
Vector Fields

The most general Poincaré-invariant local quadratic action for a vector field with no
more than first derivatives on the fields (ensuring that classical evolution is determined
based on the fields and first time derivatives) is

S =
∫

dd+1x{a∂µϕν∂µϕν + b∂µϕ
ν∂νϕ

µ + cϕµϕ
µ}

There appear to be three free parameters, but it turns out that we can reduce to
only one parameter by physical considerations. First, we notice that the term ϕµϕ

µ =
(ϕ0)2 − (ϕi)

2 implies that either the time component ϕ0 or the spatial components ϕi

will have negative quadratic terms in the potential energy. Similarly, including the term
∂µϕ

ν∂µϕν will give either (ϕ̇
t)2 or (ϕ̇i)2 terms in the kinetic energy with the wrong sign.

In either case, the classical energy is unbounded below if arbitrary field configurations
are allowed. To make sense of this, consider the following:

Q: What is the equation of motion for a single particle system whose action
is simply S =

∫
dt− 1

2
x2 with no kinetic energy term?

Answer: In this case, extremizing the action requires that x = 0.

In this simple example, we see that the “equation of motion” is actually just a constraint
on the physical variables. Rather than allowing arbitrary initial conditions for x and
ẋ, the equation simply requires that x = 0, effectively eliminating one of the degrees
of freedom.

In the vector field theory, our problem was that the kinetic and potential energies
were unbounded below if we allow arbitrary field configurations. In this case, a con-
straint is exactly what we need. Focusing on the kinetic energy, we notice that by
demanding b = −a < 0, the kinetic term (∂tϕt)

2 vanishes and all the remaining kinetic
energy terms are positive. The equation of motion for ϕ0 gives a constraint that allows
us to solve for ϕ0 in terms of the other fields. We will see that taking into account the
constraint, the energy of the theory is bounded from below.

The theory we have ended up with can be reduced to one with a single free parameter
by redefining the fields so that a = 1/2. If we also call c = 1

2
m2, the final action

S =
∫

dd+1x{1
2
∂µϕ

ν∂µϕν −
1

2
∂µϕ

ν∂νϕ
µ +

1

2
m2ϕµϕ

µ}

It is standard to define Fµν = ∂µϕν−∂νϕµ, so that the action may be written compactly
as

S =
∫
dd+1x{−1

4
FµνF

µν +
1

2
m2ϕµϕ

µ} .

As for the scalar field theory, we will find that the parameter m gives the mass of
the particles that the quantum field theory describes. Remarkably, the equations of
motion for the theory withm = 0 are exactly Maxwell’s equations for electromagnetism
expressed in terms of the scalar and vector potentials, if we interpret ϕµ = (ϕ, A⃗),
F0i = Ei and Fij = −ϵijkBk (see homework 5 solutions for details). Thus, Maxwell’s
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equations for the electromagnetic field can be understood to follow completely from the
constraints of locality, Poincaré invariance, the superposition principle, the constraint
that classical evolution is determined by the potentials and their first time derivatives,
and the constraint that shifts A0 → A0 + const do not affect the action (a familiar
property of scalar potential).

Quantization

Let’s try to quantize this theory. According to the general rules, the first step is to
determine the conjugate momenta for all of our fields

Q: What are the conjugate momenta to ϕ0 and ϕi?

Answer: We find that

πi =
δL

δϕ̇i

= ∂0ϕi − ∂iϕ0 (1)

π0 =
δL

δϕ̇0

= 0 .

Since there is no kinetic term for ϕ0 in our action, we find that the canonically
conjugate momentum for this field vanishes. In this case, it doesn’t make sense to
impose [ϕ0(x), π0(y)] = iδ(x− y), so the standard quantization procedure won’t work.
On the other hand, we need to keep in mind that the absence of a kinetic term for ϕ0

means that we are working with a constrained system. In particular, the equation of
motion for ϕ0 gives

ϕ0 =
1

m2
∂i(∂iϕ0 − ∂0ϕi) = − 1

m2
∂iπi (2)

so we can solve for ϕ0 in terms of πi. Thus, we can express all physical observables
in terms of the spatial components ϕi and πi, and pass to quantum mechanics by
promoting these to operators satisfying

[ϕi(x), πj(y)] = iδijδ
d(x− y) . (3)

As an example, the Hamiltonian for the theory is given by

H =
∫
ddxϕ̇iπi − L .

We want to rewrite this in terms of ϕi and πi, so we eliminate ϕ̇i using (1) and we
eliminate ϕ0 using (2). This gives

H =
∫
ddx{(πi − 1

m2
∂i(∇ · π))πi −

∫
ddx{1

2
πiπi −

1

4
FijFij −

1

2
m2ϕiϕi +

1

2
m2 1

m4
(∇ · π)2}

=
∫
ddx{1

2
πiπi +

1

2m2
(∇ · π)2 + 1

4
(∂iϕj − ∂jϕi)

2 +
1

2
m2ϕiϕi} (4)

We see that all terms are positive, so the energy is bounded from below.
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Creation and annihilation operators

The quantum theory is formally defined by giving the Hamiltonian (4) together with
the commutation relations (3). As with scalar field theory, the physics can be extracted
most easily if we can express everything in terms of a set of creation and annihilation
operators. For scalar fields, the expression for the field in terms of creation and anni-
hilation operators is the same as the expression for the general solution to the classical
field equation, where the ap is the coefficient of the negative-frequency plane-wave
solution to the Klein-Gordon equation with wave number p⃗

ϕ(x, t) =
∫ ddp

(2π)d
1√
2Ep

(ape
−ip·x + a†pe

ip·x)

and a†p is the coefficient of the positive frequency solution.
It turns out that this relation between the time-dependent field operator and the

creation and annihilation operator works for all kinds of fields (as we can check).1

Thus, to express the vector field in terms of creation and annihilation operators, our
first step is to find the general solution to the classical equations of motion. These
equations are

∂µ(∂
µϕν − ∂νϕµ) +m2ϕν = 0 .

Acting with ∂ν (and summing over ν), we find

∂νϕ
ν = 0 , (5)

so that the original equation of motion simplifies to

(∂2 +m2)ϕµ = 0 . (6)

Thus, each component of the vector field satisfies the Klein-Gordon equation, but
we must also satisfy the constraint (5) that relates the components. The plane-wave
solution with wave-vector p can be written

ϕµ = ϵµeip·x

where the equation (6) implies

p2 −m2 = (p0)2 − p⃗2 −m2 = 0

and the equation (5) implies that
ϵµpµ = 0 .

1In the case of complex fields, the coefficient of eip·x does not have to be the complex conjugate of
the coefficient of e−ip·x. Accordingly, the expression for the field in terms of creation and annihilation
operators is

ϕ(x, t) =

∫
ddp

(2π)d
1√
2Ep

(ape
−ip·x + b†pe

ip·x)

where bp and ap are annihilation operators for separate types of particles. These particles have charge
±1 for the charge associated with the classical symmetry ϕ → eiθϕ.
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Thus, the frequency must be p0 = ±
√
p⃗2 +m2. For each choice of p⃗, there will be

three linearly independent choices for ϵµ, which we call ϵµr and can choose such that
that ϵµr (ϵµ)s = δrs.

2 Then the general solution to the equations of motion is given by

ϕµ(x) =
∫ ddp

(2π)d
1√
2Ep

(αr
p⃗ϵ

µ
r e

−ip·x + (αr
p⃗)

∗ϵµr e
ip·x)

where αr
p⃗ is an arbitrary complex number for each p⃗ and r = 1, 2, 3. The factors of

(2π)d and 1/(2Ep) here are just inserted by convention.
Now, as for the scalar field theory, the expression for the time-dependent quantum

field operator in terms of creation and annihilation operators is the same as the expres-
sion for the general solutions to the field equation, with the creation operator arp⃗ taking
the place of the coefficient αr

p⃗ of the negative frequency mode and the annihilation
operator (arp⃗)

† taking the place of the coefficient (αr
p⃗)

∗ of the positive frequency mode.
Thus, we have

ϕµ(x) =
∫ ddp

(2π)d
1√
2Ep

(arp⃗ϵ
µ
r e

−ip·x + (arp⃗)
†ϵµr e

ip·x)

So far, this is just a guess, but we can verify that a and a† have the desired commutation
relations

[arp⃗, (a
s
q⃗)

†] = δrs(2π)
dδd(p− q)

by writing an expression for πi in terms of as and a†s3, and then checking that (??) is
equivalent to (3). We can also verify that

[H, (asp⃗)
†] = Ep(a

s
p⃗)

† ,

so all the usual properties for creation and annihilation operators are satisfied.

Physics

By writing the energy and momentum in terms of creation and annihilation operators,
we can verify that each of the operators (asq⃗)

† creates a particle with momentum p⃗

2Explicitly, for p⃗ = 0, we can define

ϵµ1 = (0, 1, 0, 0) ϵµ2 = (0, 0, 1, 0) ϵµ3 = (0, 0, 0, 1) .

For general p⃗, we can take
ϵµr (p⃗) = Λµ

p⃗ νϵ
ν
r (p⃗ = 0) ,

where Λp⃗ is the boost that takes a particle of mass m from momentum zero to momentum p⃗.
3To do this, we can demand that the classical relation (πi = ∂0ϕi − ∂iϕ0 = ∂0ϕi +

1
m2 ∂i(∇ · π)

holds as an operator expression. The result is

πi(x) =

∫
ddp

(2π)d
iEp

2
(δij −

pipj
p2 +m2

)(−arp⃗ϵ
j
re

−ip·x + (arp⃗)
†ϵjre

ip·x)
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and energy Ep =
√
p⃗2 +m2. Thus, in contrast to the scalar field theory, we have

three independent particle states for each momentum. To understand the physical
significance of these, we can consider the particles with zero momentum and look at
the action of the rotation operator. We find that the three states transform under
rotations in precisely the same way as three states of a spin 1 particle, where we can
make the identifications

a†3|0⟩ ∼ |j = 1m = 0⟩ (a†1 ± ia†2)|0⟩ ∼ |j = 1m = ±1⟩ .

Thus, we conclude that the general free vector field theory with mass parameter m
describes the physics of spin 1 particles of mass m. We will have more to say about
the case m = 0 later on.
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