MODERN COSMOLOGY

Scott Dodelson

Fermi National Accelerator Laboratory
University of Chicago

ACADEMIC PRESS

An Imprint of Elsevier

Amsterdam Boston London New York Oxford Paris San Diego
San Francisco  Singapore Sydney Tokyo




i
£
£
é
H
H

CE
AT

1
THE STANDARD MODEL AND BEYOND

Einstein’s discovery of general relativity in the last century enabled us for the first
time in history to come up with a compelling, testable theory of the universe. The
realization that the universe is expanding and was once much hotter and denser
allows us to modernize the deep age-old questions “Why are we here?” and “How did
we get here?” The updated versions are now “How did the elements form?”, “Why
is the universe so smooth?”, and “How did galaxies form from this smooth origin?”
Remarkably, these questions and many like them have quantitative answers, answers
that can be found only by combining our knowledge of fundamental physics with
our understanding of the conditions in the early universe. Even more remarkable,
these answers can be tested against astronomical observations.

This chapter describes the idea of an expanding universe, without using the
equations of general relativity. The success of the Big Bang rests on three observa-
tional pillars: the Hubble diagram exhibiting expansion; light element abundances
which are in accord with Big Bang nucleosynthesis; and the blackbody radiation
left over from the first few hundred thousand years, the cosmic microwave back-
ground. After introducing these pieces of evidence, I move beyond the Stendard
Model embodied by the three pillars. Developments in the last two decades of the
20t century — both theoretical and observational — point to

e the existence of dark matter and perhaps even dark energy

e the need to understand the evolution of perturbations around the zero order,
smooth universe

e inflation, the generator of these perturbations

The emergent picture of the early universe is summarized in the time line of Figure
1.15.

1.1 THE EXPANDING UNIVERSE

We have good evidence that the universe is expanding. This means that early in
its history the distance between us and distant galaxies was smaller than it is
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2 THE STANDARD MODEL AND BEYOND

today. It is convenient to describe this effect by introducing the scale factor a,
whose present value is set to one. At earlier times a was smaller than it is today.
We can picture space as a grid as in Figure 1.1 which expands uniformly as time
evolves. Points on the grid maintain their coordinates, so the comoving distance
between two points— which Just measures the difference between coordinates—
remains constant. However, the physical distance is proportional to the scale factor,
and the physical distance does evolve with time.
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Figure 1.1. Expansion of the universe. The comoving distance between points on a hypothet-
ical grid remains constant as the unijverse expands. The physical distance is proportional to
the comoving distance times the scale factor, so it gets larger as time evolves.

In addition to the scale factor and its evolution, the smooth universe is char-
acterized by one other parameter, its geometry. There are three possibilities: flat,
open, or closed universes. These different possibilities are best understood by con-
sidering two freely traveling particles which start their journeys moving parallel to
each other. A flat universe is Euclidean: the particles remain parallel as long as
they travel freely. General relativity connects geometry to energy. Accordingly, a
flat universe is one in which the energy density is equal to a critical value, which we
will soon see is approximately 1022 g em ™ If the density is higher than this value,
then the universe is closed: gradually the initially parallel particles converge, just
as all lines of constant longitude meet at the North and South Poles. The analogy
of a closed universe to the surface of o sphere runs even deeper: hoth are said to
have positive curvature, the former in three spatial dimensions and the latter in two.
Finally, a low-density universe is open, so that the initially parallel paths diverge,
as would two marbles rolling off a saddle.

To understand the history of the universe, we must determine the evolution
of the scale factor ¢ with cosmic time f. Again, general relativity provides the
connection between this evolution and the energy in the universe. Figure 1.2 shows
how the scale factor increases as the universe ages. Note that the dependence of 4
on ¢ varies as the universe evolves. At early times, a o< t/2 while at later times the
dependence switches to a o< t2/3. How the scale factor varies with time is determined
by the energy density in the universe. At early times, one form of energy, radiation,
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THE EXPANDING UNIVERSE 3

dominates, while at later times, nonrelativistic matter accounts for most of the
energy density. In fact, one way to explore the energy content of the universe is
to measure changes in the scale factor. We will see that, partly as a result of such
exploration, we now believe that, very recently, a has stopped growing as t2/3, a
signal that a new form of energy has come to dominate the cosmological landscape.
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Figure 1.2. Evolution of the scale factor of the universe with cosmic time. When the universe
was very young, radiation was the dominant component, and the scale factor increased as t1/2.
At later times, when matter came to dominate, this dependence switched to t2/. The right
axis shows the corresponding temperature, today equal to 3K.

To quantify the change in the scale factor and its relation to the energy, it is
first useful to define the Hubble rate

da/dt

H(t) = (1.1)

which measures how rapidly the scale factor changes. For example, if the universe
is flat and matter-dominated, so that a x ¢2/3, then H = (2/3)t71. Thus a powerful
test of this cosmology is to measure separately the Hubble rate today, Hp, and the
age of the universe today. Here and throughout, subscript 0 denotes the value of
a quantity today. In a flat, matter-dominated universe, the product Hyt, should
equal 2/3. :

More generally, the evolution of the scale factor is determined by the Friedmann

equation

=5 o+ S 02

where p(t) is the energy density in the universe as a function of time with po the
present value. The critical density

H(t).

_ 3H¢
P =200

(1.3)

where G is Newton’s constant.
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4 THE STANDARD MODEL AND BEYOND

To use Einstein’s equation, we must know how the energy density evolves with
time. This turns out to be a complicated question because g in Eq. (1.2} is the sum
of several different components, each of which scale differently with time. Consider
first nonrelativistic matter. The energy of one such particle is equal to its rest mass
energy, which remains constant with time. The energy density of many of these is
therefore equal to the rest mass energy times the number density. When the scale
factor was smaller, the densities were necessarily larger. Since number density is
inversely proportional to volume, it should be proportional to a=3. Therefore the
energy density of matter scales as a 3.

The photons which make up the cosmic microwave background (CMB) today
have a well-measured temperature Ty = 2.725 + 0.002K (Mather et al, 1999). A
photon with an energy kpTp today has a wavelength fic/kpTy. Early on, when
the scale factor was smaller than it is today, this wavelength would have been
correspondingly smaller. Since the energy of a photon is inversely proportional to
its wavelength, the photon energy would have been larger than today by a factor
of 1/a. This argument applied to the thermal bath of photons implies that the
temperature of the plasma as a function of time is

T(t) = To/aft). (1.4)

At early times, then, the temperature was higher than it is today, as indicated in
Figure 1.2. The energy density of radiation, the product of number density times
average energy per particle, therefore scales as a=%.

Evidence from distant supernovae (Chapter 2; Riess et al., 1998: Perlmutter et
al., 1999) suggests that there may well be energy, dark energy, besides ordinary
matter and radiation. One possibility is that this new form of energy remains con-
stant with time, i.e., acts as a cosmological constant, a possibility first introduced
(and later abandoned) by Einstein. Cosmologists have explored other forms though,
many of which behave very differently from the cosmological constant. We will see
more of this in later chapters. .

Equation (1.2} allows for the possibility that the universe is not flat: if it were
flat, the sum of all the energy densities today would equal the critical density, and
the last term in Eq. (1.2) would vanish. If the universe is not flat, the curvature
energy scales as 1/a. In most of this book we will work within the context of
a flat universe. In such a universe, the evolution of perturbations is much easier
to calculate than in open or closed universes. Further, there are several persua-
sive arguments, both theoretical and more recently observational, which strongly
support the flatness of the universe. More on this in Chapters 2 and 8.

Figure 1.3 illustrates how the different terms in Eq. (1.2) vary with the scale
factor. While today matter, and possibly a cosmological constant, dominate the
landscape, early on, because of the g—* scaling, radiation was the dominant con-
stituent of the universe.

Let’s introduce some numbers. The expansion rate is a measure of how fast
the universe is expanding, determined (Section 1.2) by measuring the velocities of
distant galaxies and dividing by their distance from us. So the expansion is often
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THE EXPANDING UNIVERSE 5
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Figure 1.3. Energy density vs scale factor for different constituents of a flat universe. Shown
are nonrelativistic matter, radiation, and a cosmological constant. All are in units of the critical
density today. Even though matter and cosmological constant dominate today, at early times,
the radiation density was largest. The epoch at which matter and radiation are equal 15 Geq-

written in units of velocity per distance. Present measures of the Hubble rate are
parameterized by h defined via

Ho = 100k km sec™? Mpe™!

h

= S oE X 100 ears 2.133 x 107%h eV /R (1.5)

where h has nothing to do with Planck’s constant i. The astronomical length scale
of a megaparsec (Mpc) is equal to 3.0856 x 10%* cm. Current measurements sct
h = 0.72 + 0.08 (Freedman et ol., 2001).

The predicted age for a flat, matter-dominated universe, (2/3)Hy?, is then of
order 8 to 10 Gyr. The current best estimate for the age of the universe is 12.6 Gy,
with a 95% confidence level lower limit of 10.4 Gyr {Krauss and Chaboyer, 2001),
so this test suggests that a flat, matter-dominated universe is barely viable. You




6 THE STANDARD MODEL AND BEYOND

will show in Exercise 2 that the age of the universe with a cosmological constant
is larger (for fixed h); in fact one of the original arguments in favor of this excess
energy was to make the universe older.

Newton’s constant in Eq. (1.3) is equal to 6.67 x 107%cm®g~tsec™2. This,
together with Eq. (1.5), enables us to get a numerical value for the critical density:

Por = 1.88h% x 10 %g cm~3, ' (1.6)

An important ramification of the higher densities in the past is that the rates
for particles to interact with each other, which scale as the density, were also much
higher early on. Figure 1.4 shows some Important rates as a function of the scale
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Figure 1.4. Rates as a function of the scale factor. When a given rate becomes smaller than
the expansion rate H, that reaction fails out of equilibrium. Top scale gives (kg times) the
temperature of the universe, an indication of the typical kinetic energy per particle.

factor. For example, when the temperature of the universe was greater than several
MeV /kg, the rate for electrons and neutrinos to scatter was larger than the expan-
sion rate. Thus, before the universe could double in size, a neutrino scattered many
times off background electrons. All these scatterings brought the neutrinos into
equilibrium with the rest of the cosmic plasma. This is but one example of a very
general, profound fact: if a particle scatters with a rate greater than the expansion
rate, that particle stays in equilibrium. Since rates were typically quite large, the
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THE HUBBLE DIAGRAM 7

early universe was a relatively simple environment: not only was it very smooth, but
many of its constituents were in equilibrium. Chapter 2 explores some manifesta-
tions of the equilibrium conditions, while Chapter 3 touches on several cases where
equilibrium could not be maintained because the reaction rates dropped beneath
the expansion rate.

1.2 THE HUBBLE DIAGRAM

If the universe is expanding as depicted in Figure 1.1, then galaxies should be
moving away from each other. We should therefore see galaxies receding from us.
Recall that the wavelength of light or sound emitted from a receding object is
stretched out so that the observed wavelength is larger than the emitted one. It is
convenient to define this stretching factor as the redshift z:

A 1
14 2= 22 == (1.7)

)\emit

For low redshifts, the standard Doppler formula applies and 2z ~ . So a measure-

ment of the amount by which absorption and/or emission lines are redshifted is a
direct measure of how fast the structures in which they reside are receding from us.

T1000 KM

S00KM

VELOCITY

DISTANCE
0 109PARSEC 2% 10° PARSEC

Figure 1.5. The original Hubble diagram (Hubble, 1929). Velocities of distant galaxies (units
should be km sec™!) are plotted vs distance (units should be Mpc). Solid (dashed) line is the
best fit to the filled {open) points which are corrected (uncorrected) for the sun's motion.

Hubble {1929) first found that distant galaxies are in fact receding from us.
He also noticed the trend that the velocity increases with distance. This is exactly
what we expect in an expanding universe, for the physical distance between two
galaxies is d = ax where z is the comoving distance. In the absence of any comoving
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motion (& = 0, no peculiar velocity) the relative velocity v = d is therefore equal to
ar = Hd. Therefore, velocity should increase linearly with distance (at least at low
redshift) with a slope given by H, the Hubble constant. Hubble’s Hubble constant
can be easily extracted from Figure 1.5. It is simply H = 1000/2 km sec™! Mpc™!,
almost a factor of 10 higher than current estimates. Also notice that Hubble’s data,
went out to redshift z = 1000 km sec™!/c ~ 0.003.
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Figure 1.6. Hubble diagram from the Hubble Space Telescope Key .Project (Freedman et al.,
2001} using five different measures of distance. Bottom panel shows Hg vs distance with the
horizontal line equal to the best fit value of 72 km sec™' Mpc~!.

The Hubble diagram is still the most direct evidence we have that the universe
is expanding. Current incarnations use the same principle as the original: find the
distance and the redshift of distant objects. Measuring redshifts is straightforward:
the hard part is determining distances for objects of unknown intrinsic brightness.
One of the most popular techniques is to try to find a standard candle, a class
of objects which have the same intrinsic brightness. Any difference between the
apparent brightness of two such objects then is a resuit of their different distances
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BIG BANG NUCLEOSYNTHESIS 9

from us. This method is typically generalized to find a correlation between an
observable and intrinsic brightness. For example, Cepheid variables are stars for
which intrinsic brightness is tightly related to period. The Hubble Space Telescope
measured the periods of thousands of Cepheid variables in galaxies as far away as
20 Mpc. With distances to these galaxies fixed, five different distance measures were
used to go much further, as far away as 400 Mpc. Figure 1.6 shows that all of these
five indicators agree with one another and have converged on Hy = 72 km sec™!
Mpc~! with 10% errors.

As shown in Figure 1.6 the standard candle that can be seen at largest dis-
tances is a Type la supernova. Since they are so bright, supernovae can be used
to extend the Hubble diagram out to very large redshifts (the current record is
of order z = 1.7), a regime where the simple Doppler law ceases to work. Figure
1.7 shows a recent Hubble diagram using very these very distant objects. In the
next chapter, we will derive the correct expression for the distance (in this case,
the luminosity distance) as a function of redshift. For now, I simply point out that
this expression depends on the energy content of the universe. The three curves
in Figure 1.7 depict three different possibilities: flat matter dominated; open; and
flat with a cosmological constant (A}). The high-redshift data are now good enough
to distinguish among these possibilities, strongly disfavoring the previously favored
flat, matter-dominated universe. The current best fit is a universe with about 70%
of the energy in the form of a cosmological constant, or some other form of dark

energy. More on this in Chapter 2.

1.3 BIG BANG NUCLEOSYNTHESIS

When the universe was much hotter and denser, when the temperature of order an
MeV /kpg, there were no neutral atoms or even bound nuclei. The vast amounts of
radiation in such a hot environment ensured that any atom or nucleus produced
would be immediately destroyed by a high energy photon. As the universe cooled
well below the binding energies of typical nuclet, light elements began to form.
Knowing the conditions of the early universe and the relevant nuclear cross-sections,
we can calculate the expected primordial abundances of all the elements (Chapter
3).

Figure 1.8 shows the predictions of Big Bang Nucleosynthesis (BBN) for the
light element abundances!. The boxes and arrows in Figure 1.8 show the current
estimates for the light element abundances. These are consistent with the predic-
tions, and this consistency test provides vet another ringing confirmation of the
Big Bang. The measurements do even more though. The theoretical predictions,
which we will explore in detail in Chapter 3, depend on the density of protons and
neutrons at the time of nucleosynthesis. The combined proton plus neutron density

'Recall nuclear notation: The 4 in 4He refers to the total number of nucleons {protons and
neutrons). So “He has two neutrons and two protons, while 3He has two protons and one neutron.
See the box on page 63 for more details.
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Figure 1.7. Hubble diagram from distant Type la supernovae. Top panel shows apparent mag-
nitude (an indicator of the distance) vs redshift. Lines show the predictions for different energy
contents in the universe, with {2;s the ratio of energy density today in matter compared to the
critical density and §24 the ratio of energy density in a cosmological constant to the critical
density. Bottom panel plots the residuals, making it clear that the high-redshift supernovae
favor a A-dominated universe over a matter-dominated one.

is called the baryon density since both protons and neutrons have baryon number
one and these are the only baryons around at the time. Thus, BBN gives us a way
of measuring the baryon density in the universe. Since we know how those densities
scale as the universe evolves (they fall as a=3), we can turn the measurements of
light element abundances into measures of the baryon density today.

In particular, the measurement of primordial deuterium pins down the baryon
density extremely accurately to only a few percent of the critical density. Ordi-
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Figure 1.8. Constraint on the baryon density from Big Bang Nucleosynthesis {Burles, Nollett,
and Turner, 1999). Predictions are shown for four light elements—*He, deuterium, *He, and
lithium — spanning a range of 10 orders of magnitude. The solid vertical band is fixed by
measurements of primordial deuterium. The boxes are the observations; there is only an upper
limit on the primordial abundance of 3He.

nary matter (baryons) contributes at most 5% of the critical density. Since the
total matter density today is almost certainly larger than this— direct estimates
give values of order 20-30% — nucleosynthesis provides a compelling argument for
nonbaryonic dark matter.

The deuterium measurements (Burles and Tytler, 1998) are the new develop-
ments in the field. These measurements are so exciting because they explore the
deuterium abundance at redshifts of order 3—4, well before much processing could
have altered the primordial abundances. Figure 1.9 shows one such detection. The
basic idea is that light from distant QSOs is absorbed by intervening neutral hydro-
gen systems. The key absorption feature arises from transition from the (n = 1)
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Figure 1.9. Spectrum from a distant QS0 (Burles, Nollett, and Turner, 1699). Absorption of
photons with rest wavelength 1216 A corresponding to the n —= 1 to n = 2 state of hydrogen
is redshifted up to 1216 (1 - 3.572) A, Bottom panel provides details of the spectrum in this
range, with the the presence of deuterium clearly evident.

ground state of hydrogen to the first excited state (rn = 2), requiring a photon with
wavelength \ = 1215.7 A. Since photons are absorbed when exciting hydrogen in
this fashion, there is a trough in the spectrum at X = 1215.7 A, redshifted by a
factor of 1 + z. The eorresponding line from deuterium should be (1) shifted over
by 0.33 (1 + 2) A(see Exercise 3) and (ii) much less damped since there is much less
deuterium. Figure 1.9 shows just such a system; there are now half a dozen with
detections precisely in the neighborhood shown in Figure 1.8. Note that the steep
decline in deuterium as a function of baryon density helps here: even relatively large
errors in D measurements translate into small errors on the baryon density.
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Figure 1.10. Intensity of cosmic microwave radiation as a function of wavenumber from Far
InfraRed Absolute Spectrophotometer (FIRAS) (Mather et ol., 1994), an instrument on the
COBE satellite. Hidden in the theoretical blackbody curve are dozens of measured points, all
of which have uncertainties smaller than the thickness of the curvel

1.4 THE COSMIC MICROWAVE BACKGROUND

The CMB offers us a look at the universe when it was only 300,000 years old. The
photons in the cosmic microwave background last scattered off electrons at redshift
1100; since then they have traveled freely through space. When we observe them
today, they literally come from the earliest moments of time. They are therefore the
most powerful probes of the early universe. We will spend an inordinate amount of
time in this book working through the details of what happened before the epoch
of last scattering and also developing the mathematics of the freestreaming process
since then. A crucial fact about this history, though, is that the collisions with
electrons before last scattering ensured that the photons were in equilibrivim. That
is, they should have a blackbody spectrum.
The specific intensity of a gas of photons with a blackbody spectrum is

_ dmhs fc?
Y exp {27k /kpT} -1

(1.8)

Figure 1.10 shows the remarkable agreement between this prediction (see Exercise 4)
of Big Bang cosmology and the observations by the FIRAS instrument aboard the
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COBE spacecraft. We have been told? that detection of the 3K background by Pen-
zias and Wilson in the mid-1960s was sufficient evidence to decide the controversy in
favor of the Big Bang over the Steady State universe. Penzias and Wilson, though,
measured the radiation at Just one wavelength. If even their one-wavelength result
was enough to tip the scales, the current data depicted in Figure 1.10 should send
skeptics from the pages of physics journals to the far reaches of radical Internet
chat groups.

The most important fact we learned from our first 25 years of surveying the
CMB was that the early universe was very smooth. No anisotropies were detected
in the CMB. This period, while undoubtedly. frustrating for observers searching for
anisotropies, solidified the view of a smooth Big Bang. We are now moving on. We
have discovered anisotropies in the CMB, indicating that.the early universe was
not completely smooth. There were small perturbations in the cosmic plasma. To
understand these, we must go beyond the Standard Model.

1.5 BEYOND THE STANDARD MODEL

While the three pillars put the Big Bang model on firm footing, other cbserva-
tions cry out for more details. I hinted above at one of these, the notion that there
must be nonbaryonic matter in the universe. Dark matter is a familiar concept to
astronomers; the first suggestion was put forth by Zwicky in 1933(!). Figure 1.11
illustrates the way dark matter can be found in galaxies, with the use of rota-
tion curves probing the gravitational field. Indeed,  mismatch between the matter
inferred from gravity and that we can see exists on almost all observable scales.
Because of the limits inferred from Big Bang nucleosynthesis, the dark matter,
or at least an appreciable fraction of it, must be nonbaryonic. What is this new
form of matter? And how did it form in the early universe? The most popular idea
currently is that the dark matter consists of elementary particles produced in the
earliest moments of the Big Bang. In Chapter 3, we will explore this possibility in
detail, arguing that dark matter was likely produced when the temperature of the
universe was of order hundreds of GeV/kp. As we will see, the hypothesis that dark
matier consists of fundatnental relics from the early universe may sooil be tested
experimentally. ‘
The last decades of the 20th century saw a number of large surveys of galaxies
designed to measure structure in the universe. These culminated in two large sur-
veys, the Sloan Digital Sky Survey and the Two Degree Field Galaxy (Figure 1.12)
Redshift Survey, which between them will compile the redshifts of, and hence the
distances to, a million galaxies. Galaxies in F igure 1.12 are clearly not distributed
randomly: the universe has structure on large scales. To understand this structure,
we must go beyond the Standard Model not only by including dark matter, but also
by allowing for deviations from smoothness. We must develop the tools to study

2For a fascinating first-hand account of the history of the discovery of the CMB, see Chapter
1 of Partridge {1995).
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Figure 1.11. (a) Image of spiral galaxy M33. The inner brightest region has a radius of several
kpc. (b) Rotation curve for M33 {Corbelli and Salucci, 2000). Points with error bars come from
the 21-cm line of neutral hydrogen. Solid line is a model fitting the data. Different contributiong
to the total rotation curve are: dark matter halo (dot-dashed line), stellar disk {short dashed
line), and gas (long dashed line). At large radii, dark matter dominates.

perturbations around the smooth background of the Standard Model. We will see in
Chapters 4 and 5 that this is stralghtforward in theory, as long as the perturbations
remain small.

'The best ways to learn about the evolution of structure and to compare theory
with observations are to look at anisotropies in the CMB and at how matter is
distributed on large scales. To compare theory with observations, we must at first
try to avoid scales dominated by nonlinearities. As an extreme example, we can
never hope to understand cosmology by carefully examining rock formations on
Earth. The intermediate steps—collapse of matter into a galaxy; molecular cool-
ing; star formation; planetary formation; etc.— are much too complicated to allow
comparison between linear theory and observations. While perturbations to the
matter on small scales (less than about 10 Mpe) have grown nonlinear, large-scale
perturbations are still small. So they have been processed much less than the corre-
sponding small-scale structure. Similarly, anisotropies in the CMB have remained
small because the photons that make up the CMB do not clump.

Identifying large-scale structure and the CMB as the two most promising areas of
study solves just one issue. Another very important challenge is to understand how
to characterize these distributions so that theory can be compared to experiment. It
is one thing to look at a map and quite another to quantitative tests of cosmological
models. To make such tests, it is often useful to take the Fourier transform of the
distribution in question; as we will see, working in Fourier space makes it easier
to separate large from small scales. The most important statistic in the cases of
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Figure 1.12. Distribution of galaxies in the Two Degree Field Galaxy Redshift Survey (2dF)
(Colless et al., 2001). By the end of the survey, redshifts for 250,000 galaxies will have been
obtained. As shown here, they probe structure in. the universe out to z = 0.3, corresponding

to distances up to 1000~ Mpc away from us {we are located at the center). See color .

Plate 1.12.

both the CMB and large-scale structure is the fwo-point function, called the power
spectrum in Fourier space. If the mean density of the galaxies is #, then we can
characterize the inhomogeneities with §(Z) = (n(Z) - #) /7, or its Fourier transform
8(k). The power spectrum P(k) is defined via

(B(R)3(k')y = (2m)*P(k)8* (K — k). (1.9)

Here the angular brackets denote an average over the whole distribution, and &)
is the Dirac delta function which constrains k£ = %’. The details aside, Eq. (1.9)
indicates that the power spectrum is the spread, or the variance, in the distribution.
If there are lots of very under- and overdense regions, the power spectrum will be
large, whereas it is small if the distribution is smooth. Figure 1.13 shows the power
spectrum of the galaxy distribution. Since the power spectrum has dimensions of
k=% or (length)®, Figure 1.13 shows the combination k3P(k)/272, a dimensionless
number which is a good indication of the clumpiness on scale k.

The best measure of anisotropies in the CMB is also the two-point function
of the temperature distribution. There is a subtle technical difference between the
two power spectra which are used to measure the galaxy distribution and the CMB,
though. The difference arises because the CMB temperature is a two-dimensional
field, measured everywhere on the sky (i.e., with two angular coordinates). Instead
of Fourier transforming the CMB temperature, then, one typically expands it in
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Figure 1.13. The variance A® = k*P(k)/27% of the Fourier transform of the galaxy dis-
tribution as a function of scale. On large scales, the variance is smaller than unity, so the
distribution is smooth. The solid line is the theoretical prediction from a model in which the
universe contains dark matter, a cosmological constant, with perturbations generated by infla-
tion. The dashed line is a theory with only baryons and no dark matter. Data come from the
PSCz survey (Saunders et al., 2000) as analyzed by Hamilton and Tegmark (2001).

spherical harmonics, a basis more appropriate for a 2D field on the surface of a
sphere. Therefore the two-point function of the CMB is a function of multipole
moment {, not wave number k. Figure 1.14 shows the measurements of dozens
of groups since 1992, when COBE first discovered large-angle (low ! in the plot)
anisotropies.

Figures 1.13 and 1.14 both have theoretical curves in them which appear to
agree well with the data. The main goal of much of this book is to develop a first-
principles understanding of these theoretical predictions. Indeed, understanding
the development of structure in the universe has become a major goal of most
cosmologists today. Note that this second aspect of cosmology beyond the Standard
Model reinforces the first: i.e., observations of structure in the universe lead to
the conclusion that there must be dark matter. In particular, the dashed curve in
Figure 1.13 is the prediction of a model with baryons only, with no dark matter. The
inhomogeneities expected in this model (when normalized to the CMB observations)
are far too small. In Chapter 7, we will come to understand the reason why a
baryon-only universe would be so smooth. For now, though, the message is clear:
Dark matter is needed not only to explain rotation curves of galaxies but to explain
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1.

500 1000
{ (multipole)

Figure 1.14. Anisotropies in the CMB predicted by the theory of inflation compared with
observations. z-axis is muitipole moment (e.g., { = 1 is the dipole, { = 2 the quadrupole) so

that large angular scales correspond to low I; y-axis is the root mean square anisotropy (the

square root of the two-point function) as a function of scale. The characteristic signature of
inflation is the series of peaks and troughs, a sighature which has been verified by experiment.
See color Plate 1.14.
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ture in the
be forced to confront the question of what generated the initial conditions, the
primordial perturbations that were the seeds for this structure. This will lead us
to a third important aspect of cosmology beyond the Standard Model: the the-
ory of inflation. Chapter 6 introduces this fascinating proposal, that the universe
expanded exponentially fast when it was but 10735 sec old. Until recently, there
was little evidence for inflation. It survived as a viable theory mainly because of its
aesthetic appeal. The discoveries of the past several years have changed this. They
have by and large confirmed some of the basic predictions of inflation. Most notably,
this theory makes concrete predictions for the initial conditions, predictions that
have observable consequences today. For me, the most profound and exciting dis-
covery in cosimology has been the observatlon of anisotropies in the CMB, w1th a
characteristic pattern predicted by inflation.

The theory encompassing all these Beyond the Standard Model ingredients —
dark matter plus evolution of structure plus inflation ——is called Cold Dark Matter,
or CDM. The “Cold” part of this moniker comes from requiring the dark matter
particles to be able to clump efliciently in the early universe. If they are hot instead,
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i.e., have large pressure, structure will not form at the appropriate levels.

1.6 SUMMARY

By way of summarizing the features of an expanding universe that I have outlined
above and that we will explore in great detail in the coming chapters, let’s construct
a time line. We can characterize any epoch in the universe by the time since the
Big Bang; by the value of the scale factor at that time; or by the temperature
of the cosmic plasma. For example, today, @ = 1; ¢ = 14 billion vears; and T =
2.725K= 2.35 x 1071 eV/kp. Figure 1.15 shows a time line of the universe using
both time and temperature as markers. The milestones indicated on the time line
range from those about which we are quite certain (e.g., nucleosynthesis and the
CMB) to those that are more speculative (e.g., dark matter production, inflation,
and dark energy today).

Nucleosynthesis| | Large
N Scale

Structure

Inflation

Log(k,T/GeV)

7
/ -
//

// 7 z, ( ‘ , /
///  a . v RN
7 XA ek / / 9 i O 7 4 ﬁ =

Dark Matter Cosmic
Production Microwave
Background

Figure 1.15. A history of the universe. Any epoch can be associated with either temperature
(top scale) or time (bottom scale).

The time line in Figure 1.15 shows the dominant component of the universe
at various times. Early on, most of the energy in the universe was in the form of
radiation. Eventually, since the energy of a relativistic particle falls as 1/a while
that of nonrelativistic matter remains constant at m, matter overtook radiation.
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At relatively recent times, the universe appears to have become dominated not by
matter, but by some dark energy, whose density remains relatively constant with
time. The evidence for this unexplained form of energy is new and certainly not
conclusive, but it is very suggestive.

The classical results in cosmology can be understood in the context of & smooth
universe. Light elements formed when the universe was several minutes old, and
the CMB decoupled from matter at a temperature of order kT ~1/4 eV. Heavy
elementary particles may make up the dark matter in the universe; if they do, their
abundance was fixed at very high temperatures of order kgT ~ 100 GeV.

We will be mostly interested in this book in the perturbations around the smooth
universe. The early end of the time line allows for a brief period of inflation, during
which primordial perturbations were produced. These small perturbations began to
grow when the universe became dominated by matter. The dark matter grew more
and more clumpy, simply because of the attractive nature of gravity. An overdensity
of dark matter of 1 part in 1000 when the temperature was 1 eV grew to 1 part in
100 by the time the temperature dropped to 0.1 eV, Eventually, at relatively recent
times, perturbations in the matter ceased to be small; they became the nonlinear
structure we see today. Anisotropies in the CMB today tell us what the universe
looked like when it was several hundred thousand years old, so they are wonderful
probes of the perturbations. _

Some of the elements in the time line in F igure 1.15 may well be incorrect.
However, sinice most of these ideas are testable, the data which will be taken during
the coming decade will tell us which parts of the time line are correct and which

need to be discarded. This in itself seems a sufficient reason to study the CMB and
large-scale structure.
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SUGGESTED READING

There are many good textbooks covering the homogeneous Big Bang. I am most
familiar with The Farly Universe (Kolb and Turner), which has especially good.
discussions on nucleosynthesis and inflation. Peacock’s Cosmological Physics is the
most up-to-date and perhaps the broadest of the standard cosmology texts, with
more of an emphasis on extragalactic astronomy than either The FEarly Universe or
this book. A popular account which still captures the essentials of the homogeneous
Big Bang (testifying to the success of the model: it hasn’t changed that much in 25
years) is The First Three Minutes (Weinberg). More recently, three books of note
are: The Whole Shebang (Ferris), The Little Book of the Big Bang (Hogan), and A
Short History of the Universe (Silk).

A nice article summarizing the evidence for an expandmg universe and some
methods to quantify it is Freedman (1998). Two of the pioneers in the field of Big
Bang nucleosynthesis, Schramm and Turner, wrote a very clear review article (1998)
right before a tragic accident took the life of the first author. An excellent account
of the evidence for dark matter in spiral galaxies is Vera Rubin’s 1983 article in
Scientific American.

I have not attempted to record the history of the discovery of the Big Bang.
Three books I am familiar with which treat this history in detail are Blind Watchers
of the Sky (Kolb), 3K: The Cosmic Microwave Background (Partridge), and Three
Degrees Above Zero: Bell Labs in the Information Age (Bernstein). An article which
sheds light on this history is Alpher and Herman {1988).

EXERCISES

Exercise 1. Suppose (incorrectly) that H scales as temperature squared all the
way back until the time when the temperature of the universe was 10 GeV/kg (i.e.,
suppose the universe was radiation dominated all the way back to the Planck time).
Also suppose that today the dark energy is in the form of a cosmological constant
A, such that ps today is equal to 0.7pg and pa remains constant throughout the
history of the universe. What was pa /(3H?/8%G) back then?

Exercise 2. Assume the universe today is flat with both matter and a cosmological
constant, the latter with energy density which remains constant with time. Integrate
Eq. (1.2) to find the present age of the universe. That is, rewrite Eq. (1.2} as

1.0 —1/2
gt — 1, 9 [QA A] (1.10)

a3

where {2, is the ratio of energy den51ty in the cosmological constant to the critical
density. Integrate from a¢ = 0 (when ¢ = 0) until today at @ = 1 to get the age of
the universe today. In both cases below the integral can be done analytically.

(a) First do the integral in the case when Q4 = 0.

(b) Now do the integral in the case when Q4 = 0.7. For fixed Hy, which universe
is older?
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Exercise 3. Using the fact that the reduced mass of the electron-nucleus in the D
atom is larger than in hydrogen, and the fact that the Lyman o (n=1—-n=2)
transition in H has a wavelength 1215.67A4, find the wavelength of the photon
emitted in the corresponding transition in D. Astronomers often define

to characterize the splitting of two nearby lines. What is v for the H-D pair?

Exercise 4. Convert the specific intensity in Eq. (1.8) into an expression for what
is plotted in Figure 1.10, the energy per square centimeter per steradian per second.
Note that the z-axis is 1/A, the inverse wavelength of the photons. Show that the
peak of a 2.73K blackbody spectrum does lic at 1/A =5cm 1,
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