
Tþansition amplitudes
Consider a quantum field theory with Hamiltonian H : Ho* Ht where i{¡ reptesents
the part quadratic in the fields. The interacting part of the Hamiltonian can lead to
transitions which change the number and/or properties of the particres in our state.
Here, we would like to derive a convenient formula for the probab ity ampÌitudes
associated with such transitiorrs.

Even though our theory is interacting, it will still be convenient to use a basis of
states inherited from the free Ham tonian. we'I imagine that we have some eigenstate
of the free riamiìionian -ä-s ai rime i : io. Then we evolve forwarci in time anJ ask for
the probability amplitude that at time r we will find some other basis element if we
measure the system. More generar transition ampritudes can be expressed in terms of
these ones involving the basis elements.

Q: To start, write down a basis of energy eigenstates for the free Hamilto_
nian 116,
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Assurne that the states in the plevious question are defined at f : 0. It w l be
convenient below to use a ba-sis for the states at othel times which is just the previous
basis evolved forward to the new time ú using the free HamiÌtonian É1¡.

Q: If lù(z - 0)) is one of the basis elements from the previous question, write
a formula for the corresponding basis element l\Ii (¿)) at time ¿.
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Q: Now, suppose we have a general state lú¿) at t: to. What is probability
amplitude that if we measure the system at time ú, we will find state lüi)(assuming that this state is an eigenstate corresponding to the possibË
result of a rneasurement) ?
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Using your answers from the previous questions, the transition amplitude from a

basis element ltll(ts)) at time f6 to the basis state lVr(¿)) at time ú can be written as

({/r(0) lt/(¿, ¿o)l{/r (0)) .

Q: Write a formula for U(t,t¡) in terms of the Hamiltonians -I1¡ and IIo and
the times f and 16.
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We now want to wr-ite ¿/(¿, ¿0) in a more useful form. Let's define the time-dependent
operator Ht(t) by

H|(t) - ¿iH')t gt" ;not 
.

From the definition, we can see thaf HÌ(t) is obtained ftom H1 simply by replacirrg
the fields þ(ø) wrth the time-dependent fields þ(r,t) we have defined before. To go

further, let's see what [/ looks like for infinitesimal times.

Q: For I : to1 tl,t,, write a formula for U(t,t6),, expanded to order dl. Express
the result in terms of the time-dependent -Éf .
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Q: Reexpress this in terms ofan exponential that agrees with your previous
result up to order d/2.
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Now, the evoÌution over a finìte time can be obtained by breaking up the tìme
interval into many parts of stze dt, and writing

u(t,to) - tm u(t,t - dt)u(t - dt,t - 2dt) u(to + dt,t}) (1)

Q: Rewrite the right-hand-side of this equation using your exponential ex-
pression for U(t + clt,t).
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The above expression defines what is knowr:r as thc time-ordered exponential:
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In practice, it ìs much more convenient to havc an expression for this expanded order
by order in 11¡. To obtâ.irì this (and to see why the time-ordered exponential is written
in this way) start again with (1), but now write it out in terms of the infinitesimal
expression U : I +... you derived above and write down alÌ terms in (1) that
are linear in 1{¡. Express the complete set of these in terms of an integral.
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Q: Now, in the same wa¡ write down the terms in (1) that are quadratic
in ,É!. T}y to express this set of terms in terms of a double int'egral. Hznt: be

caret'ul about the limits on yourintegrals, and keep 'in mind that H¡(t1) and H1(t2) do

not cornrnute uith each other.
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Q: Can you figure
n in H¡?
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