
Scalar field theory

We now have the tools to write down the most general Poincar/’e invariant local field
theories involving vector, tensor, and scalar fields. While we’ve already looked at
examples of scalar field theories, it will be useful now to go back and understand these
more fully. Let’s start with a question:

Q: Write the most general action scalar field for a Poincar/’e invariant local
field theory of single scalar field ϕ(x) with linear equations of motion that
determine the future evolution in terms of ϕ(x⃗, t = 0) and ϕ̇(x⃗, t = 0). We
require also that the classical energy is bounded from below.

Answer: To ensure linear equations of motion, we need an action that is at most
quadratic in the field ϕ. To ensure that the classical evolution is determined in terms
of the initial configuration and the first time derivative, the equations of motion must
not include and more than two time derivatives on the field. The only possible local,
Poincaré-invariant terms satisfying these conditions are:∫

ddx{a
2
∂µϕ∂

µϕ− b

2
ϕ2 − cϕ} .

Here, a and b must be positive to have energy bounded from below. We can set c to zero
by a redefinition of the field,1 ϕ→ ϕ−c/b and set a to one by a redefinition ϕ→ ϕ/

√
a.

The remaining parameter b is physical, and in previous examples, we have seen that it
is related to the mass of the particles in the quantum system by b = m2c2/h̄2.

To summarize, the most general scalar field theory satisfying our physical conditions
is described by an action2

S =
∫
ddx{1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2} .

The classical equations of motion for this action are

∂µ∂
µϕ+m2ϕ ≡ ϕ̈2 −∇2ϕ+m2ϕ = 0 ,

known as the Klein-Gordon equation.

The quantum theory

What is the quantum physics for this field theory? In 1+1 dimensions, we have already
seen how to quantize this theory for a finite interval of space 0 ≤ x ≤ L and either
fixed or periodic boundary conditions. To quantize in infinite space, the most rigorous
approach is simply to define the theory at finite volume and then take the limit as
L → ∞. We will see that all physical quantities of interest remain well-defined in the

1If b = 0, the term with c is not allowed since the energy would be unbounded below.
2From now on, we will be using units in which masses, inverse lengths, and inverse frequencies all

have the same units, chosen so that c = h̄ = 1.
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limit. Intuitively, this should be expected by locality, since the local physics should
not depend on what happens very far away (e.g. local physics should not care whether
we are working with a finite system with the field constrained to vanish at the edge of
the solar system or whether the field really exists all the way to infinity.)

For the theory with periodic boundary conditions on the interval 0 ≤ x ≤ L, we
saw that a basis of quantum states can be generated by acting with creation operators
a†p on a vacuum state |0⟩, where a†p creates a particle with momentum p and energy√
p2 +m2, and where the momenta are constrained to be p = 2πn/L. Taking L →

∞, the only thing that happens is that the allowed momenta are now arbitrary. In
higher dimensions, we can again start with finite ranges Lx, Ly, Lz for x, y, and z
and impose periodic boundary conditions in each direction. In this case, we find that
the allowed momenta for particle states are p⃗ = (2πnx/Lx, 2πny/Ly, 2πnz/Lz) and the
corresponding energies are E =

√
p⃗2 +m2. Again, in the limit where the spatial region

becomes infinite, the only difference is that all momenta are allowed.
For calculations, it is useful to have an expression for the field operator in terms of

the operators creating particles with various momenta. In the case of a finite interval
in 1+1 dimensions, we found that

ϕ(x) =
1

2

∑
p= 2πn

L

1√
Lωp

{apeipx + a†pe
−ipx}

π(x) =
1

2

∑
p= 2πn

L

i
√
Lωp

2
i{−apeipx + a†pe

−ipx}

The generalization to infinite volume and higher dimensions is easy enough to guess.
The eipx factor multiplying ap is simply a plane wave in the x direction. For general p⃗
in higher dimensions, the analogous factor would be eip⃗·x⃗. Also, in the infinite volume
limit, all real values of p are allowed, so the sum should become an integral. In detail,
we have

lim
L→∞

{2π
L

∑
p= 2πn

L

F (p)} →
∫
dpF (p)

Thus, up to some constant factors that we have inserted by convention, we end up with
the expressions3

ϕ(x) =
∫ ddp

(2π)d
1√
2Ep

{ap⃗eip⃗·x⃗ + a†p⃗e
−ip⃗·x⃗}

π(x) =
∫ ddp

(2π)d
i

√
Ep

2
{−ap⃗eip⃗·x⃗ + a†p⃗e

−ip⃗·x⃗}

3In making the transition to the integral, there is an extra factor of L that we have absorbed into
the definition of a and a†. Wheras the old a†p created a state |p⟩ with unit norm, the new one creates
a state whose norm is infinite, as usual for eigenstates labeled by a continuous variable (these have
Dirac delta function normalization rather than Kronecker delta function normalization.)
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If we’re not completely convinced that these are the right expressions, we can simply
take them as a definition of the operators a and a† (it’s possible to invert these equa-
tions via an inverse Fourier tranform) and check that these operators satisfy the right
properties. In particular, the relation

[ϕ(x⃗1), π(x⃗2)] = iδd(x⃗1 − x⃗2)

which we proved for the finite interval must hold for infinite space as well, since it is
unchanged in the limit L→ ∞. Using this, and the formula relating ϕ(x) and π(x) to
ap⃗ and a†p⃗, we find that

[ap⃗, a
†
q⃗] = (2π)dδd(p⃗− q⃗) .

Further, we can check that the expressions for the energy and momentum operators
(which we derive based on the translation symmetries) are

E =
∫
ddx{1

2
ϕ̇2 +

1

2
(∇ϕ)2 + 1

2
m2ϕ2} → H =

∫ ddp

(2π)d
Epa

†
p⃗ap⃗ + infinite constant

P⃗ = −
∫
ddx{ϕ̇∇ϕ} → P⃗ =

∫ ddp

(2π)d
p⃗a†p⃗ap⃗

Q: Verify that the state |p⃗⟩ = a†p⃗|0⟩ is a momentum eigenstate.

Thus, as we expected, a†p⃗ creates a particle of momentum p. We can also construct
the angular momentum operator and verify that the state with p⃗ = 0 is invariant under
rotations and therefore corresponds to a spin zero particle. This also follows directly
from the fact that there is only a single particle state for each value of momentum.

The interpretation of ϕ(x)

Though we have a good physical interpretation for the creation and annihilation oper-
ators, it may be less clear how to interpret the field operator ϕ(x) itself. To understand
this, consider first the question:

Q: If we restrict to momenta much less than the particle mass, we expect
that ordinary quantum mechanics should be a good description of the par-
ticles. Thus, we should be able to have particle states with any properly
normalized position-space wavefunction ψ(x). How can we write such a state
using the quantum field theory language?

Answer: We know that |p⃗⟩ = a†p⃗|0⟩ is an eigenstate of momentum. Also, we know
that a particle state with a given position space wavefunction has a momentum space
wavefunction ψ̃(p) =

∫
ddxe−ip⃗·x⃗ψ(x). The momentum wavefunction tells us what linear

combination of momentum eigenstates corresponds to the state. Thus, the state with
position state wavefunction ψ(x) should be∫

ddpψ̃(p)|p⃗⟩ =
∫
ddp

∫
ddxe−ip⃗·x⃗ψ(x)a†p⃗|0⟩ .
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On the other hand, for |p⃗| ≪ m we have Ep ≈ m so∫
ψ(x)ϕ(x)|0⟩ =

∫
ddxψ(x)

∫
ddp

1√
2Ep

e−ip⃗·x⃗a†p⃗|0⟩

=

intddp
∫
ddxe−ip⃗·x⃗ψ(x)a†p⃗|0⟩

in agreement with the state we wrote down above so long as the the momenta contribut-
ing to the quantum superposition are all non-relativistic. In non-relativistic quantum
mechanics, we say that the state with wavefunction ψ(x) is

∫
ddxψ(x)|x⟩, so we can

make the identification ϕ(x)|0⟩ ∼ |x⟩ and interpret the field operator ψ(x) as creating a
particle at position x. Since ϕ(x) also contains an annihilation part, it also annihilates
a particle at position x.

In the discussion above, we have in mind the non-relativistic limit of the field theory.
However, it is true more generally that the field operator ϕ(x) produces a state localized
at x. For example, in the theory of a complex scalar field, we have a conserved charge,
and we can ask about the charge density in the state ϕ(x)|0⟩. In this case, we find that
all charge is localized at the point x.
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