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Low-temperature behavior of the vortex lattice in unconventional superconductors
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We study the effect of the superconducting gap nodes on the vortex lattice properties of high-temperature
superconductors at very low temperatures. The nonlinear, nonlocal, and nonanalytic nature of this effect is
shown to have measurable consequences for the vortex lattice geometry and the effective penetration depth in
the mixed state as measured by muon-spin-rotation experim&@$63-18208)03833-9

I. INTRODUCTION be explainable by penetration depth anisotropy and
twin-boundary pinning without involving any effects
The presence of nodes in the superconducting gap is prolassociated with gap nod&s.Muon-spin-rotation fSR)

ably one of the most significant features of hifihsuper-  experiment$®~" on the other hand, have demonstrated an
conductors that has attracted considerable theoretical and exnusual magnetic-field dependence in their line shapes for
perimental attention in recent years. Many experimients the magnetic-field distribution. This has been attributed to a
have confirmed the existence of gap nodes. These expeffield-dependent penetration depth—which is expected in the
ments most commonly indicate an order parameter wittMeissner state because of quasiparticle generation at gap
dy2_y2 symmetry’> The fourfold symmetric nature of the nodes’ It was also modeled using an approach based on the
d-wave order parameter, together with the presence of gaBogoliubov—deGenneBdG) equations in a square lattice
nodes on the Fermi surface, opens possibilities for novel eftight-binding modef?®
fects to be observable in cuprates. An early theoretical inves- At intermediate fieldsH.;<H<H.,, properties of the
tigation of the weak-field response ofdyz_,2 supercon- flux lattice are determined primarily by the superfluid re-
ductor by Yip and Saufspredicted a direction-dependent sponse of the condensate, i.e., by the relation between the
nonlinear Meissner effect, associated with the quasiclassicgupercurremf and the superfluid velocitgs. In conven-
shift of the excitation spectrum due to the superflow createdional isotropic strongly type-Il superconductors, this relation
by the screening currents. Maeelgal* reported experimen- s to a good approximation that of simple proportionality,
tal evidence for such an effect in &ir,CaCyO,, but sub- R
sequent experiments failed to confirm their findings and the j=—epgs, (1)
situation remains controversial. A similar effect was also
studied independently by VolovikIn the mixed state, he

predicted a contribution to the residual density of state zept of nonlocal response dates back to the ideas of Pif§pard
(DOS) proportional to the intervortex distanceH. Such zémd is related to the fact that the current response must be

contribution was identified in the specific-heat measurementavera ed over the finite size of the Cooper pair diven by the
on YBa,Cw0;_ s (YBCO) by Moler et al.® but later this 9 perparg y

interpretation was disputed by Ramireayho found evi- coherence lengtlo. In strongly type-ll materials the mag-

dence for a similar effect in a conventional superconductopetIC field varies on a length scale given by the London

V,Si, and by other8 Kosztin and Leggettpredicted that the penetration depth\o, which is much larger tharg, and

nonlocal response at very low temperatures will lead T a therefore nonlo_cahty IS ty_p|cally unimportant unless there
. . exist strong anisotropies in the electronic band strucure.
dependence of the penetration depth in clean samples,

contrast to the lineal dependence obtained from the local Nonline.ar corrections arise from_ the change of quasipartiele
theory ford-wave materials population due to superflow which, to leading order, modi-

In the mixed state also, it is conceivable that these ef1‘ectges the excitation spectrum by a quasiclassical Shift
still present themselves in some meas_urable_ pr_operties such E=Ewti0s, )
as vortex lattice geometry, magnetic-field distribution, etc.
Neutron-scatterin and scanning tunnel microscdpeex-  where Ek:\/€k2+ Akz is the BCS energy. Again, in clean,
periments on the high;, compound YBCO revealed a vor- fully gapped conventional superconductors, this effect is
tex lattice structure different from the hexagonal—which istypically negligible except when the current approaches the
expected for an isotropic superconductor. However, this maypair breaking value. In the mixed state, this happens only in

where pg is a superfluid density. More generally, however,
ghis relation can be bothonlocal and nonlinear The con-
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the close vicinity of the vortex cores that occupy a small v
fraction of the total sample volume at fields well belély, .
The situation changes dramatically when the order parameter v X
has nodes, such as #)2_,2 superconductors. Nonlocal cor-
rections to Eq.(1) become important for the response of @
electrons with momenta on the Fermi surface close to the
gap nodes, even for strongly type-1l materials. This can be x
understood by realizing that the coherence length, being in-
versely proportional to the gdi§ pecomes very large close to
the node and formally diverges at the nodal point. Thus, \7;2\\ ~ 9;1
quite generally, there exists a locus of points on the Fermi

surface wheré€>\y and the response becomes highly non-
local. This effect had been first discussed by Kosztin and FiG. 1. Circular Fermi surface withd_,> gap. Quasiparticles
Legget? for the Meissner state and by Zsin the mixed  will be excited at nodes marked ki, and,, opposite tov .
state. Similarly, the nonlinear corrections become important

in ad-wave superconductor. Equati@®) indicates that finite  density flowing in the direction opposite to the superfluid

areas of gapless excitations appear near the node for arkjelocity—sometimes called backflow. The total current can
trarily smallvg. This effect has been studied in the Meissnerthen be written as

state® but its consequences have remained largely unex-

plored for the mixed state. P T
In our previous worké?? we discussed the effect of J=~€psvstlap, &

fourfold anisotropies associated witmanlocalresponse on where p; is the superfluid density and is the superfluid

the field and temperature dependence of a vortex lattic@elocity defined b§?

structure. In Ref. 21, starting from a phenomenological

Ginzburg-LandauGL) theory, we derived the leading four- 1

fold anisotropic corrections to the London equation, making Us=5

the usual assumption that the free energy was an analytic

functional of the order parameter and field. We showed tha/g: is the vector potential and is the phase of the order

such corrections result in a field-driven continuous tranSitiO'barameter The contribution of the quasiparticles generated
from triangular to square vortex lattice. Being derived from a '

GL theory, this London equation is expected to lose its va-at the nodes to the total current is giverr by

lidity at low temperatures and a microscopic theory is needed oc

to address this regime. In Ref. 22, we investigated the effect],,= —4eNJ dst(s)J dEF[VE+A(S)2+T¢(S)-Tsl,
of the nonlocality due to the presence of the nodes in the FS 0

superconducting gap using a simple weak-coupling micro- ®)
scopic model. At high temperatures, a nonlocal correctio
similar to the one suggested in Ref. 21 was obtained. At lo
temperatures, however, a novel singular behavior was foun
directly related to the nodal structure of the gap that. Co.m's—wave,d—wave, or other symmetries. At zero temperature,
pletely changes the form of the London equation. This sin- q. (5) leads to

gular behavior has profound implications for the structure ofE '

the vortex lattice which, as a function of decreasing tempera-

ture, undergoes a series of sharp structural transitions andfqp: —4efo dsi¢(s) 0(—5f.l}’s_|A|),/(Jf.5s)2_A2_
attains a universal limit af = 0. ©)

In Ref. 22, we neglected the effect of thenlinearterms
At higher temperatures however, this gives the first term

resulting from the excitation of quasiparticles at the gap
nodes, assuming that they are small compared to the nonl?ﬁ the Sommerfeld expansion, which is a good approxima-
ion as long asT<T*=T.(H/H,), whereH, is of order of

cal corrections. In this paper, we consider both the nonlineay.
and the nonlocal terms, assuming that the effects are addltl\_/t%e thermodynamic critical fielé, .2 The presence of the
and do not affect each other. We show that, as we claimed inction in E (6) results in excitations only at the nodes in
Ref. 22, the dominant effect that determines the vortex lattic EQ-{O) 1€ . . > Only )

i%\e opposite direction tos. Figure 1 illustrates a circular

geometry and the effective penetration depth as defined ermi surface with a-wave gap. Quasiparticles are excited

uSR experiments is the nonlocal corrections, while the non- - . AR
linear corrections play a secondary role at [dw at the nodes marked iy, anduy, in .the. opposite direction
to vs. For a small enoughg, the excitations stay very close

to the gap nodes. Therefore, one can linearize the gap func-
Il. GENERALIZED LONDON EQUATION tion near the nodes, writingy (8) = yA,6 with A, the maxi-

A. Nonlinear corrections mum gap andy defined by

<l

2e. )
~A-V4|. (4)

rQ/vhereNf is the density of states at the Fermi surface aisl
parameter that represents a point on the Fermi surface.
(s) is the superconducting gap which, in general, can have

Let us for the moment neglect any nonlocality effect and
focus on the quasiparticles generated at the gap nodes. Exci- y= A—{—A( 0)} . (7)
0

tation of quasiparticles at the gap nodes produces a current de node
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The component of , along thex direction, which is diag- London free-energy terms, while the remaining two terms
onal to thex andy (a andb) directions(as illustrated in Fig. ~constitute the leading nonlinear correction. For magnetic

1), is then fields in thez direction, the London free-energy density be-
comes
o=t [ 52 = Tyaoll? :
Japw =4eNwy [ S—(vivs Cosa)”=[yAo 2m\ Eohg
— 9,27 _ T R2.2 2, [ 2715070 5 B3 BI3
2 fL 5B +A5(VB)“+ 3, B, (|axBI*+]ay,BI®)
Us st’lvsx’| (14
=ep,— COSalcosa|=ep,——. (8 _ _ _
Vo Vo and the corresponding London equation will be
«a is the angle betweeng andx’ axis, ps= vaf2 is the su- 2
. . _ . . . . 2 2’7T go)\o 2 2
perfluid densityp o= yAy /v is some characteristic velocity, —\3V?B+B—| —|—=—(3%,B|dyB|+d ,Bldy/B|)=0.
and 6, is a cutoff imposed by the function in Eq. (6). Bo  * Y
Similarly, they’ component is (15
A similar London equation is also derived by Zutic and Valls
jqpy,:epsvsy’|vsy’| 9) who investigated the effect in the Meissner stéte.

Vo The most commonly used form for d-wave gap is
A(0)=Aycos(2). In this case, Eq(7) leads toy=2. As
discussed in more detail below, in order to find the magnetic-
e > o o field distribution in a vortex lattice, one has to insert a source
1= —epdUsm (VsxlvselX Fusylvsy [yl A0 B 3 p(F—F;) on the right-hand side of Eq15) with
The nonanalytic nature of the effect is evident from thisbeing the position of the vortices in the lattice. The function
equation. p(r) takes into account the vanishing of the order parameter
Itis now possible to write a free energy in such a way thatat the center of the vortex cores. Numerically, it is more
Eq. (10) can be obtained by minimization with respect,&o convenient to work in Fourier space rather than in real space.
Keeping in mind thatj=(c/4m)VXB=(c/4m)VxVxA However, because of the nonanalyticity of the nonlinear
. > . term, the Fourier transformation of this term cannot be done
and d/ dvs=(c/e)dl A, the corresponding free-energy den- by simol lution int | d ical techni
sity can be written as y simple convolution integrals and numerical techniques
such as fast Fourier transformati@fFT) are required. Fou-
1, 1 , , B2 r?er transforr_ning _Eq(15) with a proper source term on the
f=ps SUs™ go(lvsxd +losy?) |+ 8 (11)  right-hand side yields

and the total current thereby becomes

22k PR RE(D
In general, it is possible to solve E(L.0) for v in terms Bkt Aok“Bi—Gri(k,B) =BF (k), (16)

of j=(c/4m)VXB, substitute it into Eq(11), and write &  wherek is a reciprocal lattice wave vectd,, is the Fourier
London free energy only in terms & and its derivatives. transform of the nonlinear term, alis the average mag-

However, instead of solving Eq10) exactly, we findds  payic field. The cutoff functiorF (K) comes from the Fourier

perturbatively, assuming that the nonlinear part is rnuCr1ransformati0n of the source term and removes the diver-

smaller than the linear part. This results in a polynomial,,,cag by cutting off the momentum sums.

correction to the London equation that is more convenien%J

fﬁr the numerical purposes. To first order in perturbation 5. Nonlocal corrections

theory: '
One can add the nonlocal effect to E46) by replacing

the second term with a nonlocal one as discussed in Ref. 22.

The resulting London equation will be

Cc N o . .
vs:4weps(V>< B+ Wpsvo[(VX B)Xr|V>< B|XrX
+(VX§>y'|VX§Iy'9']>' (12 Be+ £y (Kkk By~ Gu(K.BY=BF(K).  (17)
Sums oveii andj are implicit here.C;;(K) is related to the

Substituting this into Eq(11) and keeping the lowest-order electromagnetic response tenﬁb(rﬁ) defined in Ref. 22 by

terms, the London free-energy density becomes
21\ éohj Lij (k) = Q;j(k)/det Q(k). (19

= 3
3_7) B, [I(VXB)x| The electromagnetic response tensor describes the linear re-
sponse of a superconductor to an applied magnetic field. It
has a particularly simple form in the gauge whé&ré=0

andu is proportional to the vector potentidl At T=0 one
then obtain&

fL=o—| B2+ \3(VXB)?+

8

+|(VXB),%]|, (13)

where\ = \/c?/4me?p, is the zeroth order penetration depth,

éo=vilmAq is the coherence IengtrBozqsO/ZTr)\é is a A 1 2 arcsinhy
characteristic field of the order &f;,, and¢,=mc/e is the Qij(k)=— f dsb id fj—F——=, (19
flux quantum. The first two terms in E(L3) are the ordinary Ao yvl+y
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where y=g-k/2A(s). The expression foQ(k) becomes 60.0 ' ‘ ' '

more complicated in an arbitrary gauge and was discussed by
Millis. ?° In the present context, however, it is easy to verify 58.0 |

that, because of the particular Wé}(l?) enters the London
equation(17), this is gauge invariant as required for an equa- 56.0 | ]
tion containing an observable quantity. B

In the local case we havéij(IZ)=)\(2)5ij, which leads

back to Eq.(16). Taking G, to the right-hand side of Eq. sor
(17), Bi can be obtained by
_ ) 520 | .
BF (k) +Gp(k,Bg
5= BF (0 + Gu(k.BY). 0 | | | |
1+ Eii (K)ki kj 50'oo.o 2.0 4 6.0 8.0 10.0

0
We use this equation to fin8j iteratively for a specific BITI
lattice geometry. Havingi, the free energy can be easily kg, 2. Apex angleg as a function of magnetic fielé at T

calculated using =0. Circles represent the result of the calculation using only the
nonlocal correctiongRef. 29. Squares correspond to the calcula-
- 2 . B . . .
F=Fo+ Z [1+£;j(K)kik; 1B}, (21  tions considering both nonlinear and nonlocal corrections.
k

cent numerical computations within the self-consistent BdG
r]theory°>3 for a d-wave vortex indicate an order parameter
with a relatively weak fourfold anisotropy and an amplitude
relaxing to its bulk value as-1/r? far from the core even at

T=0. Therefore, a more careful consideration is required to
The functional form ofp(F), and therebyF (k), depends formulate a reasonable model for the vortex core in the Lon-

on the detailed form of the order parameter at the center ofon theory. We leave a detailed discussion of the vortex core
the vortex and therefore requires a more fundamental theor{&g a separate papgérand from now on assume the Gaussian
to be evaluated. In the GL limit, there have been some conform of Eq. (22) for our vortex source.

jectures about the profile of the order parameter at the vortex

center and the form of the source tetfn?° Brandf® sug- Ill. NUMERICAL CALCULATIONS

gests a Gaussian form for the source term

where F,, is the free energy due to the nonlinear parts as i
Eq. (14).

C. Vortex source

The numerical calculations are performed by employing

p(r*)=(¢0/277§§)e"2/2'f§, (22 Eq. (20) to calc_ulateBl;.iterativer. At each stepGy is cal-.
. culated numerically using FFT. In our numerical calculation,
which leads to we useho=1400 A, k=\y/&,=68, andy=2. Unlike the
22 Ginzburg-Landau free energy, the London free energy can-
F(k)=e &7 (23 i i i ini
- : not completely determine the vortex lattice by a simple mini-
Clem?’ on the other hand, assumes the order parameter t@ization. Instead, one has to impose a set of source terms
vanish as/\/mf at the center of the vortex core négy, located at the position of the vortices. The functional form of

the source terms does not come from the London theory and
requires more fundamental treatment. The free energy must
then be minimized with respect to the positions of the vorti-
ces (determined by the source termdn general, a two-

whereé, is a variational parameter proportional g. It is
not difficult to show that this form of the order parameter
leads to a squared Lorentzian source t8rm

® &2 dimensional lattice can be determined by four parameters.
p(r)= i} . v s, F(K)=uKy(u), (24) However, a centered rectangular lattice is energetically more
m (&+717) favorable than an oblique lattice. On the other hand, the vor-

where K is the modified Bessel function. In the extreme t€X lattice spacing is fixed by the average magnetic field
type-ll case,gvz\/igo and uz\/igok_ This form of the (B~H away fromH;). Thus we are left with two varia-
source term shows quite a good agreement with the exational parameters, i.e., the lattice orientation with respeat to
solution of the GL equation in the vortex stafeAt low andb directions and the apex angig—the angle between
temperatures, however, the GL equation is not applicablghe two basic vectors of the lattice. We therefore find the
The most commonly assumed form for the order parametevortex lattice geometry by minimizing® in Eq. (21) with
near the vortex core that gives a good fit to the numericatespect to the apex angfg for different orientations of the
solutions of the BAdG equatidhis y(r)=tanh¢/é). The cut-  lattice. AtT=0, the stable orientation of the lattice is aligned
off function resulting from this form of the order parameter with the a and b axes. Figure 2 shows the results of our
fits quite well with the Gaussian form of ER3) up to high  numerical calculations foB as a function of magnetic field.
Fourier modes? It is worth pointing out that none of the The upper curvésquaresis the result of the combined cal-
models for the source terms discussed above consider thilations considering both nonlocal and nonlinear correc-
d-wave nature of the order parameter or other anisotropiegons, i.e., using Eqs(20) and (21). The lower curve
that might be important for the vortex lattice properties. Re-(circles, on the other hand, corresponds to taking into ac-
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FIG. 3. The effective penetration depth as a function of the FIG. 4. Solid line: Magnetic-field distLibution obtained from the
magnetic field. Circles represent the result of the calculations condonlinear-nonlocal London equation wi=5.9 T and\ o= 1400
sidering only the nonlocal effects whereas squares are the result & Dot-dashed line: Field distribution obtained from an ordinary
combined calculations considering both nonlocal and nonlinear eftondon equation on a hexagonal lattice with the s@nand .
fects. Dashed line: Result of the same ordinary London calculation but

with Ay=1850 A.
count only the nonlocal corrections, i.e., neglectifig in
Eq. (21) and G, in Eq. (20). As is clear from Fig. 2, the culations including only the nonlocal correction. The upper
difference between the two cases is small and about 1° or 2€urve corresponds to the result of the calculations using both
Therefore, the phase diagram given in Ref. 22 retains it§onlinear and nonlocal terms. The effect of the nonlinear
validity qualitatively even after adding the nonlinear correc-term to the field dependence b is almost nothing but an
tion to the London free energy. overall shift. Figure 4 exhibits magnetic-field distribution

We also calculate the effective penetration depgh for ~ N(B) defined by
different magnetic fields in almost the same way as it is
calculated fromuSR dat.al.3 In these experiments, the muon n(B")= 1 f d2r 6[B' — B(F)] 27
precession signal obtained from the experiment is fit to a A
signal obtained by Fourier transforming the magnetic-field _
distribution calculated on a hexagonal vortex lattice with theat the average magnetic fieB=5.9 T, withA being the area
same average magnetic field using the ordinary Londo®f a unit cell. The solid line in Fig. 4 represents the
model with some cutoff function. Tha that provides the magnetic-field distribution calculated from the nonlinear-
best fit to the data is considered &g:. Here, we calculate nonlocal London equation. This line shape is then compared
Ao IN a different way(but similar in spiri} using the fact With another line shapédashed lingobtained from an ordi-
that in the ordinary London model, for a hexagonal latticenary London calculation but with a larger valueXf. ©SR

and for a large enough field, experiments also produce the same kind of line shape but
with some additional broadening due to lattice disorder, in-
- o £k teraction of muons with nuclear dipolar fields, and the finite
(B—B)2=AB2=B2), — 55 lifetime of muons. The resolution of the magnetic field as a
kzo (1AK% result of this broadening i8B~10"2 T. The difference be-

o K2 tween the solid line and dashed line in Fig. 4, as well as the

=\ "4B2D, D s (25)  double peak feature of the solid line, is therefore not observ-

kzo K4 able by uSR experiments because of these broadening ef-

o ] N fects. Thus, as far as these line shapes are concerned, it is
Therefore, associating all the field dependencABf Inour  gifficult to distinguish a nonlinear-nonlocal effect from a
calculation with the field dependence of an effective penetragimple shift in the magnetic penetration depth in the ordinary

tion depthA¢«, we can define ¢ by London model. Figure 5 compares the effect of including
— 1 both nonlinear and nonlocal corrections to the London equa-
Ner | AB3 tion with the effect of including only the nonlocal term.
)\_O: ( E) ' (26) Comparing the two line shapes, it is apparent that the effect
of the nonlinear term is small compared to the nonlocal term,

whereABS is the mean squared value of the magnetic fielg?S Was emphasized before.

BO(F)—§obtained by applying the ordinary London model

on a hexagonal lattice with the same average =thd with

the penetration depth,. The ordinary London equation is not adequate to describe
Figure 3 shows the result of our numerical calculation forall the different properties of a vortex lattice in high-su-

\esf USing Eq.(26). The lower curve corresponds to the cal- perconductors, especially the properties resulting from the

IV. DISCUSSION
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0.08 : : able. Thus, it is hard to judge from theSR data about the
linearity of the field dependence although a negative curva-
ture comparable to our result in Fig. 3 is evident from the
1SR data for a detwinned YBCO single crystal in Ref. 16.
At low magnetic fields where the SR data are available, the
relative variation of the effective penetration depth in our
- calculation is about 7% for an increaséoT in the mag-
netic field, which is close to a 7.3% variation obtained from
uSR data for an optimally doped, and a 9.5% variation for a
detwinned underdoped, YBCO single crystal using the same
cutoff function as Eq(23) for fitting calculations:>1®
(i) More importantly, this field dependence »f; has a
predominantly nonlocal origin rather than a nonlinear one,
0.002 contrary to what is generally believed. The contribution of
the nonlinear term to the totdminimized free energy is
FIG. 5. Solid line: Magnetic-field distribution obtained from the @lmost one order of magnitude smaller than the nonlocal
nonlinear-nonlocal London equation. Dashed line: Magnetic-fielsterm. What is more important, however, is the field depen-
distribution obtained from a London equation including only the dence and3 dependence of these terms, not their orders of
additional nonlocal term using the same parameters. magnitude at fixed3 and B. As we mentioned earlier, we
considerB as a variational parameter that has to be fixed by
presence of the superconducting gap nodes or other anisotra¥nimizing the London free energy. As can be inferred from
pies on the Fermi surface. However, as we discussed in thisigs. 2 and 3, the field dependence ghdependence of the
paper and also in our previous publicatidhé?a generalized nonlinear term in the free energy are also smaller than the
London model with appropriate higher-order corrections thanonlocal term. It is worth noting that in the Meissner state, a
take into account these anisotropic effects can still provide énear nonlocal term can never produce field dependence in
fairly simple way to calculate different properties of a vortex the penetration depttas it is usually defined in that state
lattice. and therefore a nonlinear term is necessary for such an
In Ref. 21, we established a generalized London equatiogffect® In the vortex state, however, a nonlocal term can
that could describe the structure of the vortex lattice belowesult in a field-dependent effective penetration depth. To
T. down to intermediate temperatures. Our results in Ref. 2understand this, let us neglect the nonlinear term and assume
were in agreement with the Ginzburg-Landau calculatins. a linear but nonlocal London equation. In that case, the total
At low temperatures, however, the suggested generalizeahagnetic field will be the superposition of the fields around
London model ceases to be valid because of the nonanalyiiRdividual vortices. The magnetic field around an isolated
icities resulting from the presence of the nodes in the supenortex is given by
conducting gap. In the present paper and also in Ref. 22, we
generalized our London approach to describe the nonanalytic 2k Fkek T
and also nonlinear and nonlocal nature ofl-aave vortex B(F)=‘I’of ( )(i , (28)
lattice at low temperatures. Our numerical calculations indi- (2m)? 1+ Lij(k)kik;
cate that at both high-temperature and low-temperature re-

gimes, the nonlocal parts of the free energy play the domigpereq  is the flux quantum anB (k) is the cutoff function

nant role in determining the vortex lattice properties. . S . .
The equilibrium vortex lattice geometry exhibits novel resulting from the source ternty; (k) is defined in Eq(18).

field and temperature dependence owing to the fourfold anEor small values ok, £;;(k)~\2s;; . Since smalk corre-
isotropic effects expressed by the corrections to the LondofPONnds to large, one expects an isotropic field, similar to
equation(Fig. 2; see also Refs. 21 and)2dhe numerical the local London case, far away from the vortex core. For
calculation of the lattice geometry is rather insensitive to thdarge values ok, however,.; ,—(IZ) has strongk dependence
details of the vortex core8.The reason is that the details of with fourfold anisotropy. Thus, the closer to the vortex core,
the magnetic field inside the vortex cores mainly affect thethe more deviation from an isotropic ordinary London single
self-energies of the vortices. In the magnetic fields far belowortex is expected, as is clearly shown in Fig. 6. At low
Hcs, the vortex lattice geometry is mostly determined by themagnetic fields, the vortices are far apart and their magnetic
magnetic interaction energy between vortices which is inserfields overlap in regions far away from their cores. The prop-
sitive to the precise shape of the core. Therefore, our replacerties of the vortex lattice should then be similar to the ordi-
ment of the vortex core by a Gaussian source term should beary London hexagonal lattice. As the magnetic field is in-
adequate for the vortex lattice structure calculations. creased, the vortices come closer to each other. Although the
The effective penetration depity also exhibits field de- profile of the magnetic field around each vortex remains un-
pendence at low temperatures as is illustrated in Fig. 3. Somghanged(the nonlinear term is neglectedhe overlap re-
important points need to be emphasized here. gions will be closer to the vortex cores and will be more
(i) The field dependence af is not linear. The variation affected by the nonlocal term. Therefore, it is conceivable
of ¢ With the magnetic field is faster at lower fielgsgSR  that at large magnetic fields, the vortex lattice properties,
data are only available for a limited range of the magneticsuch as the magnetic-field distribution, will be affected by
field and the uncertainty of the experimental data is noticethe nonlocal term in the London equation. The magnetic field

0.06

n(B)
g

0.02

0.00
-0.001

AB/B
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cutoff [Eq. (23)] and also the cutoff function proposed by
Hao et al?82° The difference between the two cases is sig-
nificant and about 30% for the magnitude Xof; and even
more (for the detwinned samplefor the relative variation

1.00

0.98 1 with respect to the magnetic field. This can explain the im-
o portance of the source term in calculations of the effective
% 0.96 | penetration depth.
) uSR experiments$'*” on NbSg, which is believed to be
a conventional superconductor, also show a field dependence
094 | in the effective penetration depth, although it is much weaker
than what is observed in high; compounds. Since there is
no node in the superconducting gap of these materials, the
0.92 00 0.05 0.0 048 0.20 theory presented in this paper cannot explain this field de-
XA, pendence. However, since the size of the vortex core in these

materials is large and comparable to the vortex lattice spac-
FIG. 6. Magnetic field as a function of the distance from theing for the magnetic fields of experimental interest, it is con-
center of the vortexd direction for an isolated vortex. The solid cgjyable that a significant effect can come from the cores, as
line corresponds to the nonlocal London equation whereas thg pointed out in Ref. 29. Thus, a more careful consideration
dashed line represents an ordinary London calculation with the)f the vortex core might be necessary in order to have a
same value ok. Bo=B(r=0) for the ordinary London vortex.  peter quantitative explanation of the experimental reélts.

near the vortex core is reduced by the nonlocal term, as is
clear in Fig. 6. This is becausélj(IZ)—)\éﬁij is a positive
definite tensor for alk and therefore the denominator of the  we investigated the effect of the superconducting gap
integrand in Eq(28) is always larger than the corresponding nodes on the vortex lattice properties at very low tempera-
ordinary London one. As a result, the magnitudeAd” is  tures by a generalized London approach with higher-order
smaller for the nonlocal case and therefarg: defined by  corrections to the free energy. We found that nonlocal ef-
Eg. (26) tends to be larger. This explains why/\g is  fects, arising from the diverging coherence length near the
always greater than 1 in Fig. 3. Figure 4 exhibits the resemgap node, are predominantly responsible for the unusual be-
blance between a change in the magnetic-field distributiomavior of the vortex lattice geometry and the effective pen-
due to the nonlocal term and due to a shift in the ordinaryetration depth. The nonlinear effects associated with the shift
London penetration depth. The slight difference between thef the quasiparticle excitation spectrum play only a second-
solid and dashed lines in Fig. 4 would be unobservable irary role, resulting in smallbut not negligiblé corrections at
1SR experiments as a result of the broadening effects. Sindew T. Contrary to common belief, the effective penetration
no field dependence due to the nonlocal term is expected idepth, as defined in ASR experiment, is not a linear func-
the Meissner state, the.; as defined here and also #SR  tion of the magnetic field and is mainly affected by the non-
experiments is expected to be conceptually different fromocal effects. This is in marked contrast to the nonlinear
what is usually defined as penetration depth in the Meissnevieissner effectin a d-wave superconductor where the cor-
state, although they are closely related. rection toA ¢ arises strictly from the nonlinear term in the
(iii) The magnitude and field dependence.gf are not so  London free energy and is linear in the field.
sensitive to the apex angl® In other words, a few degrees’
change in the variational paramet@rdoes not modify the
magnetic-field distribution as much as a variation in the av-
erage magnetic field does. We would like to thank P. Stamp, W. Hardy, R. Kiefl, J.
(iv) Calculation of\ is rather sensitive to the form of Sonier, I. Herbut, M. Sigrist, R. Heeb, and Z. &esvicfor
the vortex source term. The importance of the source term iRseful discussions, M. Kohmoto and P. Muzikar for corre-
the calculation ofAB? has already been emphasized by Ya-spondence, and M. Nekovee for numerical advice. This work
ouanc, Dalmas de Réer, and Brandf® In Ref. 13\ is  was supported by NSERC, the CIAR, and NSF Grant No.
obtained by fitting to theuSR data using both a Gaussian DMR-9415549(M.F.).

V. CONCLUSION
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