Problem set 2

1. Draw all distinct proper self-energy diagrams of 3rd order, and find their multiplicities, for disorder averaged Green's functions.
2. Use path integral techniques to find the propagator $\mathcal{G}\left(x t, x_{0} t_{0}\right)$ for a charged particle moving in a uniform electric field, described by $\hat{H}=\frac{\hat{p}^{2}}{2 m}-q E \hat{x}$. Are any approximations needed?
3. In class, we derived the propagator for a free particle to be

$$
\mathcal{G}_{0}\left(x t, x_{0} t_{0}\right)=\sqrt{\frac{m}{2 \pi i \hbar \Delta t}} \exp \left(\frac{i m}{2 \hbar \Delta t}\left(x-x_{0}\right)^{2}\right)
$$

where $\Delta t=t-t_{0}$. Consider now a free particle moving on a finite chain of length L, which has periodic boundary conditions (in other words, a circle).
(a) Find the exact eigenspectrum and eigenvalues and derive an expression for the propagator starting from the definition

$$
\mathcal{G}\left(x t, x_{0} t_{0}\right)=\langle x| \exp \left(-\frac{i}{\hbar} \hat{H}\left(t-t_{0}\right)\right)\left|x_{0}\right\rangle
$$

(b) use path integral techniques to derive the propagator. Hint: in a periodic space there may be more than one way to get from "here" to "there".

You might find this useeful: the Jacobi theta function is defined by

$$
\theta_{3}(z, t)=\sum_{n=-\infty}^{\infty} \exp \left(i \pi t n^{2}+i 2 n z\right)
$$

and satisfies the properties

$$
\begin{gathered}
\theta_{3}(z, t)=\theta_{3}(z+\pi, t) \\
\theta_{3}(z+\pi t, t)=e^{-i \pi t-2 i z} \theta_{3}(z, t) \\
\theta_{3}(z, t)=(-i t)^{\frac{-1}{2}} e^{z^{2} / i \pi t} \theta_{3}\left(\frac{z}{t},-\frac{1}{t}\right)
\end{gathered}
$$

4. Find the ground-state wavefunction for a harmonic oscillator $\langle x \mid n=0\rangle=\phi_{0}(x)$ starting from $a|0\rangle=0$. Write a in terms of \hat{x} and \hat{p}_{x}, and project the equation on $\langle x|$ to get a differential equation for $\phi_{0}(x)$. Solve it and normalize the solution. Note: you can now use the same method starting from $a^{\dagger}|n-1\rangle=\sqrt{n}|n\rangle$ to find all eigenstates $\langle x \mid n\rangle$.
5. Use the same approach as in (4) to find (up to an overall phase shift) $\langle x \mid z\rangle$, starting from the fact that $a|z\rangle=z|z\rangle$. Check your result by computing this wavefunction directly from definition

$$
\left.\langle x \mid z\rangle=e^{\frac{-|z|^{2}}{2}}\langle x| e^{\frac{z}{\sqrt{2 l}}(\hat{x}-i \hat{p} /(m \omega))}\right)|0\rangle
$$

Remember that $T(a)=\exp (i a \hat{p} / \hbar)$ is simply the translation operator: $\langle x| T(a)|\psi\rangle=\psi(x+a)$ (you should be able to check this). Using this result and $\exp \left(-\frac{i}{\hbar} \hat{H} t\right)|z\rangle=\exp (-i \omega t / 2)|z \exp (-i \omega t)\rangle$, check the equations written directly above Eq. (1.64) in the notes.

