
Problem set 3

1. Magnetic ordering in metals: paramagnetic vs. ferromagnetic ground states: Con-
sider the interacting electron Hamiltonian

H =
∑

k,σ

εkc
†
k,σck,σ +

1

2V

∑

k,k′

∑

q

∑

σ,σ′
v(q)c†k−q,σc

†
k′+q,σ′ck′,σ′ck,σ

with the term q = 0 included. Here, V = Ld is the total volume of the system (in d dimensions),
and the total number of electrons is N .

Consider the following types of possible states:
(i) a ferromagnetic state with all spins up,

|FM〉 =
∏

|k|<kF

c†k,↑|0〉

(ii) a paramagnetic state with half of the spins up and half of the spins down:

|PM〉 =
∏

|k|<kF,σ

c†k,σ|0〉

Find the total energy of the system 〈H〉 for both types of states. Considering a short-range
repulsive potential v(r) = Gδ(r) with Fourier transform v(q) = G, find the critical density nc at
which a transition from a ferromagnetic to a paramagnetic state will occur for d = 1.

If you want to (not marked), repeat the calculations in d = 3, for v(q) = 4π/q2, with the q = 0
term now excluded from the Hamiltonian. Which state is favored at low concentrations in this case,
and why?

2. Equivalence between the Hubbard model at half-filling, and an antiferromagnetic
Heisenberg Hamiltonian: Consider the Hubbard Hamiltonian H = H0 + V , where

H0 =
∑

i6=j
σ

tija
†
iσajσ and V = U

∑

i

a†i↑ai↑a
†
i↓ai↓

Here, tij = t∗ji is the hopping amplitude from site i to site j and U is the on-site Coulomb repulsion
energy. We assume that the sites form a lattice with a total of N sites, and that the total number of
electrons is also N (half-filling).

Consider the perturbation treatment in the limit U >> |tij|. In this case, we have a 2N manifold
of degenerate eigenstates of V , with total energy E0 = 0, of the general form

|σ1, σ2, ..., σN〉 = a†1,σ1
a†2,σ2

...a†N,σN |0〉 (1)

Any other states with N electrons will have at least one site containing two electrons and one site
without any electrons, so their energies are U or higher, and we neglect them. The perturbation
from H0 now lifts the degeneracy between these 2N states with one-electron per site. Second order
Rayleigh-Schrodinger perturbation theory leads to the energy shift

E(2) =
∑

α

〈χ0|H0|χα〉〈χα|H0|χ0〉
E0 − Eα
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Here, |χ0〉 is any ket vector chosen from the unperturbed basis (1), and |χα〉 is a state which has
one site containing both an up and down spin, one site with no electrons, and all other sites singly
occupied. Clearly, Eα = 〈χα|V |χα〉 = U for any |χα〉.

This means that the energy shift E(2) of any singly-occupied state |χ0〉 is the same as that obtained
from an effective Hamiltonian Heff = −H2

0/U .
Prove that the action of Heff on the subspace generated by the singly-occupied vectors of type

(1) is identical to the Heisenberg Hamiltonian

HHeisenberg =
∑

i6=j
Jij

(
~si · ~sj −

1

4

)

where ~si = 1
2

∑
α,β a

†
iα~σαβaiβ is the spin operator for site i, with ~σ being the Pauli matrices. What is

the value of Jij for this equivalence to hold?

3. Mean-field solution for half-filled, 1D Hubbard model: Consider the 1D Hubbard
Hamiltonian

H = −t
∑

i,σ

(
c†i,σci+1,σ + h.c.

)
+ U

∑

i

c†i,↑ci↑c
†
i,↓ci↓

where i = 1, 2, ..., N indexes the sites of the 1D chain (we assume periodic boundary conditions). We
want to find a self-consistent Hartree-Fock solution for the half-filled chain, for which the number of
electrons equals the number of sites, N . We assume N to be an even number.

Using any method you like, find the Hartree-Fock component of the Hamiltonian,

H =
∑

n

Ena
†
nan + ...

where
an =

∑

i,σ

φ∗n(iσ)ciσ; a†n =
∑

i,σ

φn(iσ)c†iσ

etc. You should find that in terms of the spinors

φn(i) =

(
φn(i, ↑)
φn(i, ↓)

)

the self-consistent equations can be written as:

Enφn(i) = −t [φn(i+ 1) + φn(i− 1)] + U

[
Q(i)

2
− ~σ · ~S(i)

]
φn(i)

where σx, σy, σz are the Pauli matrices and

Q(i) = 〈HF |
∑

σ

c†iσciσ|HF 〉 =
N∑

p=1

[
|φp(i, ↑)|2 + |φp(i, ↓)|2

]

is the total number of electrons at site i, in the HF ground-state |HF 〉 =
∏N
p=1 a

†
p|0〉. Similarly,

Sz(i) = 〈HF |∑σ σ/2c
†
iσciσ|HF 〉, and S+(i) = Sx(i) + iSy(i) = 〈HF |c†i↑ci↓|HF 〉 are the expectation

values for total spin (in units of h̄ = 1) at site i.

The self-consistent solution is a long-range order antiferromagnet, with Q(i) = 1 and ~S(i) =
(−1)iS~ez (strictly speaking, you would have to verify this by comparing its energy against a ferro
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and a paramagnetic state – however, you showed in the previous problem that this Hamiltonian is
equivalent to an AFM Heisenberg model, so this “guess” is justified). You can now solve the Hartree-
Fock equations, with good quantum numbers n → (k, σ) (i.e., a spin and a quasi-momentum).
Attention: since there are two different types of sites, you must divide the chain in N/2 unit cells of
two-sites each. Count all the states to make sure you chose the appropriate Brillouin zone with the
appropriate number of distinct states k, given by the cyclic boundary conditions.

Now that you have found Ekσ and φkσ(i), check the self-consistency condition Q(i) = 1 for both
even and odd sites. Similarly, show that the self-consistency condition for the magnitude of the
staggered spin S is

S =
US

N

∑

k

1√
4t2 cos2(ka) + (US)2

where the sum is over the relevant Brillouin zone. In the limit U >> t, show that the self-consistent
solution is S = 1

2
(1− 4t2/U2 + ...) (almost fully polarized).

4. Fermionic coherent states: consider a pair of fermionic operators a, a† with the usual algebra
{a, a†} = 1, a2 = (a†)2 = 0. We define a Grassman algebra with two generators ξ, ξ∗ which satisfy:
ξ2 = (ξ∗)2 = 0, ξξ∗ + ξ∗ξ = 0 (i.e. any generator anticommutes with any other generator). We also
require that ξ and ξ∗ anticommute with a and a†, aξ + ξa = 0, etc.

a) show that the most general functions are of the form f(ξ) = x0 + c1ξ; g(ξ, ξ∗) = c0 + c1ξ +
c2ξ
∗ + c3ξξ

∗. Here the c’s are complex variables.
b) by analogy with the boson coherent states, we define:

|ξ〉 = e−ξa
† |0〉

Using the rules given above, show that a|ξ〉 = ξ|ξ〉. Also show that the overlap of two coherent states
is: 〈ξ|ξ′〉 = eξ

∗ξ′ (again, similar to bosonic result).
c) we define the integration rules:

∫
dξ1 = 0;

∫
dξξ = 1 and

∫
dξ∗1 = 0;

∫
dξ∗ξ∗ = 1. Note:

the order in the integrant is important, the variable must be near the dξ. Example:
∫
dξξ∗ξ =

− ∫ dξξξ∗ = −ξ∗ where we fist used anticommutation to bring ξ near dξ, and then used the second
rule. Also,

∫
dξξ∗ = 0 (first rule). We also have

∫
dξ
∫
dξ∗ = − ∫ dξ∗ ∫ dξ (anticommutation again).

We can now define a δ function: δ(ξ, ξ ′) =
∫
dηe−η(ξ−ξ′). Show that (i) δ(ξ, ξ ′) = −(ξ − ξ′) and

(ii) for any f(ξ), we have
∫
dξ′δ(ξ, ξ′)f(ξ′) = f(ξ) –which is what we expect a δ-function to do.

d) Demonstrate the resolution of identity:
∫
dξ∗

∫
dξe−ξ

∗ξ|ξ〉〈ξ| = 1.
Note: there isn’t anything difficult about all of this – just follow the rules blindly! Generalization

to many fermionic states is hopefully more or less obvious.
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