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Low-temperature behavior of the vortex lattice in unconventional superconductors
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We study the effect of the superconducting gap nodes on the vortex lattice properties of high-temperature
superconductors at very low temperatures. The nonlinear, nonlocal, and nonanalytic nature of this effect is
shown to have measurable consequences for the vortex lattice geometry and the effective penetration depth in
the mixed state as measured by muon-spin-rotation experiments.@S0163-1829~98!03833-8#
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I. INTRODUCTION

The presence of nodes in the superconducting gap is p
ably one of the most significant features of high-Tc super-
conductors that has attracted considerable theoretical an
perimental attention in recent years. Many experiment1,2

have confirmed the existence of gap nodes. These ex
ments most commonly indicate an order parameter w
dx22y2 symmetry.2 The fourfold symmetric nature of th
d-wave order parameter, together with the presence of
nodes on the Fermi surface, opens possibilities for nove
fects to be observable in cuprates. An early theoretical inv
tigation of the weak-field response of adx22y2 supercon-
ductor by Yip and Sauls3 predicted a direction-depende
nonlinear Meissner effect, associated with the quasiclass
shift of the excitation spectrum due to the superflow crea
by the screening currents. Maedaet al.4 reported experimen
tal evidence for such an effect in Bi2Sr2CaCu2Oy , but sub-
sequent experiments failed to confirm their findings and
situation remains controversial. A similar effect was a
studied independently by Volovik.5 In the mixed state, he
predicted a contribution to the residual density of sta
~DOS! proportional to the intervortex distance;AH. Such
contribution was identified in the specific-heat measureme
on YBa2Cu3O72d ~YBCO! by Moler et al.,6 but later this
interpretation was disputed by Ramirez,7 who found evi-
dence for a similar effect in a conventional superconduc
V3Si, and by others.8 Kosztin and Leggett9 predicted that the
nonlocal response at very low temperatures will lead to aT2

dependence of the penetration depth in clean sample
contrast to the linearT dependence obtained from the loc
theory ford-wave materials.

In the mixed state also, it is conceivable that these effe
still present themselves in some measurable properties
as vortex lattice geometry, magnetic-field distribution, e
Neutron-scattering10 and scanning tunnel microscope11 ex-
periments on the high-Tc compound YBCO revealed a vor
tex lattice structure different from the hexagonal—which
expected for an isotropic superconductor. However, this m
PRB 580163-1829/98/58~9!/5848~8!/$15.00
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be explainable by penetration depth anisotropy a
twin-boundary pinning without involving any effect
associated with gap nodes.12 Muon-spin-rotation (mSR!
experiments,13–17 on the other hand, have demonstrated
unusual magnetic-field dependence in their line shapes
the magnetic-field distribution. This has been attributed t
field-dependent penetration depth—which is expected in
Meissner state because of quasiparticle generation at
nodes.3 It was also modeled using an approach based on
Bogoliubov–deGennes~BdG! equations in a square lattic
tight-binding model.18

At intermediate fieldsHc1,H!Hc2 , properties of the
flux lattice are determined primarily by the superfluid r
sponse of the condensate, i.e., by the relation between
supercurrentjW and the superfluid velocityvW s . In conven-
tional isotropic strongly type-II superconductors, this relati
is to a good approximation that of simple proportionality,

jW52ersvW s , ~1!

wherers is a superfluid density. More generally, howeve
this relation can be bothnonlocal and nonlinear. The con-
cept of nonlocal response dates back to the ideas of Pippa19

and is related to the fact that the current response mus
averaged over the finite size of the Cooper pair given by
coherence lengthj0 . In strongly type-II materials the mag
netic field varies on a length scale given by the Lond
penetration depthl0 , which is much larger thanj0 and
therefore nonlocality is typically unimportant unless the
exist strong anisotropies in the electronic band structur20

Nonlinear corrections arise from the change of quasipart
population due to superflow which, to leading order, mo
fies the excitation spectrum by a quasiclassical shift19

Ek5Ek1vW f•vW s , ~2!

where Ek5Aek
21Dk

2 is the BCS energy. Again, in clean
fully gapped conventional superconductors, this effect
typically negligible except when the current approaches
pair breaking value. In the mixed state, this happens only
5848 © 1998 The American Physical Society
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the close vicinity of the vortex cores that occupy a sm
fraction of the total sample volume at fields well belowHc2 .
The situation changes dramatically when the order param
has nodes, such as indx22y2 superconductors. Nonlocal co
rections to Eq.~1! become important for the response
electrons with momenta on the Fermi surface close to
gap nodes, even for strongly type-II materials. This can
understood by realizing that the coherence length, being
versely proportional to the gap,19 becomes very large close t
the node and formally diverges at the nodal point. Th
quite generally, there exists a locus of points on the Fe
surface wherej@l0 and the response becomes highly no
local. This effect had been first discussed by Kosztin a
Leggett9 for the Meissner state and by us22 in the mixed
state. Similarly, the nonlinear corrections become import
in a d-wave superconductor. Equation~2! indicates that finite
areas of gapless excitations appear near the node for
trarily smallvs . This effect has been studied in the Meissn
state,3 but its consequences have remained largely un
plored for the mixed state.

In our previous works,21,22 we discussed the effect o
fourfold anisotropies associated with anonlocalresponse on
the field and temperature dependence of a vortex lat
structure. In Ref. 21, starting from a phenomenologi
Ginzburg-Landau~GL! theory, we derived the leading four
fold anisotropic corrections to the London equation, mak
the usual assumption that the free energy was an ana
functional of the order parameter and field. We showed t
such corrections result in a field-driven continuous transit
from triangular to square vortex lattice. Being derived from
GL theory, this London equation is expected to lose its
lidity at low temperatures and a microscopic theory is nee
to address this regime. In Ref. 22, we investigated the ef
of the nonlocality due to the presence of the nodes in
superconducting gap using a simple weak-coupling mic
scopic model. At high temperatures, a nonlocal correct
similar to the one suggested in Ref. 21 was obtained. At
temperatures, however, a novel singular behavior was fou
directly related to the nodal structure of the gap that co
pletely changes the form of the London equation. This s
gular behavior has profound implications for the structure
the vortex lattice which, as a function of decreasing tempe
ture, undergoes a series of sharp structural transitions
attains a universal limit atT50.

In Ref. 22, we neglected the effect of thenonlinearterms
resulting from the excitation of quasiparticles at the g
nodes, assuming that they are small compared to the no
cal corrections. In this paper, we consider both the nonlin
and the nonlocal terms, assuming that the effects are add
and do not affect each other. We show that, as we claime
Ref. 22, the dominant effect that determines the vortex lat
geometry and the effective penetration depth as define
mSR experiments is the nonlocal corrections, while the n
linear corrections play a secondary role at lowT.

II. GENERALIZED LONDON EQUATION

A. Nonlinear corrections

Let us for the moment neglect any nonlocality effect a
focus on the quasiparticles generated at the gap nodes. E
tation of quasiparticles at the gap nodes produces a cu
ll
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density flowing in the direction opposite to the superflu
velocity—sometimes called backflow. The total current c
then be written as

jW52ersvW s1 jWqp , ~3!

where rs is the superfluid density andvW s is the superfluid
velocity defined by23

vW s5
1

2S 2e

c
AW 2¹f D . ~4!

AW is the vector potential andf is the phase of the orde
parameter. The contribution of the quasiparticles genera
at the nodes to the total current is given by3

jWqp524eNfE
FS

dsvW f~s!E
0

`

dj f @Aj21D~s!21vW f~s!•vW s#,

~5!

whereNf is the density of states at the Fermi surface ands is
a parameter that represents a point on the Fermi surf
D(s) is the superconducting gap which, in general, can h
s-wave,d-wave, or other symmetries. At zero temperatu
Eq. ~5! leads to

jWqp524eNfE dsvW f~s!u~2vW f•vW s2uDu!A~vW f•vW s!
22D2.

~6!

At higher temperatures however, this gives the first te
in the Sommerfeld expansion, which is a good approxim
tion as long asT,T!5Tc(H/H0), whereH0 is of order of
the thermodynamic critical fieldHc .3 The presence of theu
function in Eq.~6! results in excitations only at the nodes
the opposite direction tovW s . Figure 1 illustrates a circula
Fermi surface with ad-wave gap. Quasiparticles are excite
at the nodes marked byvW f 1 andvW f 2 in the opposite direction
to vW s . For a small enoughvs , the excitations stay very clos
to the gap nodes. Therefore, one can linearize the gap f
tion near the nodes, writingD(u).gD0u with D0 the maxi-
mum gap andg defined by

g5
1

D0
F d

du
D~u!G

node

. ~7!

FIG. 1. Circular Fermi surface with adx22y2 gap. Quasiparticles
will be excited at nodes marked byvW f 1 andvW f 2 opposite tovW s .
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The component ofjWqp along thex8 direction, which is diag-
onal to thex andy (a andb) directions~as illustrated in Fig.
1!, is then

j qpx854eNfv fE
2uc

uc du

2p
A~v fvs cosa!22ugD0uu2

5ers

vs
2

v0
cosaucosau5ers

vsx8uvsx8u
v0

. ~8!

a is the angle betweenvs andx8 axis, rs5Nfv f
2 is the su-

perfluid density,v05gD0 /v f is some characteristic velocity
and uc is a cutoff imposed by theu function in Eq. ~6!.
Similarly, they8 component is

j qpy85ers

vsy8uvsy8u
v0

~9!

and the total current thereby becomes

jW52ers@vW s2~vsx8uvsx8ux̂81vsy8uvsy8u ŷ8!/v0#. ~10!

The nonanalytic nature of the effect is evident from th
equation.

It is now possible to write a free energy in such a way t
Eq. ~10! can be obtained by minimization with respect toAW .
Keeping in mind that jW5(c/4p)¹3BW 5(c/4p)¹3¹3AW

and ]/]vW s5(c/e)]/]AW , the corresponding free-energy de
sity can be written as

f 5rsF1

2
vs

22
1

3v0
~ uvsx8u

31uvsy8u
3!G1

B2

8p
. ~11!

In general, it is possible to solve Eq.~10! for vW s in terms
of jW5(c/4p)¹3BW , substitute it into Eq.~11!, and write a
London free energy only in terms ofBW and its derivatives.
However, instead of solving Eq.~10! exactly, we findvW s
perturbatively, assuming that the nonlinear part is mu
smaller than the linear part. This results in a polynom
correction to the London equation that is more conveni
for the numerical purposes. To first order in perturbat
theory:

vW s5
c

4pers
S ¹3BW 1

c

4persv0
@~¹3BW !x8u¹3BW ux8x̂8

1~¹3BW !y8u¹3BW uy8ŷ8# D . ~12!

Substituting this into Eq.~11! and keeping the lowest-orde
terms, the London free-energy density becomes

f L5
1

8p FB21l0
2~¹3BW !21S 2p

3g D j0l0
2

B0
@ u~¹3BW !x8u

3

1u~¹3BW !y8u
3#G , ~13!

wherel05Ac2/4pe2rs is the zeroth order penetration dept
j05v f /pD0 is the coherence length,B0[f0/2pl0

2 is a
characteristic field of the order ofHc1 , andf05pc/e is the
flux quantum. The first two terms in Eq.~13! are the ordinary
t

h
l
t

n

London free-energy terms, while the remaining two ter
constitute the leading nonlinear correction. For magne
fields in thez direction, the London free-energy density b
comes

f L5
1

8pFB21l0
2~¹B!21S 2p

3g D j0l0
2

B0
~ u]x8Bu31u]y8Bu3!G

~14!

and the corresponding London equation will be

2l0
2¹2B1B2S 2p

g D j0l0
2

B0
~]x8

2 Bu]x8Bu1]y8
2 Bu]y8Bu!50.

~15!

A similar London equation is also derived by Zutic and Va
who investigated the effect in the Meissner state.24

The most commonly used form for ad-wave gap is
D(u)5D0cos(2u). In this case, Eq.~7! leads tog52. As
discussed in more detail below, in order to find the magne
field distribution in a vortex lattice, one has to insert a sou
term S jr(rW2rW j ) on the right-hand side of Eq.~15! with rW j
being the position of the vortices in the lattice. The functi
r(rW) takes into account the vanishing of the order parame
at the center of the vortex cores. Numerically, it is mo
convenient to work in Fourier space rather than in real spa
However, because of the nonanalyticity of the nonline
term, the Fourier transformation of this term cannot be do
by simple convolution integrals and numerical techniqu
such as fast Fourier transformation~FFT! are required. Fou-
rier transforming Eq.~15! with a proper source term on th
right-hand side yields

BkW1l0
2k2BkW2Gnl~kW ,BkW !5B̄F~kW !, ~16!

wherekW is a reciprocal lattice wave vector,Gnl is the Fourier
transform of the nonlinear term, andB̄ is the average mag
netic field. The cutoff functionF(kW ) comes from the Fourier
transformation of the source term and removes the div
gences by cutting off the momentum sums.

B. Nonlocal corrections

One can add the nonlocal effect to Eq.~16! by replacing
the second term with a nonlocal one as discussed in Ref.
The resulting London equation will be

BkW1Li j ~kW !kikjBkW2Gnl~kW ,BkW !5B̄F~kW !. ~17!

Sums overi and j are implicit here.Li j (kW ) is related to the
electromagnetic response tensorQ̂(kW ) defined in Ref. 22 by

Li j ~kW !5Qi j ~kW !/det Q̂~kW !. ~18!

The electromagnetic response tensor describes the linea
sponse of a superconductor to an applied magnetic field
has a particularly simple form in the gauge where¹f50
andvW s is proportional to the vector potentialAW . At T50 one
then obtains22

Qi j ~kW !5
1

l0
2 E dsv̂ f i v̂ f j

2 arcsinhy

yA11y2
, ~19!
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where y5vW s•kW /2D(s). The expression forQ̂(kW ) becomes
more complicated in an arbitrary gauge and was discusse
Millis. 25 In the present context, however, it is easy to ver
that, because of the particular wayQ̂(kW ) enters the London
equation~17!, this is gauge invariant as required for an equ
tion containing an observable quantity.

In the local case we haveLi j (kW )5l0
2d i j , which leads

back to Eq.~16!. Taking Gnl to the right-hand side of Eq
~17!, BkW can be obtained by

BkW5
B̄F~kW !1Gnl~kW ,BkW !

11Li j ~kW !kikj

. ~20!

We use this equation to findBkW iteratively for a specific
lattice geometry. HavingBkW , the free energy can be easi
calculated using

F5Fnl1(
kW

@11Li j ~kW !kikj #BkW
2, ~21!

whereFnl is the free energy due to the nonlinear parts as
Eq. ~14!.

C. Vortex source

The functional form ofr(rW), and therebyF(kW ), depends
on the detailed form of the order parameter at the cente
the vortex and therefore requires a more fundamental the
to be evaluated. In the GL limit, there have been some c
jectures about the profile of the order parameter at the vo
center and the form of the source term.26–29 Brandt26 sug-
gests a Gaussian form for the source term

r~rW !5~f0/2pj0
2!e2r 2/2j0

2
, ~22!

which leads to

F~k!5e2j2k2/2. ~23!

Clem,27 on the other hand, assumes the order paramete
vanish asr /Ar 21jv

2 at the center of the vortex core nearTc ,
wherejv is a variational parameter proportional toj0 . It is
not difficult to show that this form of the order paramet
leads to a squared Lorentzian source term32

r~r !5
F0

p

jv
2

~jv
21r 2!2, F~k!5uK1~u!, ~24!

where K1 is the modified Bessel function. In the extrem
type-II case,jv5A2j0 and u5A2j0k. This form of the
source term shows quite a good agreement with the e
solution of the GL equation in the vortex state.30 At low
temperatures, however, the GL equation is not applica
The most commonly assumed form for the order param
near the vortex core that gives a good fit to the numer
solutions of the BdG equation31 is c(r )}tanh(r/j). The cut-
off function resulting from this form of the order paramet
fits quite well with the Gaussian form of Eq.~23! up to high
Fourier modes.32 It is worth pointing out that none of the
models for the source terms discussed above conside
d-wave nature of the order parameter or other anisotro
that might be important for the vortex lattice properties. R
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cent numerical computations within the self-consistent B
theory33 for a d-wave vortex indicate an order paramet
with a relatively weak fourfold anisotropy and an amplitu
relaxing to its bulk value as;1/r 2 far from the core even a
T50. Therefore, a more careful consideration is required
formulate a reasonable model for the vortex core in the L
don theory. We leave a detailed discussion of the vortex c
to a separate paper32 and from now on assume the Gaussi
form of Eq. ~22! for our vortex source.

III. NUMERICAL CALCULATIONS

The numerical calculations are performed by employ
Eq. ~20! to calculateBkW iteratively. At each step,Gnl is cal-
culated numerically using FFT. In our numerical calculatio
we usel051400 Å, k5l0 /j0568, andg52. Unlike the
Ginzburg-Landau free energy, the London free energy c
not completely determine the vortex lattice by a simple mi
mization. Instead, one has to impose a set of source te
located at the position of the vortices. The functional form
the source terms does not come from the London theory
requires more fundamental treatment. The free energy m
then be minimized with respect to the positions of the vo
ces ~determined by the source terms!. In general, a two-
dimensional lattice can be determined by four paramet
However, a centered rectangular lattice is energetically m
favorable than an oblique lattice. On the other hand, the v
tex lattice spacing is fixed by the average magnetic fieldB̄

(B̄'H away fromHc1). Thus we are left with two varia-
tional parameters, i.e., the lattice orientation with respect ta
and b directions and the apex angleb—the angle between
the two basic vectors of the lattice. We therefore find t
vortex lattice geometry by minimizingF in Eq. ~21! with
respect to the apex angleb for different orientations of the
lattice. AtT50, the stable orientation of the lattice is aligne
with the a and b axes. Figure 2 shows the results of o
numerical calculations forb as a function of magnetic field
The upper curve~squares! is the result of the combined ca
culations considering both nonlocal and nonlinear corr
tions, i.e., using Eqs.~20! and ~21!. The lower curve
~circles!, on the other hand, corresponds to taking into

FIG. 2. Apex angleb as a function of magnetic fieldB at T
50. Circles represent the result of the calculation using only
nonlocal corrections~Ref. 22!. Squares correspond to the calcul
tions considering both nonlinear and nonlocal corrections.
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count only the nonlocal corrections, i.e., neglectingFnl in
Eq. ~21! and Gnl in Eq. ~20!. As is clear from Fig. 2, the
difference between the two cases is small and about 1° o
Therefore, the phase diagram given in Ref. 22 retains
validity qualitatively even after adding the nonlinear corre
tion to the London free energy.

We also calculate the effective penetration depthleff for
different magnetic fields in almost the same way as it
calculated frommSR data.13 In these experiments, the muo
precession signal obtained from the experiment is fit to
signal obtained by Fourier transforming the magnetic-fi
distribution calculated on a hexagonal vortex lattice with
same average magnetic field using the ordinary Lon
model with some cutoff function. Thel that provides the
best fit to the data is considered asleff . Here, we calculate
leff in a different way~but similar in spirit! using the fact
that in the ordinary London model, for a hexagonal latt
and for a large enough field,

~B2B̄!2[DB25B̄2(
kWÞ0

e2j2k2

~11l2k2!2

.l24B̄2(
kWÞ0

e2j2k2

k4
}l24. ~25!

Therefore, associating all the field dependence ofDB2 in our
calculation with the field dependence of an effective pene
tion depthleff , we can defineleff by

leff

l0
5S DB0

2

DB2D 1/4

, ~26!

whereDB0
2 is the mean squared value of the magnetic fi

B0(rW)2B̄ obtained by applying the ordinary London mod
on a hexagonal lattice with the same average fieldB̄ and with
the penetration depthl0 .

Figure 3 shows the result of our numerical calculation
leff using Eq.~26!. The lower curve corresponds to the ca

FIG. 3. The effective penetration depth as a function of
magnetic field. Circles represent the result of the calculations c
sidering only the nonlocal effects whereas squares are the resu
combined calculations considering both nonlocal and nonlinear
fects.
°.
ts
-

s

a
d
e
n

-

d

r

culations including only the nonlocal correction. The upp
curve corresponds to the result of the calculations using b
nonlinear and nonlocal terms. The effect of the nonline
term to the field dependence ofleff is almost nothing but an
overall shift. Figure 4 exhibits magnetic-field distributio
n(B) defined by

n~B8!5
1

A E d2rd@B82B~rW !# ~27!

at the average magnetic fieldB̄55.9 T, withA being the area
of a unit cell. The solid line in Fig. 4 represents th
magnetic-field distribution calculated from the nonlinea
nonlocal London equation. This line shape is then compa
with another line shape~dashed line! obtained from an ordi-
nary London calculation but with a larger value ofl0 . mSR
experiments also produce the same kind of line shape
with some additional broadening due to lattice disorder,
teraction of muons with nuclear dipolar fields, and the fin
lifetime of muons. The resolution of the magnetic field as
result of this broadening isdB;1023 T. The difference be-
tween the solid line and dashed line in Fig. 4, as well as
double peak feature of the solid line, is therefore not obse
able by mSR experiments because of these broadening
fects. Thus, as far as these line shapes are concerned,
difficult to distinguish a nonlinear-nonlocal effect from
simple shift in the magnetic penetration depth in the ordin
London model. Figure 5 compares the effect of includi
both nonlinear and nonlocal corrections to the London eq
tion with the effect of including only the nonlocal term
Comparing the two line shapes, it is apparent that the ef
of the nonlinear term is small compared to the nonlocal te
as was emphasized before.

IV. DISCUSSION

The ordinary London equation is not adequate to desc
all the different properties of a vortex lattice in high-Tc su-
perconductors, especially the properties resulting from

e
n-
of
f-

FIG. 4. Solid line: Magnetic-field distribution obtained from th

nonlinear-nonlocal London equation withB̄55.9 T andl051400
Å. Dot-dashed line: Field distribution obtained from an ordina

London equation on a hexagonal lattice with the sameB̄ and l0 .
Dashed line: Result of the same ordinary London calculation
with l051850 Å.
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presence of the superconducting gap nodes or other anis
pies on the Fermi surface. However, as we discussed in
paper and also in our previous publications,21,22a generalized
London model with appropriate higher-order corrections t
take into account these anisotropic effects can still provid
fairly simple way to calculate different properties of a vort
lattice.

In Ref. 21, we established a generalized London equa
that could describe the structure of the vortex lattice be
Tc down to intermediate temperatures. Our results in Ref
were in agreement with the Ginzburg-Landau calculation34

At low temperatures, however, the suggested general
London model ceases to be valid because of the nonan
icities resulting from the presence of the nodes in the su
conducting gap. In the present paper and also in Ref. 22
generalized our London approach to describe the nonana
and also nonlinear and nonlocal nature of ad-wave vortex
lattice at low temperatures. Our numerical calculations in
cate that at both high-temperature and low-temperature
gimes, the nonlocal parts of the free energy play the do
nant role in determining the vortex lattice properties.

The equilibrium vortex lattice geometry exhibits nov
field and temperature dependence owing to the fourfold
isotropic effects expressed by the corrections to the Lon
equation~Fig. 2; see also Refs. 21 and 22!. The numerical
calculation of the lattice geometry is rather insensitive to
details of the vortex cores.35 The reason is that the details o
the magnetic field inside the vortex cores mainly affect
self-energies of the vortices. In the magnetic fields far be
Hc2 , the vortex lattice geometry is mostly determined by t
magnetic interaction energy between vortices which is ins
sitive to the precise shape of the core. Therefore, our repl
ment of the vortex core by a Gaussian source term shoul
adequate for the vortex lattice structure calculations.

The effective penetration depthleff also exhibits field de-
pendence at low temperatures as is illustrated in Fig. 3. S
important points need to be emphasized here.

~i! The field dependence ofleff is not linear. The variation
of leff with the magnetic field is faster at lower fields.mSR
data are only available for a limited range of the magne
field and the uncertainty of the experimental data is noti

FIG. 5. Solid line: Magnetic-field distribution obtained from th
nonlinear-nonlocal London equation. Dashed line: Magnetic-fi
distribution obtained from a London equation including only t
additional nonlocal term using the same parameters.
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able. Thus, it is hard to judge from themSR data about the
linearity of the field dependence although a negative cur
ture comparable to our result in Fig. 3 is evident from t
mSR data for a detwinned YBCO single crystal in Ref. 1
At low magnetic fields where themSR data are available, th
relative variation of the effective penetration depth in o
calculation is about 7% for an increase of 1 T in the mag-
netic field, which is close to a 7.3% variation obtained fro
mSR data for an optimally doped, and a 9.5% variation fo
detwinned underdoped, YBCO single crystal using the sa
cutoff function as Eq.~23! for fitting calculations.13,16

~ii ! More importantly, this field dependence ofleff has a
predominantly nonlocal origin rather than a nonlinear o
contrary to what is generally believed. The contribution
the nonlinear term to the total~minimized! free energy is
almost one order of magnitude smaller than the nonlo
term. What is more important, however, is the field depe
dence andb dependence of these terms, not their orders
magnitude at fixedb and B. As we mentioned earlier, w
considerb as a variational parameter that has to be fixed
minimizing the London free energy. As can be inferred fro
Figs. 2 and 3, the field dependence andb dependence of the
nonlinear term in the free energy are also smaller than
nonlocal term. It is worth noting that in the Meissner state
linear nonlocal term can never produce field dependenc
the penetration depth~as it is usually defined in that state!
and therefore a nonlinear term is necessary for such
effect.3 In the vortex state, however, a nonlocal term c
result in a field-dependent effective penetration depth.
understand this, let us neglect the nonlinear term and ass
a linear but nonlocal London equation. In that case, the t
magnetic field will be the superposition of the fields arou
individual vortices. The magnetic field around an isolat
vortex is given by

B~rW !5F0E d2k

~2p!2

F~k!eikW•rW

11Li j ~kW !kikj

, ~28!

whereF0 is the flux quantum andF(k) is the cutoff function
resulting from the source term.Li j (kW ) is defined in Eq.~18!.
For small values ofk, Li j (kW )'lo

2d i j . Since smallk corre-
sponds to larger , one expects an isotropic field, similar t
the local London case, far away from the vortex core. F
large values ofk, however,Li j (kW ) has strongk dependence
with fourfold anisotropy. Thus, the closer to the vortex co
the more deviation from an isotropic ordinary London sing
vortex is expected, as is clearly shown in Fig. 6. At lo
magnetic fields, the vortices are far apart and their magn
fields overlap in regions far away from their cores. The pro
erties of the vortex lattice should then be similar to the or
nary London hexagonal lattice. As the magnetic field is
creased, the vortices come closer to each other. Although
profile of the magnetic field around each vortex remains
changed~the nonlinear term is neglected!, the overlap re-
gions will be closer to the vortex cores and will be mo
affected by the nonlocal term. Therefore, it is conceiva
that at large magnetic fields, the vortex lattice properti
such as the magnetic-field distribution, will be affected
the nonlocal term in the London equation. The magnetic fi
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near the vortex core is reduced by the nonlocal term, a
clear in Fig. 6. This is becauseLi j (kW )2l0

2d i j is a positive
definite tensor for allk and therefore the denominator of th
integrand in Eq.~28! is always larger than the correspondin
ordinary London one. As a result, the magnitude ofDB2 is
smaller for the nonlocal case and thereforeleff defined by
Eq. ~26! tends to be larger. This explains whyleff /l0 is
always greater than 1 in Fig. 3. Figure 4 exhibits the rese
blance between a change in the magnetic-field distribu
due to the nonlocal term and due to a shift in the ordin
London penetration depth. The slight difference between
solid and dashed lines in Fig. 4 would be unobservable
mSR experiments as a result of the broadening effects. S
no field dependence due to the nonlocal term is expecte
the Meissner state, theleff as defined here and also inmSR
experiments is expected to be conceptually different fr
what is usually defined as penetration depth in the Meiss
state, although they are closely related.

~iii ! The magnitude and field dependence ofleff are not so
sensitive to the apex angleb. In other words, a few degrees
change in the variational parameterb does not modify the
magnetic-field distribution as much as a variation in the
erage magnetic field does.

~iv! Calculation ofleff is rather sensitive to the form o
the vortex source term. The importance of the source term
the calculation ofDB2 has already been emphasized by Y
ouanc, Dalmas de Re´otier, and Brandt.29 In Ref. 13,leff is
obtained by fitting to themSR data using both a Gaussia

FIG. 6. Magnetic field as a function of the distance from t
center of the vortex (a direction! for an isolated vortex. The solid
line corresponds to the nonlocal London equation whereas
dashed line represents an ordinary London calculation with
same value ofl0 . B05B(r 50) for the ordinary London vortex.
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cutoff @Eq. ~23!# and also the cutoff function proposed b
Hao et al.28,29 The difference between the two cases is s
nificant and about 30% for the magnitude ofleff and even
more ~for the detwinned sample! for the relative variation
with respect to the magnetic field. This can explain the i
portance of the source term in calculations of the effect
penetration depth.

mSR experiments13,17 on NbSe2 , which is believed to be
a conventional superconductor, also show a field depende
in the effective penetration depth, although it is much wea
than what is observed in high-Tc compounds. Since there i
no node in the superconducting gap of these materials,
theory presented in this paper cannot explain this field
pendence. However, since the size of the vortex core in th
materials is large and comparable to the vortex lattice sp
ing for the magnetic fields of experimental interest, it is co
ceivable that a significant effect can come from the cores
is pointed out in Ref. 29. Thus, a more careful considerat
of the vortex core might be necessary in order to hav
better quantitative explanation of the experimental result32

V. CONCLUSION

We investigated the effect of the superconducting g
nodes on the vortex lattice properties at very low tempe
tures by a generalized London approach with higher-or
corrections to the free energy. We found that nonlocal
fects, arising from the diverging coherence length near
gap node, are predominantly responsible for the unusual
havior of the vortex lattice geometry and the effective pe
etration depth. The nonlinear effects associated with the s
of the quasiparticle excitation spectrum play only a seco
ary role, resulting in small~but not negligible! corrections at
low T. Contrary to common belief, the effective penetrati
depth, as defined in amSR experiment, is not a linear func
tion of the magnetic field and is mainly affected by the no
local effects. This is in marked contrast to the nonline
Meissner effect3 in a d-wave superconductor where the co
rection toleff arises strictly from the nonlinear term in th
London free energy and is linear in the field.
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