Origin of the Radio-Quiet X-ray emitting Isolated Neutron Stars

Christian Motch
CNRS/ULP
Strasbourg Observatory, France

In Collaboration with F. Haberl,
A. Schwope, V.E. Zavlin
Low NH (~ 10^{20} cm$^{-2}$), no associated SNR, no radio, no γ-ray, blackbody-like emission with kT \sim 40-100 eV, slow rotators (\sim10 sec)

Faint optical counterparts ($V \sim$ 26-28)

Absence of strong non-thermal component (e.g. magnetospheric power law emission) allows easier comparison with neutron star model atmospheres.
Properties of ROSAT discovered Isolated Neutron Stars

<table>
<thead>
<tr>
<th>Source</th>
<th>PSPC cts/s</th>
<th>P (s)</th>
<th>dP/dt (s s(^{-1}))</th>
<th>kT (eV)</th>
<th>B or V mag</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX J0420.0−5022</td>
<td>0.11</td>
<td>3.453</td>
<td><9 (10^{-12})</td>
<td>45</td>
<td>26.6?</td>
</tr>
<tr>
<td>RX J0720.4−3125</td>
<td>1.69</td>
<td>8.391</td>
<td>6.98 (10^{-14})</td>
<td>85</td>
<td>26.7</td>
</tr>
<tr>
<td>RX J0806.4−4123</td>
<td>0.38</td>
<td>11.371</td>
<td><2 (10^{-12})</td>
<td>96</td>
<td>>23</td>
</tr>
<tr>
<td>RX J1308.6+2127</td>
<td>0.29</td>
<td>10.313</td>
<td><1 (10^{-12})</td>
<td>90</td>
<td>28.0</td>
</tr>
<tr>
<td>RX J1605.3+3249</td>
<td>0.88</td>
<td>–</td>
<td>–</td>
<td>95</td>
<td>27.2</td>
</tr>
<tr>
<td>RX J1856.5−3754</td>
<td>3.64</td>
<td>–</td>
<td>–</td>
<td>60</td>
<td>25.8</td>
</tr>
<tr>
<td>RX J2143.0+0654</td>
<td>0.18</td>
<td>9.437</td>
<td>–</td>
<td>101</td>
<td>>23</td>
</tr>
</tbody>
</table>
Proper motions

- A high proper motion (> 30 mas/yr) is a criterion for the identification of a neutron star (optical colours can be misleading)

- Provides a test of the efficiency of accretion from ISM as an X-ray powering mechanism ($L_{\text{bol}} \sim V^{-3}$)

- For young objects, provides information on birth place

- Feasible at optical wavelength with HST and VLTs

- Feasible in X-rays with Chandra
Proper motion of RX J0720.4-3125:

$\mu = 97 \pm 12$ mas/yr

$V_t \sim 50 \ (d/100pc) \ km/s$

$B = 26.7$

ESO-VLT + FORS1

2x8h exposures

Motch et al. (2003)
Proper motion of RX J1605.3+3249:

\[\mu = 144 \pm 13 \text{ mas/yr} \]

\[V_t \approx 70 \left(\frac{d}{100 \text{pc}} \right) \text{ km/s} \]

B = 27.2

Motch et al. (2004)
A faint nebula around RX J1605.3+3249?
Nebula aligned within 5 deg with the apparent trajectory of the neutron star

Emission almost centred on RX J1605

Geometry incompatible with a bow shock or a X-ray ionized nebula

requires observational confirmation
Measuring proper motions with Chandra

Use the background of extragalactic sources to detect or constrain the proper motion

So far applied to RX J0806: two 20ks observations in 2002 and 2005.

20 background X-ray sources common to the two observations

$\mu < 140 \text{ mas/yr} \ (95\% \text{ confidence level})$
Proper motions are measured so far for 4 ROSAT discovered INS:

RX J1856.5-3758: $\mu = 333 \pm 1$ mas/yr $V_t \sim 220$ km/s
RX J0720.4-3125: $\mu = -97 \pm 12$ mas/yr $V_t \sim 50 (d/100pc)$ km/s
RX J1605.3+3249: $\mu = 144 \pm 13$ mas/yr $V_t \sim 70 (d/100pc)$ km/s
RX J0806.4-4123: $\mu < 140$ mas/yr $V_t < 70 (d/100pc)$ km/s

Relatively high velocities \rightarrow ROSAT INS are not old neutron stars reheated by accretion from the ISM.

ROSAT INS are young cooling objects. The lack of radio emission could be due to high magnetic field or to a radio beam not sweeping the earth.

Absence of accurate distance estimates (apart for RX J1856) and lack of radial velocity measurements do not allow birth places to be determined without ambiguity. However, the location of an OB association on some backwards trajectories is a strong hint since most (> 75%) OB stars are located in associations.
Birth places

Possible birth places of ROSAT discovered neutron stars (assuming a cooling time of \(\sim 10^6 \text{yr} \)):

- **RX J1856.5-3758**: Upper Sco OB2
- **RX J0720.4-3125**: Lower Sco OB2, Vela OB2 or Tr10
- **RX J1605.3+3249**: Upper Sco OB2

The brightest ROSAT INS are thus a locally produced population

Tentative birth place for other nearby INS:

- **Geminga**: Orion OB1 or Cas Tau
- **PSR B0656+14**: Orion OB1
- **PSR J1932+1059**: Sco OB2
All ROSAT discovered INS are located in a half sky centred on Sco OB2.

Blue lines are possible INS positions assuming $d = 100 - 400$ pc.

OB member locations after de Zeeuw et al. 1999.

All ROSAT discovered INS are located in a half sky centred on Sco OB2.
Possible explanations for this asymmetry:

- Chance coincidence?
- ROSAT all-sky survey has no such sensitivity feature. (optical search complete down to 0.2 ROSAT PSPC cnt/s)
- Interstellar absorption is unlikely to explain the effect either
- Bias in optical searches? Optical identification in the large ROSAT error circles is difficult at low galactic latitude.
- Evidence for a ROSAT INS production dominated by the closest part of the Gould Belt (Sco OB2, Vela OB2, Tr10)?

3-D NaI absorption map (Lallement et al. 2003)

But why don't we detect cooling INS born in Orion and other more remote parts of the Gould Belt?
New INS candidates from the XMM-Newton Survey Science Center survey of the Galactic Plane

- Two soft sources found at low b in the 1XMM catalogue (10 deg²) and in the XGPS, (3 deg² ;Hands et al. 2004)
- About 100 times fainter than ROSAT INS
- Optical imaging and spectroscopy at ESO 3.6m and ESO-VLT reveal no likely candidate (e.g. Me star, AM Her CV) Rₐₗₘ = 23 & 25
- Current fx/f₀pt > 200-400 could still allow an extreme polar system.
- Black-body like spectra with kT=120 +/- 20 eV; NH ~ 5 10²¹ cm⁻²
- Close (~ 5° / ~ 200 pc) to rich OB associations (Cen OB1 and Ser OB1&2)
- Properties consistent with those of ROSAT INSs moved at the distance of these OB associations (~ 2-2.5 kpc) and undergoing similar absorption.
Conclusions

➢ ROSAT INS are probably a locally born population dominated by the nearby Sco OB2 – Vela OB2 associations.

➢ Relative proximity to potential birth places and tangential velocities suggest a slow or medium velocity population (a neutron star with $v = 300$ km/s moves by 300 pc in a cooling time of 10^6 yr)

➢ This strengthens the idea that the local density of radio-quiet and cooling INS may be as large or even larger than that of the radio-pulsar population.

➢ Searches for new X-ray bright and radio quiet INS should target surroundings of remote OB associations.