Building Invariants from Spinors

Consider a spin half particle in quantum mechanics. We can write the general state of such a particle (considering only the spin degree of freedom) as

$$
|\psi\rangle=\psi_{\frac{1}{2}}|\uparrow\rangle+\psi_{-\frac{1}{2}}|\downarrow\rangle
$$

or, in vector notation for the J_{z} basis, $\psi=\binom{\psi_{\frac{1}{2}}}{\psi_{-\frac{1}{2}}}$.
Q: Under an small rotation, what is the infinitesimal change in the quantity $\psi_{a}\left(a= \pm \frac{1}{2}\right)$ (or in the column vector ψ with these two components)?

Q: Can you think of a quantity built from $\psi_{\frac{1}{2}}$ and $\psi_{-\frac{1}{2}}$ that is unchanged when we make a rotation? Hint: In terms of the state $|\psi\rangle$, is there some quantity that doesn't change under symmetry tranformations?

Q: Can you think of a quantity built from $\psi_{\frac{1}{2}}$ and $\psi_{-\frac{1}{2}}$ that transforms like a vector under rotations? Hint: Can you think of some expectation value involving $|\psi\rangle$ that is a vector quantity?

Q: A spinor field ψ_{α} has components $\left(\eta_{a}, \chi_{a}\right)$ where η_{a} and χ_{a} each transform like the ψ in the first question under rotations, but transform under infinitesimal boosts as

$$
\delta \eta=\epsilon \frac{1}{2}\left(\sigma^{i}\right) \eta \quad \delta \chi=-\epsilon \frac{1}{2}\left(\sigma^{i}\right) \chi
$$

Which of the combinations $\eta^{\dagger} \eta, \eta^{\dagger} \chi_{a}, \chi^{\dagger} \eta, \chi^{\dagger} \chi$ are invariant under boosts? Hint: recall that $\sigma_{i}^{\dagger}=\sigma_{i}$

Q: Acting on a spinor field, parity switches $\eta \leftrightarrow \chi$. What linear combinations of the terms in the previous question are invariant under rotations, boosts, and parity transformations?

Q: Now consider a state of two spin half particles. We can write the general state as

$$
|\psi\rangle=A|\uparrow\rangle \otimes|\uparrow\rangle+B|\downarrow\rangle \otimes|\uparrow\rangle+C|\uparrow\rangle \otimes|\downarrow\rangle+D|\downarrow\rangle \otimes|\downarrow\rangle .
$$

Which linear combination of A, B, C, and D is unchanged when we do a rotation?

Q: An alternative way to write the same state is

$$
\left.|\psi\rangle=\left(\left.\psi_{\frac{1}{2}}|\uparrow\rangle+\psi_{-\frac{1}{2}} \right\rvert\, \downarrow\right) \otimes\left(\left.\chi_{\frac{1}{2}}|\uparrow\rangle+\chi_{-\frac{1}{2}} \right\rvert\, \downarrow\right)\right\rangle
$$

Using your previous answer, write down a quantity built from $\psi_{\frac{1}{2}}, \psi_{\frac{-1}{2}}, \chi_{\frac{1}{2}}$, and $\chi_{-\frac{1}{2}}$ that is unchanged when we do a rotation.

Q: Based on your result from the previous page, can you write down some quantities involving the components $\left(\psi_{a}, \chi_{a}\right)$ of a Dirac spinor field (but NOT involving complex conjugates) that is invariant under rotations and boosts?

