
Spinor Fields

Last time, we saw that for the matrices Ji and Ki representing the infinitesimal Lorentz
transformations, we must have

[Ji,Jj] = iεijkJk (1)

[Ji,Kj] = iεijkKk (2)

[Ki,Kj] = −iεijkJk . (3)

Any N ×N matrices satisfying these commutation relations will lead us to a valid rep-
resentation of the Lorentz group. So how do we find the general possibilities? Fortu-
nately, the entire problem can be reduced to a familiar one: understanding the possible
matrix representations of angular momentum operators in quantum mechanics.1

If we focus only on (2) for now, we see that these commutation relations are ex-
actly the same as the commutation relations for the angular momentum operators in
quantum mechanics. This is no coincidence; the angular momentum operators in a
quantum system represent the action of infinitesimal rotations on the vector space of
its quantum states. The matrices above represent the action of infinitesimal rotations
on the vector of field components. The commutations relations must be the same in
both cases since they are a property of the rotation group itself2.

Rotations in quantum mechanics

In quantum mechanics, we usually ask the following question: assuming that there are
finitely many basis states for a particle (or atom) in its rest frame (or fixed at some
location), what are the possible ways that the angular momentum operators can act on
these states. The answer is that we can always group the basis elements (or a redefined
set of basis elements) into groups that do not mix with each other under rotations;
we can label these groups by a number j that we call “spin”; we can label the basis
elements in a group with spin j by number m = −j,−j + 1, · · · , j, and the action of
the rotation operators on the state |m〉 is given by

Jz|m〉 = m|m〉
(Jx ± iJy)|m〉 =

√
j(j + 1)−m(m± 1)|m± 1〉 ≡

(
(J x

j )mn + i(J y
j )mn

)
|n〉

For spin j, these rules define the action of the operators J i on the (2j + 1)-
dimensional vector space of states. In the basis labeled by m, these linear trans-
formations can be represented by (2j + 1)× (2j + 1) matrices

J i
mn = 〈m|J i|n〉 ,

1You may want to have a look at the supplementary handout on “Angular momentum in quantum
mechanics”.

2e.g. what rotation do I get if I rotate a little around the x-axis, then the y-axis, then then do the
inverse rotations about x and about y?
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and these matrices provide the most general IRREDUCIBLE solution to the com-
mutation relations (2), up to similarity transformations associated with a change of
basis.3

The simplest examples here are the trivial 1 × 1 representation J i = 0, and the
spin half 2× 2 representation J i = 1

2
σi, where σi are the Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)

Back to Lorentz transformations

Now that we have understood the general possibilities for matrices satisfying the com-
mutation relations for infinitesimal rotations, it is a simple matter to find the most
general possible matrix representations for the full set of Lorentz generators. The trick
is to define

Ai =
1

2
(J i + iKi) Bi =

1

2
(J i − iKi) . (4)

From the commutation relations (2-3), we find that Ai and Bi satisfy the commutation
relations

[Ai,Aj] = iεijkAk

[Bi,Bj] = iεijkBk

[Ai,Bj] = 0 . (5)

We see that both Ai and Bi satisfy the commutation relations for rotations matrices,
and that the A matrices and B matrices commute with one another.

This set of commutation relations is exactly the same as for two separate sets of an-
gular momentum operators, which might correspond to the angular momentum of two
completely independent parts of a quantum system (e.g. two separate particles/atoms
with spin). For such a system, the general representation for the angular momentum
operators will be labeled by a pair (j1, j2) where j1 corresponds to the spin of the first
system, and j2 corresponds to the spin of the second system. The basis states for this
system can be written as

|m1m2〉 = |j1m1〉 ⊗ |j2m2〉
In terms of these basis elements, the matrices Ai and Bi will act as

Ai|m1m2〉 = J i
m1n1

|n1m2〉
Bi|m1m2〉 = J i

m2n2
|m1n2〉

since Ai acts only on the first spin and Bi acts only on the second spin.

3From the quantum mechanical problem, it is clear that all solutions can be obtained from these by
similarity transformation J i → S−1J iS, corresponding to writing the operators in a different basis,
or by building up larger matrices by taking block-diagonal matrices with these solutions (for various
j) as the blocks. The latter are known as REDUCIBLE representations.
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From this, we can write explicit matrices for Ai and Bj, which will be square
matrices of size (2j1 + 1)(2j2 + 1)

(Ai)(m1m2),(n1n2) = (J i
j1

)m1n1δm2n2

(Bi)(m1m2),(n1n2) = δm1n1(J i
j2

)m2n2

where Jj are the angular momentum matrices in the spin j representation as defined
above. More succinctly, we can write

Ai = J i
j1
⊗ 11

Bi = 11⊗ J i
j2

.

The matrices (6) give the most general irreducible representation of the commu-
tation relations (5) for Lorentz transformations. While we have used spin systems in
quantum mechanics as a tool to find this solution, it is important to emphasize that
these spins systems have nothing to do with the field theories we are discussing or the
particles that these field theories describe. We have simply been trying to classify the
ways in which fields can transform under Lorentz transformations, and now we have
found the most general solution. Given a Lorentz transformation

Λ = eiaiJi+ibiKi

we can have a field with (2j1 + 1)(2j2 + 1) components that transforms as

φ̃M(Λx) = (eiaiJi+ibiKi)MNφN(x)

where J and K are related to A and B by (4) and A and B are defined by (6).

Examples

Let’s look at the simplest examples. For (j1, j2) = (0, 0) we have a one-component
field with Ji = Ki = 0; this is just a scalar field. For (j1, j2) = (1

2
, 1

2
), we have a

four-component field with Ai = 1
2
σi ⊗ 11, Bi = 1

2
11 ⊗ σi. It turns out that this choice

gives exactly the J and K matrices for a vector field. More generally, the choice (j, j)
corresponds to a traceless symmetric tensor field with j indices.

What about the cases with j1 6= j2? For (j1, j2) = (1
2
, 0) and (j1, j2) = (0, 1

2
),

the corresponding fields have only two components, so this is definitely something we
haven’t seen before. In these cases, we find Ai = 1

2
σi, Bi = 0 and Ai = 0, Bi = 1

2
σi

respectively, so

Ji =
1

2
σi Ki = ∓ i

2
σi .

We see that in either case, the field components are mixed under rotations like the
state vector for a spin-half particle. These kinds of fields are known as SPINOR fields.

3



Parity

So far, we have discussed only the Lorentz transformations that can be built up from in-
finitesmial Lorentz transformations. However, certain physical theories (such as QED)
may also be invariant under the larger group of Lorentz-transformations that include
parity. In this case, the action must have a symmetry under parity transformations,
so the fields themselves must have some transformation rules under parity, which we
can write as

φM(Px) → PMNφN(x) .

The way in which parity acts on the fields must again be consistent with the group
multiplication rules for the Lorentz group (including parity). In particular, performing
a parity transformation, then a boost, then a parity transformation is equivalent to
performing the opposite boost, while preforming parity transformation, then a rotation,
then a parity transformation is equivalent to performing the same rotation. This is
everything we need to know about how parity transformations combine with other
Lorentz transformations, and it is captured by the relations

PJ iP = J i

PKiP = −Ki

In terms of A and B, we have

PAiP = Bi

PBiP = Ai (6)

so P switches the role of A and B. Back to the quantum mechanics analogy, we
would like to say that the parity transformation corresponds to the switch |m1m2〉 →
|m2m1〉, but this makes sense only in the case j1 = j2. For the case j1 6= j2, no parity
transformation consistent with the relations (6) is possible.4 However, if we have a
theory with one field of type (j1, j2), and another field of type (j2, j1), we can realize
a parity transformation by saying that it switches the two fields. Equivalently, we can
combine the components of these two fields into a single field with 2(2j1 + 1)(2j2 + 1)
components, and then rotations, boosts, and parity transformations all act on this
single field.

Let’s see how this works for our spinor fields. If we let ηa and χa be two-component
fields transforming in the (1

2
, 0) and (0, 1

2
) representations for the infinitesimal Lorentz

transformations, then we can define a four-component field

ψα =

(
ηa

χa

)

4This is easy to see in the cases (j1, j2) = ( 1
2 , 0) and (j1, j2) = (0, 1

2 ) where only one of Ai and Bi

is nonzero.
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that combines the two. On this field, rotations, boosts, and parity transformations are
represented as

Ji =
1

2

(
σi 0
0 σi

)
Ki =

i

2

(
−σi 0
0 σi

)
P =

(
0 11
11 0

)
.

This resulting field, known as a DIRAC SPINOR field, can be used in a parity-invariant
field theory, and is the kind of field that represents all the spin half particles in the
standard model.
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