Transition amplitudes

Consider a quantum field theory with Hamiltonian $H=H_{0}+H_{I}$ where H_{0} represents the part quadratic in the fields. The interacting part of the Hamiltonian can lead to transitions which change the number and/or properties of the particles in our state. Here, we would like to derive a convenient formula for the probability amplitudes associated with such transitions.

Even though our theory is interacting, it will still be convenient to use a basis of states inherited from the free Hamiltonian. We'll imagine that we have some eigenstate of the free Hamiltonian H_{0} at time $t=t_{0}$. Then we evolve forward in time and ask for the probability amplitude that at time t we will find some other basis element if we measure the system. More general transition amplitudes can be expressed in terms of these ones involving the basis elements.

Q: To start, write down a basis of energy eigenstates for the free Hamiltonan H_{0}.

$$
|0\rangle, a^{t} p|0\rangle, a_{p_{1}} a_{p_{2}}^{+}|0\rangle \ldots
$$

Assume that the states in the previous question are defined at $t=0$. It will be convenient below to use a basis for the states at other times which is just the previous basis evolved forward to the new time t using the free Hamiltonian H_{0}.
Q: If $|\Psi(t=0)\rangle$ is one of the basis elements from the previous question, write a formula for the corresponding basis element $|\Psi(t)\rangle$ at time t.

$$
|\Psi(t)\rangle=e^{-i H_{0} t}|\Psi(t=0)\rangle
$$

Q: Now, suppose we have a general state $\left|\Psi_{0}\right\rangle$ at $t=t_{0}$. What is probability amplitude that if we measure the system at time t, we will find state $\left|\Psi_{1}\right\rangle$ (assuming that this state is an eigenstate corresponding to the possible result of a measurement)?

$$
\begin{aligned}
& =\left\langle\Psi_{1}\right| e^{-i H\left(t-t_{0}\right)}\left|\Psi_{0}\right\rangle
\end{aligned}
$$

Using your answers from the previous questions, the transition amplitude from a basis element $\left|\Psi_{1}\left(t_{0}\right)\right\rangle$ at time t_{0} to the basis state $\left|\Psi_{2}(t)\right\rangle$ at time t can be written as

$$
\left\langle\Psi_{2}(0)\right| U\left(t, t_{0}\right)\left|\Psi_{1}(0)\right\rangle
$$

Q: Write a formula for $U\left(t, t_{0}\right)$ in terms of the Hamiltonians H_{I} and H_{0} and the times t and t_{0}.

$$
\text { Have: } \begin{aligned}
& \left\langle\Phi_{2}\right| e^{-i H\left(t-t_{0}\right)}\left|\Phi_{1}\right\rangle \\
= & \left\langle\Psi_{2}(0)\right| e^{i H_{0} t} e^{-i H\left(t-t_{0}\right)} e^{-i H_{0} t_{0}}\left|\Phi_{1}(0)\right\rangle \\
\therefore & U\left(t, t_{0}\right)=e^{i H_{0} t} e^{-i H\left(t-t_{0}\right)} e^{-i H_{0} t_{0}}
\end{aligned}
$$

We now want to write $U\left(t, t_{0}\right)$ in a more useful form. Let's define the time-dependent operator $H_{I}(t)$ by

$$
H_{I}(t)=e^{i H_{0} t} H_{I} e^{-i H_{0} t}
$$

From the definition, we can see that $H_{I}(t)$ is obtained from H_{I} simply by replacing the fields $\phi(x)$ with the time-dependent fields $\phi(x, t)$ we have defined before. To go further, let's see what U looks like for infinitesimal times.
Q: For $t=t_{0}+d t$, write a formula for $U\left(t, t_{0}\right)$, expanded to order $d t$. Express the result in terms of the time-dependent H_{I}.

$$
\begin{aligned}
U\left(t_{0}+d t, t_{0}\right) & =e^{i i H_{0}\left(t_{0}+d t\right)} e^{-i H d t} e^{-i H_{0} t_{0}} \\
& =e^{i H_{0} t_{0}}\left(1-i H_{0} d t\right)\left(1-i H_{0} d t-i H_{I} d t\right) e^{-i H_{0} t_{0}} \\
& =e^{i H_{0} t_{0}}\left(1-i H_{I} d t\right) e^{-i H_{0} t_{0}} \\
& =1-i H_{I}\left(t_{0}\right) d t
\end{aligned}
$$

Q: Reexpress this in terms of an exponential that agrees with your previous result up to order $d t^{2}$.

$$
U\left(t_{0}+d t, t_{0}\right)=e^{-i H_{I}\left(t_{0}\right) d t}+\theta\left(d t^{2}\right)
$$

Now, the evolution over a finite time can be obtained by breaking up the time interval into many parts of size $d t$, and writing

$$
\begin{equation*}
U\left(t, t_{0}\right)=\lim _{d t \rightarrow 0} U(t, t-d t) U(t-d t, t-2 d t) \cdots U(t 0+d t, t 0) \tag{1}
\end{equation*}
$$

Q: Rewrite the right-hand-side of this equation using your exponential expression for $U(t+d t, t)$.

$$
=e^{-i H_{I}[t-d t] d t} e^{-i H_{I}[t-2 d t] d t} \cdots e^{-i H_{I}\left[t_{0}\right] d t}
$$

The above expression defines what is known as the time-ordered exponential:

$$
U\left(t, t_{0}\right)=T\left\{e^{-i \int_{t_{0}}^{t} H_{I}(t) d t}\right\}
$$

In practice, it is much more convenient to have an expression for this expanded order by order in H_{I}. To obtain this (and to see why the time-ordered exponential is written in this way) start again with (1), but now write it out in terms of the infinitesimal expression $U=1+\ldots$ you derived above and write down all terms in (1) that are linear in H_{I}. Express the complete set of these in terms of an integral.

These terms cone from taking the linear term in H_{I} for just one of the exponential above; ant the ($\mathrm{H} \mathrm{H}^{\circ}$ term ie. 1 from the rest:

$$
\begin{aligned}
& -i H_{I}[t-d t] d t-i H_{I}[t-2 d t] d t-\ldots-i H_{I}[d] d t \\
& =-i \int_{t_{0}}^{t} d t H_{I}[t]
\end{aligned}
$$

Q: Now, in the same way, write down the terms in (1) that are quadratic in H_{I}. Try to express this set of terms in terms of a double integral. Hint: be careful about the limits on your integrals, and keep in mind that $H_{I}\left(t_{1}\right)$ and $H_{I}\left(t_{2}\right)$ do not commute with each other.

Now we need one H_{I} from two different exponenticals, we get

$$
\begin{aligned}
& -\sum_{t_{1}>t_{2}} H_{I}\left[t_{1}\right] H_{I}\left[t_{2}\right] d t^{2} \quad \text { (where } \begin{aligned}
& t_{1}=t-n \cdot d t \\
& t_{2}=t-n \cdot d t \\
& t \leqslant t_{i} \leqslant t_{0}
\end{aligned} \\
= & -\int_{d t \rightarrow 0}^{t} d t_{1} \int_{t_{0}}^{t_{1}} d t_{2} H_{I}\left[t_{1}\right] H_{I}\left[t_{2}\right]
\end{aligned}
$$

This can also be written as

$$
\left.-\frac{1}{2} \int_{t_{0}}^{t_{t_{0}}} d H_{1} \int_{t_{2}}^{t} T t_{1} T H_{I}\left(t_{1}\right) H_{I}\left(t_{2}\right)\right\}
$$

\uparrow defined to order expressions from larger to smaller times.
Q: Can you figure out an expression for the terms in (1) that are of order n in H_{I} ?

$$
\frac{(-i)^{n}}{\sum_{2 / 2}} \int_{t_{0}}^{t_{1}} d t_{t_{0}}^{t_{1}} t_{2} \ldots \int_{t_{0}}^{t_{n-1}} d t_{n} H_{I}\left(t_{1}\right) \ldots H_{I}\left(t_{n}\right)
$$

This is equivalent to

$$
\frac{(-i)^{n}}{n!} \int_{t_{0}}^{t} d t_{1} \int_{t_{0}}^{t_{2}} d t_{2} \ldots \int_{t_{0}}^{t} d t_{n} T\left\{H_{I}\left(t_{1}\right) \ldots H_{I}\left(t_{n}\right)\right\}
$$

