
Action principles

Many physical laws can be expressed in terms of an ACTION PRINCIPLE. This means
that the classical evolution of the system is always such that the variables {qi(t)}
provide an extremum for some functional S[{qi(t)}] known as the ACTION.

The idea is very similar to the usual notion of determining the equilibrium position
for a system by minimizing the energy. For example, if we wish to find the shape of a
thin rope stretched between two points, we may minimize the potential energy
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subject to a constraint that the endpoints of the string and the total length of the
string are fixed. We could alternatively express the minimization condition by some
differential equation and boundary conditions, but the minimization idea is intuitively
simpler.

In the same way, the dynamical evolution of a system may be determined by min-
imizing an action functional, but now the variables are functions of time, and the
action involves an integral between initial and final times of some quantity known as
the LAGRANGIAN

S[{qi(t)}] =
∫ tf

ti
dtL(qi(t), q̇i(t)) .

The action is simply a map that associates a single real number to any possibility
for the time evolution of the system (described by {qi(t)}) between ti and tf . The
action principle tells us that the physical evolution (i.e. what actually happens) must
extremize this function.

For a mechanical system the Lagrangian can be expressed as the kinetic minus the
potential energy.

Example

Let’s see how this works in practice. Perhaps the simplest example to consider is
a single non-relativistic particle in one dimension, moving in a potential V (x). The
classical equations of motion for this system (starting with F = ma) are

mẍ = −V ′(x) .

We will now see that this equation of motion will be satisfied if and only if x(t) is an
extremum of the action

S[x(t)] =
∫ tf

ti
dt{1

2
mẋ(t)2 − V (x(t))} . (1)

over the set of functions with fixed values xi and xf for some initial and final times ti
and tf .
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How do we determine whether x(t) is an extremum of S? For a simple function
f(y), the condition for extrema is that the first derivative f ′(y) vanishes. But it’s
not completely clear how to take the first derivative of a functional with respect to a
function. Going back to the simple function minimization, we can alternately say that
y0 is an extremum of f(y) if

f(y0 + δy) = f(y0) +O(δy2)

i.e. that the linear term in the Taylor expansion of f around y0 vanishes. Put this way,
we can more easily generalize to the action case. We can say that x0(t) extremizes the
action if

S[x0(t) + δx(t)] = S[x0(t)] +O(δx2) .

for all possible choices of δx. In other words, we demand that in the expansion of
S[x0(t) + δx(t)] with respect to δx, the term linear in δx(t) vanishes.

Starting from (9), we have

S[x0(t) + δx(t)] =
∫

dt{1

2
m(ẋ0(t) + δẋ(t))2 − V (x0(t) + δx(t))} .

The term linear in δx (which we refer to as δS) is:

δS =
∫ tf

ti
dt{mẋ0(t)δẋ(t)− V ′(x0(t))δx(t)}

=
∫ tf

ti
dt∂t [mẋ0(t)δx(t)] + δx(t) [−mẍ0(t)− V ′(x0(t))]

=
∫ tf

ti
dtδx(t) [−mẍ0(t)− V ′(x0(t))]

where we have integrated by parts to get to the second line and used that δx vanishes
at ti and tf to get to the third line. The point of integrating by parts is to ensure that
all terms in the final expression are proportional to δx (and not ˙δx).

This expression is zero for all possible δx(t) if and only if

−mẍ0(t)− V ′(x0(t)) = 0

which is precisely the equation of motion.

Actions for fields

For a field theory, an action should assign a real number to any classical field trajectory
φ(x, t), usually subject to boundary conditions (e.g. that the field φ goes to zero at
spatial infinity), and fixed initial and final values φ(x, ti) and φ(x, tf ). In this case, to
get a single number from a function of two (or more variables), the action is usually
an integral over time and space directions,1

S =
∫

dtL(φ(x, t)) =
∫

dtdxL(φ(x, t)) .

1We will see later why the action should take this form.
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Here, we still refer to L as the Lagrangian, and we introduce the Lagrangian density
L, which is typically an algebraic function of φ and its derivatives.

As with simple mechanical systems, the action for a field theory can usually be
expressed as the kinetic energy (terms in the energy involving time derivatives of the
field) minus the potential energy (terms in the energy not involving time-derivatives,
but possibly involving spatial derivatives). For a single field φ(x, t) in one dimension
governed by the usual wave equation, this gives

S =
∫ tf

ti
dt

∫ L

0
dx

{
1

2
ρφ̇2 − 1

2
τ(φ′)2

}

where we will assume the field is constrained to vanish at x = 0 and x = L. To see
that extremizing this action reproduces the wave equation, suppose that φ0 extremizes
the action and consider a small variation δφ. The variation in the action about φ0 is

S[φ0 + δφ] =
∫ tf

ti
dt

∫ L

0
dx

{
1

2
ρ(φ̇0 + δφ̇)2 − 1

2
τ(φ′0 + δφ′)2

}
.

The linear term in δφ gives

δS =
∫ tf

ti
dt

∫ L

0
dx

{
ρφ̇0δφ̇− τφ′0δφ

′}

=
∫ tf

ti
dt

∫ L

0
dx

{
∂t

[
ρφ̇0δφ

]
− ∂x [τφ′0δφ] + δφ

[
−ρφ̈0 + τφ′′0

]}

=
∫ tf

ti
dt

∫ L

0
dx

{
δφ

[
−ρφ̈0 + τφ′′0

]}

As above, we integrate by parts so that any derivatives appearing on δφ are moved to
act on φ0. This way, we are able to write the variation of the action as an integral over
δφ times the quantity in square brackets. This vanishes for arbitrary δφ if and only if
the quantity in square brackets vanishes,

−ρφ̈0 + τφ′′0 = 0

so we see that the action is extremized if and only if φ0 must satisfies the wave equation.

Actions and symmetries

One of the most beautiful results in physics is the fundamental relation between sym-
metries and conservation laws.

In the language of actions, a SYMMETRY is a transformation on the basic variables
(a map from trajectories to trajectories)

qα(t) → q̃α(t)

which leaves the action unchanged:

S[q̃α(t)] = S[qα(t)]
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It must leave the action unchanged regardless of whether or not qα(t) satisfies the
equations of motion.

For example, the action (9) is invariant under time translations

x̃(t) = x(t + t0) . (2)

For V = 0, the action would also be invariant under spatial translations

x̃(t) = x(t) + x0 . (3)

Exercise: What are some symmetries of the action for the wave-equation?
If a particular trajectory satisfies the equations of motion, it follows that any trajectory
related by a symmetry also satisfies the equation of motion.

Noether’s theorem says that for any symmetry of a physical system, there is a cor-
responding CONSERVED QUANTITY, i.e. a quantity whose value does not change
with time (assuming the equations of motion are satisfied). One of the most important
uses of an action in classical physics is that it allows us to quickly derive the con-
served quantity associated with any symmetry. We will focus on symmetries (such as
translations or rotations) that are continuous and can be expressed in an infinitesimal
form

δqα(t) = εWα(t) (4)

where ε is an infinitesimal constant and Wα might be some function of the variable qα.
For example, for the translations (3), we have

δx(t) = ε (5)

so W = 1 while for time translations (2), we have

δx(t) = εẋ(t) (6)

so W = ẋ.

The important part

To derive the conservation law associated with a symmetry transformation expressed in
the form (4), suppose that we consider a more general transformation where ε depends
on time.

δqα(t) = ε(t)Wα(t) (7)

This is not generally a symmetry of the action (since the right side is now completely
arbitrary), BUT the variation of the action should vanish when ε is constant, i.e. when
ε̇ = 0. Thus, it should be possible to write the variation of the action as

δS =
∫ tf

ti
dtε̇(t)Q(qα(t)) .
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On the other hand, if qα(t) satisfies the equation of motion, then any variation of the
action about this trajectory must vanish. So it must be that for any ε(t),

∫ tf

ti
dtε̇(t)Q(qEOM

α (t)) = 0

where we have used the superscript EOM to indicate that qEOM satisfies the equations
of motion. Choosing ε(t) to vanish at the initial and final times, we can integrate by
parts to obtain ∫ tf

ti
dtε(t)

d

dt
Q(qEOM

α (t)) = 0 .

The only way this can be true for arbitrary ε(t) is if

d

dt
Q(qEOM

α (t)) = 0 .

Thus, Q is a conserved quantity.

The procedure for deriving a conserved quantity

• Write the symmetry in infinitesimal form δqα(t) = εWα(t)

• Write the variation of the action under the related transformation δqα(t) =
ε(t)Wα(t), using integration by parts to write it in the form

δS =
∫ tf

ti
dtε̇(t)Q(qα(t)) (8)

• The conserved quantity is Q

Example

As a simple example, if we take a free particle action

S[x(t)] =
∫ tf

ti
dt{1

2
mẋ(t)2} . (9)

and consider the transformation (5). We now want to make ε time-dependent and
calculate the first-order change in the action when x is changed by an amount δx(t) =
ε(t). We find

S(x + δx) =
∫ tf

ti
dt{1

2
m(ẋ(t) + ε̇(t))2}

so

δS =
∫ tf

ti
dt{ε̇(t)mẋ(t)} .

Comparing with (8), we see that the conserved quantity associated with the spatial
translation symmetry is Q = mẋ, which we recognize as MOMENTUM.
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