Brief Review of Quantum Mechanics

Before starting to learn about quantum field theory, it’s probably a good
idea to make sure you have a solid idea of what quantum mechanics is all
about.

1.1 Classical Mechanics

To start, let’s recall how physical systems are described classically, so that
we can contrast with the quantum mechanical description.

The configuration of a physical system at a particular time is described
by a set of variables. These could be coordinates for some number of par-
ticles #;(t), angles describing the orientation of a rigid body 6;(t), functions
describing the displacement of a string as a function of position along the
string ¢(x,t), etc... . Sometimes it will be useful to describe this information
in an abstract way by some generalized coordinates q,(t), where o could ei-
ther run over a finite number of values (as in the case of the coordinates for
a particle), or an infinite number of values (as in the case where « describes
the locations along a string.

To completely specify the state of a classical system at a particular time,
we typically need to know the coordinates ¢, (t) at that time and also the ve-
locities ¢4 (%), i.e. how quickly they are changing at that particular time.! All
other physical quantities, such as the accelerations, energies, momenta, etc...
can be derived from this information either because they are simply defined
as functions of the coordinates and velocities, or because some physical law
tells us what they must be. In particular, the laws of classical physics can be
used to derive equations of motion that determine the configuration of the
system at any future time from the configuration (coordinates and velocities)
at some initial time:

da(t =t0) , u(t =to) —EOoM qa ()

'In Maxwell’s equations for electromagnetism, we do not need the time derivatives of
the electric and magnetic fields to determine their future evolution. However, when the
information is given in terms of scalar and vector potentials, both the potentials and their
time derivatives are needed.



1.2 Quantum Mechanics

In quantum mechanics, we often speak of “quantizing” a particular physical
system. What does this really mean?

First, it is important to emphasize that as far as we know, all physical
systems are quantized; that is, they are governed fundamentally by the rules
of quantum mechanics. In particular, the description in terms of classical
mechanics is at best an approximation that works well in certain situations
(e.g. if the system is macroscopic and carries enough energy).

So “quantizing” the system really means moving to the more precise
quantum mechanical description that will have a wider range of validity than
the classical description.

Though classical physics gives a very good approximation to quantum
mechanics in many situations, it is crucial to realize that the quantum me-
chanical description does not just involve some small (or large) corrections to
the classical equations of motion but rather a completely different conceptual
and mathematical framework for the description of nature.

In a classical description, all physical quantities have definite values in
every configuration. Once we know ¢, (t) and ¢,(t), we can calculate energy,
momentum, acceleration, and so forth. In quantum mechanics, for any given
physical quantity (or observable), only special states (the eigenstates for that
observable) will have definite values for that observable (these values are the
eigenvalues). For more general states, a measurement of some observable will
give a result that cannot be predicted, even if we have all possible information
about the state: general states do not have definite values for physical quan-
tities. The only thing we can predict is the probability for various outcomes
of the measurement.

Mathematically, it turns out that the quantitative description of quan-
tum mechanics fits into the framework of linear algebra. Configurations of
a physical system are described by wectors in a complex vector space with
an inner product (or Hilbert space, which is a kind of vector space with an
infinite number of basis vectors). This means that given any two configura-
tions, there is another configuration given by the sum of those configurations
with arbitrary complex coefficents. This sum is known as a quantum su-
perposition. The eigenstates for a particular observable correspond to some
complete, orthogonal set of unit basis vectors for the Hilbert space. Any
other vector in the Hilbert space can therefore be written as a superposition
of the basis vectors (i.e. any state which is not an eigenstate can be written



as a quantum superposition of eigenstates). The coefficients in the superpo-
sition determine the probabilities for the various outcomes of a measurement
of that observable: if the eigenstate vectors are denoted by |A;) and we can
decompose the vector corresponding to a general state |¢)) as

W> = Z Ci|)‘i>

(2

then the probability of finding \; when we measure the observable is propor-
tional to |¢;|%. If \; is the result of our measurement, the state of the system
immediately after the measurement becomes |);), so that an immediately
repeated measurement will definitely give the same result.

For some observables (e.g. position), the set of possible values is continu-
ous. In that case, a general quantum superposition is written as an integral

[ dwii@)lz) .

In this case, the coefficients in the quantum superposition make up a func-
tion ¢ (z) which we call the wavefunction (in this case, the position-space
wavefunction). The wavefunction (or equivalently, the vector in the Hilbert
space) carries all information about the state of the system at a particular
time.

1.2.1 Quantum uncertainty

A key feature of quantum mechanics is that the basis vectors corresponding
to different observables do not generally coincide. For example, eigenstates
of position are not eigenstates of momentum, but quantum superpositions of
states with different momentum. This leads to the uncertainty principle in
quantum mechanics.

1.2.2 Observables and operators

An operator is a linear map from a Hilbert space to itself, taking vectors
into other vectors. In quantum mechanics, any physical observable can be
naturally associated with an operator, which takes the eigenvectors for that
observable to

OlXi) = XilAi)



This completely defines the operator, since linearity implies that the action
on any general vector must be

O alh) =D ahil\)

Operators corresponding to physical observables are have the special property
of being Hermitian (O = O), related to the fact that all of their eigenvalue
are real.

1.2.3 Symmetries

Another class of operators in quantum mechanics are the operators that
carry out physical transformations such as translations, rotations, or time
translations on states. These operators must be unitary (they satisfy OTO =
1) in order that O|y) has norm 1 if |[¢)) has norm 1.

Related to any continuous physical transformation is an infinitesimal ver-
sion of that transformation. For example, suppose that 7 (a) is the operator
that translates states by an amount a in the = direction. The small change
in a state under an infinitesimal translation is:

0|y = T(x)[¢) — [4) ~ 62T (0)[¢) (1)

If we define p = ih7'(0) = thlim._o(7 (¢) — 1)/€, we can show that p is a
Hermitian operator from the fact that 7 is a unitary operator. The & here
is just a convention.

So generally, we can associate a Hermitian operator to any infinitesimal
transformation. But we already said that Hermitian operators were asso-
ciated with physical observables. This leads to a fundamental fact about
quantum mechanics: to any infinitesimal transformation, we can associate a
physical observable. We’ll learn later that if the infinitesimal transformation
is a symmetry, then the observable will be a conserved quantity.

So what is the physical observable related to the infinitesimal translation
operator p? It’s the conserved quantity associated with spatial translation
invariance, namely momentum (the factor of i above was chosen to agree with
the conventional definition). From the equation (1) above and our definition
of p, we thus have that under an translation in the x direction by an amount
dx, we have

Ol = 6z p/(ih)|) . (2)



where p is the momentum operator. From this, we can derive the fundamental
relation?
[z, p| =ik .

For more general quantum systems, a similar commutation relation holds
between any generalized coordinate and the corresponding momentum.

In a similar way, the infinitesimal time translation operator is proportional
to the energy operator H. Thus, under an infinitesimal translation in time,
we have:

Oly) = H/(ih)[¢)dt .

Rearranging, we see that this is exactly the Schrodinger equation:

S OlY)
Zh? =H|y) .

1.2.4 Time evolution

Understanding properties of the energy eigenstates is a key step in determin-
ing the time evolution of a system. From the Schrodinger equation, it is easy
to see that if [¢)(t = 0)) is an energy eigenstate |E) with energy E, then?

[0(t)) = e E) .
Given any other initial state [¢)(0)), if we can write it as a linear combination
of energy eigenstates,
[W(t=10)) = colEn) -

Then the time-evolved state must (by linearity of the Schrodinger equation)

be
(1)) =D cae M E,)

2As an intermediate step, if we define ¢(z) = (x|), we then find that

(alple) = (ih)(e|6|) /o

(ih) Y (2| T (5) ) — (z[9) /6

(ih) limn (4 — ) — () 0

it () . (3)

3Here, we are assuming that H is independent of time.



Thus, given a quantum system, the general problem of time evolution will
be solved if we can determine the energy eigenvalues and how to represent
any arbitrary state of interest in terms of energy eigenstates.*

2 The harmonic oscillator

As an example, suppose we want to understand the quantum physics of the
harmonic oscillator, whose classical configurations are described by a single
coordinate z(t), governed by equations of motion

I = —wx

arising from an action
Lo 1 5
Sz/dt{§m$ - pwr }

and whose energy is given by

1 1
E = §m$2 + émwsz )

A first step in understanding the quantum behavior of the system is to
determine what the possible energy eigenvalues are. °

We start by rewriting the classical expression for energy in terms of po-

sition and momentum:®

P’ 1 2 2

E=_—+_-mwu
2m 2

Reinterpreting this as a quantum mechanical operator (where p and x are
the position and momentum operators) gives us the quantum Hamiltonian
p’ 1 2.2

4For example, if we want to understand the time-evolution of some arbitrary position
space wavefunction, we would need to understand how to write the energy eigenstates in
terms of position space wavefunctions.

5If we want, we could then figure out the position space wavefunctions for any energy
eigenstate. With this information, we would be able to predict the time evolution of any
initial wavefunction.

SHere, the momentum is p = ma as usual, but more generally, the momentum corre-
sponding to a variable ¢ is determined in terms of the Lagrangian by p = §L/q.
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The only other information we need to determine the energy eigenvalues is
the basic commutation relation between position and momentum operators:”

(x,p] =ih.

To find the energy eigenvalues, we can use the fancy formal trick of defining
creation and annihilation operators:

= ! ( + ip)
a = (g —(mwz +ip
1
T = —
a S (mwzx — ip)

With these definitions, we can check that
[a,a'] =1 [H,a] = —hwa [H,a'] = hwa' .

Also, the Hamiltonian can now be written as
T 1
H = hw(a a—|—§). (4)

So how do we find the energy eigenvalues? By definition, acting with
the Hamiltonian (i.e. the energy operator) on a state |E;) that is an energy
eigenvalue gives

Now, suppose |E;) is an eigenvector with eigenvalue E;. Now, let’s consider
the state a|E;) and see what happens when we act with H:

H(a|E;)) = aH|E;) — hwalE;)

There are two possibilities here: either a|FE;) is another eigenstate of the
Hamiltonian with a lower energy eigenvalue (E; — hw), or a|E;) is just equal
to zero (i.e. it is not a state at all). Assuming that there is some minimum
energy state for the harmonic oscillator, we can conclude that by starting with
any energy eigenstate and acting repeatedly with the annihilation operator

"This is equivalent to the statement that the momentum operator is the generator of
translations.



a, we will keep getting new eigenstates with lower and lower energy, but
eventually we must find a state |Ep) such that a|Ey) = 0.

We will show below that the condition a|Ey) = 0 uniquely defines a state.
This means that starting with any energy eigenstate and acting with a, we
will always end up in the state Ey. On the other hand, we can show that
if a"|E;) = |Ey) that (a')"|Ep) is proportional to |E;). Thus, all possible
eigenstates can be obtained by acting with a' repeatedly on |Ep).

To find the actual energies, we note that (4) implies that the energy of
|Eo) is Ey = 3hw. Further, we can check that acting with af raises the energy
by hw (we have already shown that acting with a lowers the energy by this
amount). Thus, the possible energies are E,, = liw(n + 1). It is conventional
to label the eigenstate with energy FE, by the shorthand |n), normalized so
that (n|n) = 1. With this convention, we can show that

alln) = Vn+1ln+1)
chn) = V-1
Hin) = hw(n+ 5)\n>

2.1 Loose end

To tie things up, we should go back and show that the state satisfying a|y) =
0 is unique. To do this, it is convenient to write this equation (a vector
equation) in terms of its position space components. The component of a
state vector [1) along the basis vector |z) can be calculated by taking the
inner product of |¢) with the unit vector:

(z[v)) = (x) .
Thus, the component of the vector equation above along the |z) direction is:
(zlaly) =0
Putting in the definition of a, we get
(x|(mwz +ip)|yY) =0

Now, we have (z|z|) = z¢(x) and (z|p|)) = —ih)'(x) (using (3)). Thus,
Y (x) satisfies the differential equation

mwz(x) + ' (x) = 0.
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This has a solution

P(x) = Ae~ e
where the constant A is fixed up to an overall phase by demanding that
(Y| = 1. Vectors which differ only by an overall phase are physically
equivalent in quantum mechanics, so we have shown that the state satisfying
alty) = 0 is unique (and found its position space wavefunction).



