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Spectral function of the Holstein polaron at finite temperature
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We compute the Holstein polaron spectral function on a one-dimensional ring using the finite-temperature
T Lanczos method. With increasing T additional features in the spectral function emerge even at temperatures
below the phonon frequency. We observe a substantial spread of the spectral weight towards lower frequencies
and the broadening of the quasiparticle (QP) peak. In the weak-coupling regime the QP peak merges with the
continuum in the high-T limit. In the strong-coupling regime the main features of the low-T spectral function
remain detectable up to the highest T used in our calculations. The effective polaron mass shows a nonmonotonic
behavior as a function of T at small phonon frequency but increases with T at larger frequencies. The self-energy
remains k independent even at elevated T in the frequency range corresponding to the polaron band, while at
higher frequencies it develops a distinguishable k dependence. Analytical expressions for the first few frequency
moments are derived, and they agree well with those extracted from numerical calculations in a wide-T regime.

DOI: 10.1103/PhysRevB.100.094307

I. INTRODUCTION

The Holstein polaron model [1] represents one of
the paradigmatic microscopic models in condensed-matter
physics. Despite its simplicity it is often used to describe a
variety of systems where a particle is coupled to localized
bosonic degrees of freedom. Most often, it is applied to
study the coupling between an electron and quantum lattice
vibrations.

While ground-state properties of the Holstein polaron (HP)
can be calculated with machine precision [2,3], computing
spectral properties via the Green’s function that contains the
most complete information of a dressed quasiparticle is a
considerably more challenging problem. Since early attempts
to obtain the Green’s function for electron-phonon coupled
systems using diagrammatic techniques [4], many numerical
approaches have been developed such as exact diagonaliza-
tion approaches on finite lattices [5–9], cluster perturbation
techniques [10], a variational approach based on an expansion
in coherent states [11], diagrammatic Monte Carlo methods
[12,13], and the momentum-averaged approximation [14–16].

While most approaches were limited to zero-T calcula-
tions, early finite-T results were obtained on a system with
two sites using numerical calculations [17] as well as an
analytical approach based on the continued fraction expansion
[18]. Important progress has been achieved based on the
dynamical mean-field approach that is exact in the infinite-
dimensional limit [19] but lacks resolution in k space because
the method is based on a mapping of the lattice problem onto a
polaronic impurity model. The other significant investigation
of the HP at finite-T is the study of the temperature-dependent
mobility that was computed using numerical analytic contin-

uation combined with a diagrammatic and world line Monte
Carlo method [20].

Despite significant advances in analytical as well as nu-
merical techniques applied to tackle the HP model, the tem-
perature dependence of the HP spectral functions remains
so far unresolved. This is the problem solved in this paper.
Among other open problems that we will address is the tem-
perature dependence of the effective polaron mass for which
early attempts based on Feynman’s path-integral formalism
gave conflicting results [21–23] and the k dependence of the
self-energy at finite T . Our research was also motivated by
recent measurements of the HP spectral function in a surface-
doped layered semiconductor, MoS2, where an unusual two-
dimensional superconductivity has been reported [24].

II. MODEL AND METHOD

We analyze the Holstein model with a single electron in
a one-dimensional chain of size L with periodic boundary
conditions

H = −t0
∑

j

(c†
j c j+1 + H.c.)

− g
∑

j

n̂ j (a
†
j + a j ) + ω0

∑
j

a†
j a j, (1)

where c†
j and a†

j are electron and phonon creation operators

at site j, respectively, and n̂ j = c†
j c j represents the electron

density operator. ω0 denotes a dispersionless optical phonon
frequency, and t0 is the nearest-neighbor hopping amplitude.
We also introduce the dimensionless electron-phonon cou-
pling strength λ = g2/2t0ω0.
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To determine the spectral properties of the HP we have
combined two methods. For the construction of the variational
Hilbert space of the Hamiltonian in Eq. (1) we have used
the approach originally introduced in Refs. [2,3] that led
to numerically exact solutions of the polaron ground and
low-lying excited-state properties. To compute temperature-
dependent quantities we implemented the finite-temperature
Lanczos method (FTLM) as described in Refs. [25,26]. The
former method constructs the variational Hilbert space (VHS)
starting from the single-electron Bloch state c†

k|∅〉 with no
phonons on an infinite lattice. The VHS is then generated by
applying the off-diagonal terms of Hamiltonian (1){∣∣φ(Nh )

k,l

〉} = (Hkin + Hg)Nh c†
k|∅〉, (2)

where Hkin and Hg correspond to the first and the second terms
of the Hamiltonian in Eq. (1), respectively. Parameter Nh

determines the size of the VHS. Typically, we take Nh � L.
The central quantity of this work is the single-electron

spectral function defined via the corresponding retarded
Green’s function

A(ω, k) = −π−1 lim
η→0+

GR(ω + iη, k), (3)

where

GR(ω, k) = Z−1
∫ ∞

0
dt eiωt

∑
n

e−βε0
n
〈
φ0

n

∣∣ck (t )c†
k (0)

∣∣φ0
n

〉
,

(4)
where φ0

n are multiphonon eigenstates of the Hamiltonian
in Eq. (1) with no electron present in the system and ε0

n
are corresponding energies. Z is the partition function, and
ck = 1/

√
L

∑L
j=1 exp(ik j)c j . Finally, we take advantage of

the FTLM method [25], where the trace over all states in a
given sector is replaced by the summation over random states
|r0〉 = ∑N0

n=1 αn|φ0
n〉, where αn are distributed randomly and

A(ω, k) = Z−1
R∑

r=1

N0∑
n=1

M∑
j=1

e−βε0
n 〈r0

∣∣φ0
n

〉〈
φ0

n

∣∣ck|ψ j〉

× 〈ψ j |c†
k |r0〉δ(ω − ε j + ε0

n

)
, (5)

where |ψ j〉 and ε j are Lanczos wave functions and corre-
sponding energies, respectively, in the subspace with one elec-
tron. Lanczos states are generated starting from states c†

k |r0〉.
Furthermore, R represents the number of different random
states, N0 is the size of the Hilbert space in the zero-electron
subspace, and M is the number of Lanczos iterations. We have
used typically M = 500 Lanczos iterations combined with the
Gram-Schmidt orthogonalization procedure to avoid spurious
nonorthogonal states that appear due to round-off errors, in-
troduced by the finite-precision arithmetics when using large
values of M. The Lorentzian form of the δ functions with the
half width at half maximum (HWHM) η was used for graphic
representations of A(k, ω). In order to test our results we have
derived exact expressions for the first few frequency moments
that are free from finite-size effects. Frequency moments ob-
tained from spectral functions agree well with their analytical
counterparts in the whole temperature regime up to T ∼ 2ω0

[16,27]. In Appendix B we further elaborate on the extent of
finite-size effects by comparing spectral functions obtained
from two distinctly different system sizes.

For the presentation of density plots shown later in this
paper we have expanded calculations from using only periodic
boundary conditions towards the so-called twisted boundary
conditions [28–30], representing a magnetic flux penetrating
the ring. This procedure allowed us to continuously connect
discrete k points. In this approach the kinetic energy term in
Eq. (1) is transformed to

Hkin = −t0
∑

j

(c†
j c j+1eiθ + H.c.). (6)

For the system of free electrons such a transformation leads
to the dispersion relation ε(k, θ ) = −2t0 cos(k + θ ), where
θ represents a magnetic flux that penetrates the ring φm =
θL/2π in units of h/e0. In the case of free electrons de-
spite the calculation on a finite ring of size L an exact and
continuous dispersion relation ε(k, θ ) can be obtained since
discrete k points kn = 2πn/L can be smoothly connected
by choosing θ ∈ [0, 2π/L]. Reducing finite-size effects using
twisted boundary conditions was also successfully applied to
interacting systems with finite electron density [28–30].

III. RESULTS

A. Spectral functions

In Fig. 1(a) we present A(ω, k = 0) in the weak electron-
phonon (EP) coupling regime, i.e., at λ = 0.5 for different val-
ues of temperature. At small T = 0.1 our results qualitatively
agree with those obtained using cluster perturbation theory
[10]. A well pronounced quasiparticle (QP) peak is located
at ωQP ∼ −2.5, followed by a smaller peak located around
ω = ωQP + ω0 that represents states composed of a polaron
with an additional one-phonon excitation. It is worth noting
that since the polaron peak is due to a single-polaron state, its
HWHM is given by the artificial damping parameter η. In con-
trast, peaks at higher frequencies possess a finite width since
they represent states in the continuum (for L → ∞). With
increasing T � 0.2 two prominent features become visible.
First, a pronounced structure appears below the QP peak, and
second, the QP peak obtains a finite width, which on a small
system emerges as a series of discrete peaks that materialize in
the vicinity of the QP peak. At temperatures of the order of the
phonon frequency, i.e., around T ∼ ω0 the QP peak becomes
indistinguishable from other parts of the spectra.

In the intermediate-coupling regime at λ = 1, presented
in Fig. 1(b), we observe an interesting detail. At first glance
it seems as if the QP, located at low T at ωQP ∼ −3.0,
shifts towards larger ω with increasing T . However, a closer
inspection reveals that there is a shift of spectral weight from
the QP peak towards a peak that at finite T emerges around
ω ∼ ωQP + 0.1, as revealed in the inset of Fig. 1(b). In the
thermodynamic limit such a process would appear as a gradual
shift of the QP peak towards higher frequencies where a
continuous set of peaks would emerge just above ωQP that
would support the shifted QP spectral weight.

In Fig. 1(c) we show A(ω, k = 0) in the strong-coupling
regime, i.e., at λ = 2, where the QP peak appears at ωQP ∼
−4.4. The most peculiar property in this case is the ap-
pearance of a well-pronounced peak above the QP one at
a frequency that is below the threshold value for the on-
set of the continuum above the polaron band, e.g., at ω ∼
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FIG. 1. A(ω, k = 0) at ω0 = 1.0 computed for λ = 0.5 through
λ = 2.0 from (a) to (c). Temperature is measured in units of the
hopping t0 = 1. In this and all subsequent figures we have used
the following parameters when generating the variational Hilbert
space: Nh = 22, L = 6, η = 0.05, and M = 500. The Hilbert space
spans over N1 ∼ 120 000 states in the subspace of one electron
and N0 = 23 000 different phonon degrees of freedom, taking into
account all translationally invariant states in the zero-electron case.
We have sampled over R = 90 distinct initial random states and all
k sectors. Horizontal red lines with arrows on both sides indicate the
corresponding ω0. Red vertical dashed lines point towards positions
of QP peaks, while the blue dashed line indicates the position of the
EQP peak in (c).

−3.6 < ωQP + ω0, as also indicated in Fig. 1(b). This peak
marks the so-called bound polaron state that appears in the
strong-coupling regime and consists of an excited polaron: a
polaron with an extra phonon excitation that is bound to the
polaron. [2,10,16,31,32]. It emerges below the continuum, and
the width of this excited QP peak (EQP) is at low T = 0.1
also given by η. As the temperature increases, both peaks
obtain a finite width. Additional well-defined peaks emerge at
finite T at ω = ωQP − nω0. In contrast to the weak-coupling
limit where the spectrum becomes featureless at high T, well-
defined peaks persist in the strong-coupling limit up to highest
T . The broadening of the peaks is at high T limited by the
width of the corresponding polaronic bands. This structure
of well-separated peaks that do not broaden with increasing
T bears a similarity to the spectral function of a single-site
problem, presented in Appendix C.

In summary, with increasing T there is a substantial
shift of the spectral weight towards frequencies below the
QP peak, i.e., ω < ωQP. This effect becomes more pro-
nounced with increasing λ. However, the center of the spec-
tra, as defined through the first frequency moment, M1(k) =∫ ∞
−∞ ωA(ω, k)dω = −2t0 cos(k), remains independent of T ,

as further elaborated upon in Sec. III C. Spectral functions at

k = π are displayed in various parameter regimes and elab-
orated in Appendix A. Next, we show in Fig. 2 density plots
representing A(ω, k) in the entire Brillouin zone (BZ) in the
intermediate-coupling regime λ = 1. We focus first on ω0 = 1
and small T/ω0 = 0.1, where the polaron band is clearly
observed, although its QP weight strongly diminishes towards
k = π , in agreement with many previous zero-T approaches
[9,10,14–16]. The incoherent part of the spectra starts at
ωQP + ω0. It is rather intriguing that the incoherent spectra
around the center of the BZ almost replicate the polaron band.
In the case of ω0 = 0.5, as shown in Fig 2(e), there exist
two such well-defined replica bands inside the polaron plus
one- and two-phonon continua. The incoherent part of the
spectra at higher ω mimics rather closely the dispersion of
the free-electron band, with a slightly expanded bandwidth.

To more quantitatively understand the nature of the con-
tinuum above the polaron band we show in Fig. 2(a) with
dashed lines the zero-T polaron dispersion εQP(k) as well as
εQP(k) + ω0. In contrast to the polaron band that precisely fol-
lows εQP(k), the polaron plus one-phonon continuum follows
the shifted dispersion relation only close to the center of the
BZ, resembling a long-lived resonance inside the continuum.
We also note that despite using a relatively small system
size in order to allow for additional phonon excitations, in
the low-T limit A(ω, k) agrees exceptionally well with the
zero-T results from the cluster perturbation theory [10] as
well as the momentum average approximation [16]. In ad-
dition, εQP(k), in this case obtained using twisted boundary
conditions, quantitatively agrees with the dispersion relation
obtained in Refs. [2,10], optimized for zero-T calculations,
which furthermore justifies our approach.

The main focus of the present work is the evolution of
A(ω, k) with T . Already at T/ω0 = 0.3 a noticeable spectral
weight develops just below the polaron band. This part of
the spectrum, located below the polaron ground-state energy,
emerges from the process where an electron annihilates a
thermally excited phonon. This enhanced spectral weight is
predominantly located close to the center of the BZ, where the
polaron has the largest quasiparticle weight. At even higher
T/ω0 � 0.5 a buildup of spectral weight is expected at even
lower frequencies since an electron can annihilate more than
one thermally excited phonon, as clearly seen from Figs. 2(c),
2(d) 2(g), and 2(h). While the overall effect of increasing T
is to smear out the coherent as well as the incoherent parts
of the spectra, the remnants of the QP band remain visible
even at elevated T/ω0 ∼ 1. Nevertheless, there are rather
clear differences between ω0 = 1 and 0.5 spectra, as seen in
Figs. 2(d) and 2(h). For ω0 = 0.5 the incoherent part of the
spectrum merges with the polaron and quasibound polaron
bands to form a structure, resembling the free-electron band
but with a slightly larger bandwidth.

We have also followed the temperature evolution of sub-
tle changes in the curvature of respective polaron bands to
determine the T -dependent effective polaron mass m∗, as
shown in Fig. 2(i) for different values of ω0. In the limit
T → 0 the results agree with zero-T approaches [2,9]. With
increasing T we observe a clear increase of m∗ for ω0 = 1
and 2. In contrast, we find a very weak and nonmonotonic T
dependence of m∗ for small ω0 = 0.5 [33]. This result is in
a qualitative agreement with the nonmonotonic temperature
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FIG. 2. A(ω, k) for λ = 1 vs different values of T/ω0 and ω0 = 1
in (a)–(d) and ω0 = 0.5 in (e)–(h). The same size of the system
was used as in Fig. 1. In addition we have used twisted boundary
conditions to compute A(ω, k) at 25 equally spaced k points in the
interval k ∈ [0, π ] with increments of k = π/24. Note that in all
plots from (a) to (h) the same color coding was used to enable
direct comparison between different cases. In (h) a free-electron
band ε(k) = −2t0 cos(k) is shown using a dashed line as a guide
to the eye. Lorentzian broadening η = 0.05 was used in all cases.
In (i) we display m∗/m0, where m0 = 1/2t0 is the free-electron
mass, obtained from fits to the polaron band using the analytical
form ε f (k) = ∑

n an cos(nk), up to n = 3, shown as dashed lines in
(a)–(c) and (e)–(g).

renormalization of the effective polaron band found on a
two-site system [17].
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FIG. 3. A(ω, k) and �(ω, k) for λ = ω0 = 1 computed at values
of T/ω0 = 0.1 in (a) and (c) and 0.5 in (b) and (d). The same size of
the system was used as in Figs. 1 and 2. In each plot we present 25
curves computed at equally spaced k points in the interval k ∈ [0, π ]
with increments of k = π/24. Lorentzian broadening η = 0.05
was used in all cases, which is also responsible for a small deviation
from zero in (c) for ω � −2.7.

B. Self-energies

In Fig. 3 we show a family of A(ω, k) for a set of k ∈ [0, π ]
values together with the imaginary parts of corresponding
self-energies �′′(ω, k) extracted from the relation GR(ω, k) =
1/[ω − ε(k) − �(ω, k)], where ε(k) = −2t0 cos(k). We focus
mainly on the k dependence of �′′(ω, k) and its evolution with
T . At low T = 0.1 and low ω we observe nearly k independent
�′′(ω, k) [see Fig. 3(c)], which stands in sharp contrast to
the k dependence of A(ω, k), shown in Fig. 3(a). Moreover,
�′′(ω, k) ∼ 0 through the whole polaron band, indicating the
band is perfectly coherent. �′′(ω, k) remains rather small
also through the lower part of the polaron plus one-phonon
continuum; however, it substantially increases towards ω ∼
−1.4, where it also develops a noticeable k dependence in
accordance with the density plot shown in Fig. 2(a). At ele-
vated T = 0.5, �′′(ω, k) remains k independent in roughly the
same ω regime as in the T = 0.1 case. Nevertheless, it shows
substantial deviation from zero at frequencies at and below
the polaron band, indicating the importance of incoherent
processes. The general trend in terms of the temperature de-
pendence, seen in Figs. 3(c) and 3(d), qualitatively agrees with
results based on the dynamical mean-field calculations [19].

C. Frequency moments

The aim of this section is to check the accuracy of our
approach by computing the first three frequency moments
of the spectral function. As already shown in Refs. [16,27],
frequency moments of the single-polaron spectral function
can be obtained analytically using the following relation:

Mm(k) =
∫ ∞

−∞
ωmA(ω, k)dω

= 〈[[[ck, H], H], . . . , H]c†
k〉T , (7)

where 〈· · · 〉T represents the thermal average over zero-
electron states and the number of commutators corresponds
to the order of the frequency moment. Analytical expressions
may be thus obtained for arbitrary moments even at finite T .
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FIG. 4. M2 and M3 for different values of λ vs T for k = 0 in
(a) and π in (b). Open symbols represent moments obtained from
numerical results of A(ω, k), where instead of Lorentzian broadening
we have used a Gaussian one with σ = 0.05 to ensure convergence
of integrals. The lines represent analytical results given by Eqs. (8).
Insets: I (ω) for different values of λ and k = 0 in (a) and π in (b).
There are six curves for each set of λ and k computed at values of
T ∈ [0.2, 0.6, . . . , 1.8, 2.0]. Plots were obtained by straightforward
numerical integrations of A(ω, k), such as presented in Figs. 1 and 5.

Here we list just a few:

M1(k) = ε(k), M2(k) = ε2(k) + g2(2n + 1),

M3(k) = ε3(k) + 2g2ε(k)(2n + 1) + g2ω0, (8)

where ε(k) = −2t0 cos(k) and n = 1/[exp(ω0/T ) − 1] is the
Bose-Einstein distribution function. Note that M1(k) depends
only on the wave vector k. In the insets of Fig. 4 we plot
I (ω) = ∫ ω

−∞ ω′A(ω′, k)dω′ for different λ and T as well as
two values of k = 0 and π . Note that all curves, in accordance
with the first frequency moment M1(k), irrespective of λ and
T , merge into two distinct values ±2 in the large-ω limit.
There is yet another universal consequence of M1 that limits
the temperature evolution of the density of states N (ω) =
1
L

∑
k A(ω, k). The center of the distribution

∫ ∞
−∞ ωN (ω)dω =∑

k ε(k) = 0 remains independent of essentially all parame-
ters of the system, as well as of T .

We now turn to the second and third moments of A(ω, k).
In Figs. 4(a) and 4(b) we plot M2 and M3 at k = 0 and π ,
respectively. We find good agreement with analytical results
given in Eqs. (8) up to T ∼ 2.0, where moments, extracted
from A(ω, k), start deviating from exact results due to a
limited number of phonon excitations in our Hilbert space.
It should be noted that when using M-Lanczos steps, the
Lanczos procedure leads to results of A(ω, k) that have correct
frequency moments up to the Mth moment [25,26], and we
have used M = 500 in our calculations. This may lead to a
conclusion that comparing moments with analytical results

represents a trivial test. However, since the calculation is
performed on a finite system with a limited size L as well
as a limited number of phonon quanta, computed moments
are also influenced by the limited Hilbert space. In contrast,
analytical results in Eqs. (8) are exact in the thermodynamic
limit.

IV. SUMMARY

To conclude, using the finite-T Lanczos method, adapted to
the calculation of the Holstein polaron problem, we computed
the polaron spectral function at finite T in all three EP
coupling regimes, from the weak- to the strong-coupling one.
Even though we had to limit the system size to a relatively
small ring of L = 6 sites in order to allow a sufficient number
of phonon excitations to obtain accurate results at elevated T ,
our results at small T compare well with those in the existing
literature (see, for example, Refs. [10,14,16]). With increasing
T additional features in the spectral function emerge already
at temperatures below the phonon frequency due to processes
where an electron annihilates one or more thermally excited
phonons. Such effects should be taken into account when
analyzing experimental data. More specifically, we observe a
substantial shift of spectral weight towards lower as well as
higher frequencies while the center of the spectra remains un-
changed as it is set by the first frequency moment. Irrespective
of EP coupling, the QP peak broadens with increasing T . In
the weak-coupling regime the QP peak merges with the con-
tinuum around T ∼ ω0 and becomes indistinguishable from
the background. In contrast, in the strong-coupling regime
the whole low-T structure of the spectral function remains
well resolved even at high T . In addition, new peaks that
emerge with increasing T below the frequency of the QP peak,
spaced by nω0, also remain distinguishable up to the highest
T used in our calculations. The effective polaron mass m∗ is
weakly T dependent at small ω0 = 0.5 and shows nonmono-
tonic T dependence. At larger ω0 � 1, m∗ increases with T .
The self-energy remains k independent even at elevated T
in the frequency range corresponding to the polaron band,
while at higher frequencies it develops a distinguishable k
dependence.

ACKNOWLEDGMENTS

J.B. acknowledges the support from program P1-0044 of
the Slovenian Research Agency. J.B. and S.A.T. acknowledge
support from the Center for Integrated Nanotechnologies, a
U.S. Department of Energy, Office of Basic Energy Sciences,
user facility. S.A.T. acknowledges support from LDRD. M.B.
acknowledges funding from the Natural Sciences and En-
gineering Research Council of Canada. M.B. and J.B. also
acknowledge funding from the Stewart Blusson Quantum
Matter Institute. J.B. also acknowledges the hospitality of Dr.
M. Stout.

APPENDIX A: SPECTRAL FUNCTION AT k = π

In Fig. 5 we show A(ω, k = π ) for the same parameters as
in Fig. 1. In all cases QP peaks possess very small QP weights,
in accordance with previous zero-T results [2,10]. In the weak
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FIG. 5. A(ω, k = π ) at ω0 = 1.0 computed for λ = 0.5 through
λ = 2.0 from (a) to (c). The rest is the same as in Fig. 1.

and intermediate EP coupling regime, as shown in Figs. 5(a)
and 5(b), their spectral weights decrease with increasing T
until around T ∼ ω0, where the QP peaks become nearly
indistinguishable from the background. In the strong-coupling
regime well-defined peaks spaced by ω0 emerge below the
QP peak with increasing T , as seen in Fig. 5(c). In contrast
to the k = 0 case we observe only a slight increase of the
spectral weight below QP peaks with increasing T . In order to
gain further insight into the structure of A(ω, k = π ), where
at small λ = 0.5 most of the spectra are located in the vicinity
of ω = 2, we note that in the case of the free electron, there
is a single peak at ω = 2. At small λ and small or finite
temperature, A(ω, k = π ) becomes a (split) peak at ω = 2.
However, in the thermodynamic limit and small λ, the main
peak at ω = 2 has a nonzero width even at T = 0, from
phonon emission. In contrast, for A(ω, k = 0), the main peak
at ω = −2 develops a nonzero width only as temperature
increases, and phonons populate the initial state.

APPENDIX B: FINITE-SIZE ANALYSIS

In Fig. 6 we present results obtained for two different
systems with L = 6 and 12 sites. On a smaller system we
were able to use a larger maximal number of phonon quanta
Nmax = 22; on the latter we were able to use only Nmax = 16.
On a smaller L = 6 system we were able to reach much
larger T ∼ ω0 since the generated Hilbert space allowed for
the maximal number of phonons per site, nmax ∼ 3.7, while
the larger system had only nmax ∼ 1.3. In both cases A(ω, k)
were computed on discrete k points according to periodic
as well as twisted boundary conditions, equivalent to kn,m =
2πn/L + mθ , with n ∈ [−L/2, L/2] and θ = 2π/(MθL); m ∈
[0, Mθ − 1]. For L = 6 and 12 systems we have chosen
M = 8 and 4, respectively. As a result, for each system size

FIG. 6. A(ω, k) for λ = ω0 = 1 for two different system sizes,
L = 6 in (a), (c), and (e) and L = 12 in (b), (d), and (f), and three
different values of T/ω0 as specified in plots. In all cases A(ω, k)
was computed in 25 equally spaced nonequivalent k points in the
interval k ∈ [0, π ] with increments of k = π/24. Note that in all
plots from (a) to (f) the same color coding was used to enable direct
comparison between different cases.

A(ω, k) were computed using Mθ ∗ L/2 + 1 nonequivalent k
points. Despite substantially different system sizes results are
qualitatively identical at low and high T/ω0 = 0.1 and 0.5,
respectively. As an independent check of our method we can
also report excellent agreement with other methods, optimized
for calculation at zero T . More specifically, we found good
agreement of Figs. 6(a) and 6(b) with results of the same
quantity computed at zero T presented in Fig. 4 of Hohenadler
et al. [10] and Fig. 20(b) by Goodvin et al. [16].

Comparing results obtained on two different systems, we
find good agreement in the low-T regime, i.e., for T/ω0 � 0.5
[see Figs. 6(a) and 6(b) as well as 6(c) and 6(d)]. More
substantial differences appear at T/ω0 = 1, where due to the
Bose-Einstein distribution increased nmax � 1 is needed to
properly describe A(ω, k) at higher T . Note that in the L = 12
system nmax is only 1/3 of nmax in the L = 6 system. This
may be the reason that in Fig. 6(f) an unexpected (unphysi-
cal) increase of the spectral weight at ω ∼ 0 is observed in
addition to a much smaller spectral weight below the polaron
band in comparison to Fig. 6(e). This was the main reason
to present our results on a smaller L = 6 sites system that
allowed reliable results up to a higher T/ω0 = 1.
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FIG. 7. A(ω) obtained from Eqs. (C4) and (C5) using g = 2 and
ω0 = 1, where sums were taken up to n, m = 30. Note that the
temperatures are given in units of ω0. Lorentzian broadening was
used with η = 0.05.

APPENDIX C: SINGLE-SITE SPECTRAL FUNCTION

We first note that an expression for the single-site Holstein
polaron spectral function at finite temperature was given in
Ref. [19]. We present here a detailed derivation.

We start with the single-site problem described by the
Hamiltonian

H1 = gn̂(a† + a) + ω0a†a, (C1)

where n̂ represents the electron occupation number oper-
ator. In the case when n = 1 solutions are well-known
coherent states |g̃〉, g̃ = g/ω0, given by the condition

(a + g̃)|g̃〉 = 0,

|0̃〉 = |g̃〉 = e−g̃2/2
∞∑

m=0

(−g̃)m

√
m!

|m〉, (C2)

with energy ε
(1)
0̃

= −ω0g̃2, while excited coherent states are
given by

|m̃〉 = (a† + g̃)m

√
m!

|0̃〉, (C3)

with corresponding energies ε (1)
m = −ω0g̃2 + mω0. The spec-

tral function A(ω) obtained from Eqs. (3) and (4) of the
text manuscript simplified to a single-site problem is then
given by

A(ω) = Z−1
∞∑

n,m=0

e−βω0n|〈m̃|n〉|2δ[ω + ω0(g̃2 − m + n)],

(C4)

where 〈m̃|n〉 represents the projection of the excited coherent
state |m̃〉 onto a phonon state |n〉, given by

〈m̃|n〉 = e−g̃2/2
min(m,n)∑

l=0

(−1)n−l g̃n+m−l

√
m!n!

l!(m − l )!(n − l )!
.

(C5)
Equations (C4) and (C5) in the limit T → 0 simplify to a well-
known result [34]:

A(ω) = e−g̃2
∞∑

m=0

g̃2m

m!
δ[ω + ω0(g̃2 − m)]. (C6)

In Fig. 7 we present A(ω) for the single-site problem.
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