
Analyzing field theories from an action

The formulation of physics in terms of an action principle is both elegant and powerful.
The action allows us to derive the equations of motion, to determine the symmetries,
to calculate the conserved quantities associated with these symmetries, and to system-
atically make the transition to quantum mechanics.

Today, we’ll get some practice analyzing field theories from an action principle. To
begin, consider the action

S =
∫

dt
∫ L

0
dx
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What are the equations of motion for the field φ?

Answer: ∂2φ
∂t2

= −β ∂4φ
∂x4

As you’ve read, symmetries are transformations

φi → φ̃i

that leave the action unchanged. Roughly, these are maps between physically “equiv-
alent” (though still distinct) configurations of the system.

As an example, consider the field theory

S =
∫

dt
∫ L

0
dx
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which describes a string that can oscillate in either of two directions.

What are some symmetries of this field theory?

Answer: Examples include time translation invariance φ̃i(x, t) = φi(x, t + a) and
rotations that mix the φy and φz components of the field, φ̃i = Rijφj, where R is a
two-dimensional rotation matrix.

Perhaps the most important reason to identify symmetries of a physical theory is
that they are associated with conserved quantities (Noether’s theorem). For example,
translation invariance is associated with momentum conservation, time translation in-
variance is associated with energy conservation, and rotational invariance is associated
with angular momentum conservation. In some sense, the most fundamental definition
of these physical quantities is that they are the conserved quantities associated with
the various symmetries.
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Generally speaking, a conserved quantity is a physical quantity that does not change
under time evolution. However, we can often make a more powerful statement, known
as a LOCAL CONSERVATION LAW. For example, energy conservation says that the
total energy of a system with time-translation invariance does not change with time.
However, in nature energy is also conserved locally: for any spatial region, the change
in energy of the region in a time ∆T is equal to the amount of energy that flows into
the region during that time interval.

How can we express this relation mathematically using integral expressions,
in terms of the energy density ρ and the energy current ~S? What is the
differential version of this?

Answer: for any region V , we must have d
dt

∫
V ρ = − ∫

∂V
~S · d ~A, or in differential

form, ∂tρ = ∇ · ~S

It turns out that this more powerful type of conservation law follows automatically
when the system under consideration is a LOCAL FIELD THEORY, that is, a field
theory that can be written as

S =
∫

dt
∫

ddxL(φi(x, t))

where the LAGRANGIAN DENSITY L is an algebraic function of the field and its
derivatives (a finite number of derivatives). The argument parallels the one showing
that we have a simple conservation law associated with any symmetry:

Argument that symmetries of a local field theory give local
conservation laws

• Suppose we have a local field theory with a symmetry whose infinitesimal form
can be written (here x represents all the spatial coordinates)

δφi(x, t) = εβi(x, t)

where βi might depend on the fields and their derivatives.

• Now consider a more general transformation where ε depends on space and time.

δφi(x, t) = ε(x, t)βi(x, t) (1)

This is NOT A SYMMETRY of the action (since the right side is now completely
arbitrary), BUT the variation of the action should vanish when ε is constant, so
it should be possible to write the first order variation of the action as

δS =
∫

dtddx∂µεJ
µ (2)

where the index µ runs over all space coordinates and time and Jµ are some
expressions written in terms of the field.
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• Now, suppose a field φ(x, t) = φEOM(x, t) satisfies the equation of motion. Then
any variation of the action about this field should vanish. Since the variation
takes the form (2) for variations of the form (1), it must be that for any choice
ε(x, t),

δS =
∫

dtddx∂µεJ
µ(φEOM) = 0

where we have used the superscript EOM to indicate that φEOM satisfies the
equations of motion.

• Choosing ε to vanish at the boundaries, we can integrate by parts to conclude
that for any ε (that vanishes at the boundaries)

∫
dtddxε∂µJ

µ(φEOM) = 0

The only way this can be true for arbitrary ε(x, t) is if

∂µJ
µ(φEOM) = 0

Recalling that µ runs over all space components and time, this equation becomes

∂tJ
t = −∇ · ~J ,

which is exactly the form of a local conservation law.

• In practice, we need only consider the variation (1), write the first order change
in the action in the form (2), and read off the J t (the density of the conserved

quantity) as the expression coupling to ∂tε, and ~J , (the current density for the
conserved quantity) as the expression coupling to the spatial derivatives of ε.
The total conserved quantity (often referred to as the CHARGE) is given by
integrating J t over all of space,

Q =
∫

ddxJ t .

Procedure for finding currents in practice:

1. Write the infinitesimal symmetry in the form1

δφi(x, t) = εβi(x, t)

2. Calculate S(φi(x, t) + εβi(x, t)) and find the term linear in ε (this is δS)

1To find this: if the symmetry transformation depends on a parameter a, figure out the value a0

of a which corresponds to no change at all, write the transformation for a = a0 + ε, and read off δφ
as the term proportional to epsilon.
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3. Use integration by parts to rewrite δS as2

δS =
∫

dt
∫

ddx∂µεJ
µ(φi)

Then J t (the quantity multiplying ∂tε) is the density of the conserved quantity,

while ~J (the quantity multiplying ~∂xε) is the current of the conserved quantity.

2There may initially be terms of the form
∫

εO with no derivatives on ε, but these always have
O = ∂µWµ for some W , so we can integrate by parts to get

∫
εO =

∫
ε∂µWµ = − ∫

∂µεWµ.
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