
General Fields

We’ve now seen that fields with different transformation properties under the Lorentz
group describe the physics of particles with different spins. Scalar and vector fields
describe particles with spin zero and spin one respectively. It turns out that tensor
fields with more indices can be used to describe particles with higher integer spins. But
how do we describe particles with half-integer spin?

Representations of the Lorentz Group

To answer this, we need to go back and understand whether there are any more general
possibilities for how fields transform under Lorentz transformations. Suppose we have
a set of field components φi. We understood earlier that under the transformation
x → Λx, the new fields φ̃i at the transformed point Λx will be determined in terms
of the old fields at the point x. But (as we saw for vector and tensor fields), the
transformation can also mix up the field components. In general, we might have:

φ̃i(Λx) = Mij(Λ)φj(x) .

Here, if we have N field components, then Mij is an N×N matrix that depends on the
Λ. Thus, M defines a map between the set of Lorentz transformations and the the space
of n×N matrices. Not just any map will do. For example, when Λ is the identity (i.e the
Lorentz transformation that does nothing), then the fields should remain unchanged,
so M must be the N × N identity matrix. More generally, if we consider a Lorentz
transformation that results from two successive Lorentz transformations, Λ = Λ1Λ2, it
must be that the transformation on the fields under the Lorentz transformation Λ must
be the same as the transformation on fields that results from performing the Lorentz
transformation Λ2 followed by the Lorentz transformation Λ1.

Q: What condition on M(Λ) does this imply?

Answer: In order for this to be true, we must have

M(Λ1Λ2) = M(Λ1)M(Λ2) (1)

. Thus, the matrix associated with the product of two Lorentz transformations must
equal the product of the matrices associated with the individual transformations. When
this holds, we say that the matrices M provide a REPRESENTATION of the Lorentz
group.

Q: For rotations around a single axis, the group elements can be labeled by
the rotation angle θ, where rotations by angles differing by a multiple of 2π
are equivalent. If the rotation by angle θ acting on some field components
is described by a matrix M(θ), what conditions must this M(θ) satisfy to be
a valid representation?
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Answer: Two successive rotations by angles θ1 and θ2 are equivalent to a single rotation
by angle θ1 + θ2. Thus, we must have

M(θ1 + θ2) = M(θ1)M(θ2) .

Since rotations through angles differing by 2π are equivalent, we must also have M(θ +
2π) = M(θ).

Infinitesimal Transformations and Generators

Since there are an infinite number of possible Lorentz transformations, it sounds at
first like a difficult problem to find matrices that satisfy the multiplication rule (1) for
all possible Λ. It is easy to see that the simple choices M(Λ) = 1 and M(Λ) = Λ work,
but how can we go about finding all possible solutions?

A crucial step is to realize that general Lorentz transformations can be built up
by multiplying together lots of infinitesimal transformations. For example, a rotation
around the z axis can be obtained by performing in succession a large number of very
small rotations. According to (1), if we know how the very small rotation acts on the
fields, then we can figure out how the large rotation acts also. We can see this directly
in a couple of ways:

Q: Suppose that an infinitesimal rotation acts on the field components as

δφi ≡ φ̃i(Λx)− φi(x) = δθLijφj .

How does the field transform under a rotation by angle θ?

Answer: We have (suppressing the vector indices)

δφ

δθ
= Lφ .

Considering this as a differential equation, we can write the solution as:

φ̃(Λx) = eθLφ(x) .

Thus, if L is the matrix that describes the infinitesimal transformation on the field,
the matrix corresponding to any finite rotation is M(θ) = eθL.

We can also obtain this result directly from (1), by noting that

M(θ) = [M(θ/N)]N

= lim
N→∞

[M(θ/N)]N

= lim
N→∞

[1 + (θ/N)M ′(0) +O((θ/N)2)]N

= eθM ′(0)

Here, the matrix M ′(0) is the one we previously called L. We have used ex =
limN→∞(1 + x/N)N and the fact that the O((θ/N)2) terms in the third line will not
contribute to the result in the limit N →∞.
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In summary, we have learned that for simple rotations about a single axis, the
action on fields is completely determined once we know the action of an infinitesimal
transformation. The problem of finding the infinite set of matrices M(θ) is reduced to
finding the single matrix L. In this simple case, the only other restriction on L comes
from the extra condition M(θ + 2π) = M(θ), and this leads to the restriction that the
eigenvalues of L must all be integer multiples of i.

Generators for the Lorentz Group

For more complicated groups such as the Lorentz group, there is more than one type of
infinitesimal transformation, but the set of all such transformations have the structure
of a finite-dimensional vector space. To see this, recall that the Lorentz group may be
defined as the set of 4× 4 matrices satisfying

ΛT ηΛ = η . (2)

An infinitesimal Lorentz transformation is one that is very close to the identity matrix,
so we can write

Λ = 1 + εω

The condition (2) on Λ implies that if ε is infinitesimal, the matrix ω must satisfy1

ωT η + ηω = 0 . (3)

This condition is linear in ω, so the the allowed set of matrices ω form a vector space.
Explicitly, we have

ω =




0 b1 b2 b3

b1 0 a3 −a2

b2 −a3 0 a1

b3 a2 −a1 0


 ≡ iaiJ

i + ibiK i

As with any vector space, we can write a general element as a linear combination of
basis elements. Here, we have defined basis elements J i and K i, which correspond to
the infinitesimal rotations around the x y and z axes and infinitesimal boosts in the x,
y, and z directions respectively.

A general Lorentz transformation2 can be built up by a combination of these six
infinitesimal transformations, so a representation M(Λ) of the Lorentz group will be
completely specified once we understand how these six infinitesimal transformations act
on the fields. Explicitly, if the matrices J i and Ki describe the action of infinitesimal
rotations and boosts on the components of some field (e.g. the change in the field

1To see this, we simply plug in the previous formula into (2) and look at the terms of order ε.
2For the moment we are speaking about the “proper orthocronous Lorentz group” i.e. not including

the parity or time-reversal transformations.
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under a rotation around the x-axis would be φ̃i(Λx) − φi(x) = iδθ(J 1)ijφj), then the
action for some general Lorentz transformation3

Λ = eiaiJ
i+ibiK

i

will be determined by the matrix

M(Λ) = eiaiJ i+ibiKi

.

Note in particular that the general infinitesimal transformation

Λ = 1 + ε(iaiJ
i + ibiK

i)

will correspond to
M(Λ) = 1N×N + ε(iaiJ i + ibiKi) .

so the matrices representing general infinitesimal transformations form a vector space
with basis J i and Ki and the infinitesimal transformation corresponding to a linear
combination of Js and Ks will be represented by the same linear combination of J s
and Ks.

Representing the generators

We have seen that the complete representation M(Λ) will be determined once we
specify the six matrices J i and Ki that represent the infinitesimal transformations
or GENERATORS of the Lorentz group. We would now like to understand what
restrictions there are for choosing these matrices. Consider the following

Q: Consider two infinitesimal Lorentz transformations, whose actions on
some field components are specified by the matrices M1 = eεΩ1 and M2 = eεΩ2.
For M = M1M2M

−1
1 M−1

2 , what is the first non-zero term in M − 1 in an
expansion in powers of ε?

Answer: We have

M = M1M2M
−1
1 M−1

2 = eεΩ1eεΩ2e−εΩ1e−εΩ2

= (1 + εΩ1 +
1

2
ε2Ω2

1 + · · ·)(1 + εΩ2 +
1

2
ε2Ω2

2 + · · ·)
(1− εΩ1 +

1

2
ε2Ω2

1 + · · ·)(1− εΩ2 +
1

2
ε2Ω2

2 + · · ·)
3The fact that any Lorentz transformation can be written as such an exponential may seem to be a

stronger statement than simply saying that it can be built up from many infinitesimal transformations.
To show this, we need to use the fact that eω1eω2 can be written as eω3 if ωi are all of the form above.
This follows from the “Baker-Campbell-Hausdorff relation” eAeB = eA+B+ 1

2 [A,B]+... where the dots
indicate terms involving nested commutators of As and Bs. As we will see below, the commutator
of any two elements in our vector space of infinitesimal transformation matrices must also be in the
vector space, so if A and B satisfy the constraint (3), then the expression A + B + 1

2 [A, B] + . . . will
also satisfy (3).
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= 1 + ε2(Ω1Ω2 − Ω2Ω1) + · · ·
= 1 + ε2[Ω1, Ω2] + · · · .

In this example, the infinitesimal transformation M takes the form of the identity
matrix plus an infinitesimal parameter times the commutator [Ω1, Ω2]. But since the
matrices representing infinitesimal transformations form a vector space, it must be that
for any choice of Ω1 and Ω2 (i.e. any linear combinations of J i and Ki), we can rewrite
[Ω1, Ω2] as a linear combination of the same basis elements J i and Ki.

For the matrices J i and K i that we defined above, we can check explicitly that

[Ji, Jj] = iεijkJk

[Ji, Kj] = iεijkKk

[Ki, Kj] = −iεijkJk

But these same relations must hold for J i and Ki in order for the constraint (1) to be
satisfied.4

Thus, for the matrices representing the infinitesimal Lorentz transformations, we
must have

[Ji,Jj] = iεijkJk

[Ji,Kj] = iεijkKk

[Ki,Kj] = −iεijkJk .

Any N ×N matrices satisfying these commutation relations provide a valid represen-
tation of the Lorentz group.

4For example, we have

1 + ε2[J 1,K2] = eεJ 1
eεK2

e−εJ 1
e−εK2

= M(eεJ1
)M(eεK2

)M(e−εJ1
)M(e−εK2

)
= M(eεJ1

eεK2
e−εJ1

e−εK2

= M(1 + ε2[J1, K2] · · ·) .

We have seen above that a given linear combination of Js and Ks maps to the same linear combination
of J s and Ks, so [J1,K2] = iK3 implies [J 1,K2] = iK3.
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