
 

Extrapolating Quantum Observables with Machine Learning: Inferring Multiple Phase
Transitions from Properties of a Single Phase

Rodrigo A. Vargas-Hernández,1 John Sous,1,2,3 Mona Berciu,2,3 and Roman V. Krems1
1Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

2Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
3Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4

(Received 21 March 2018; revised manuscript received 24 June 2018; published 17 December 2018)

We present a machine-learning method for predicting sharp transitions in a Hamiltonian phase diagram
by extrapolating the properties of quantum systems. The method is based on Gaussian process regression
with a combination of kernels chosen through an iterative procedure maximizing the predicting power of
the kernels. The method is capable of extrapolating across the transition lines. The calculations within a
given phase can be used to predict not only the closest sharp transition but also a transition removed from
the available data by a separate phase. This makes the present method particularly valuable for searching
phase transitions in the parts of the parameter space that cannot be probed experimentally or theoretically.
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It is very common in quantum physics to encounter a
problem with the Hamiltonian

H ¼ H0 þ αH1 þ βH2 ð1Þ

whose eigenspectrum can be readily computed or measured
in certain limits of α and β, e.g., at α ¼ 0 or at α ≫ β, but
not at arbitrary values of α and β. For such problems, it is
necessary to interpolate the properties of the quantum
system between the known limits or extrapolate from a
known limit. Both the interpolation and the extrapolation
become exceedingly complex if the system properties
undergo sharp transitions at some values of α and/or β.
Such sharp transitions separate the phases of the
Hamiltonian (1). Because the wave functions of the
quantum system are drastically different in the different
phases [1], an extrapolation of quantum properties across
phase transition lines is generally considered unfeasible.
Here, we challenge this premise. We note that, while

certain properties of quantum systems undergo a sharp
change at a phase transition, other properties evolve
smoothly through the transition. Using the example of
three different lattice models, we show that the evolution of
such properties within a given phase contains information
about the transitions and the same properties beyond the
transitions. We present a machine-learning method that
can be trained by the evolution of such properties in a
given phase to predict the sharp transitions and the
properties of the quantum system in other phases by
extrapolation. The importance of this result is clear.
Characterizing quantum phase transitions embodied in
model Hamiltonians is one of the foremost goals of
quantum condensed-matter physics. Our work illustrates
the possibility of predicting transitions at Hamiltonian

parameters, where obtaining the solutions of the
Schrödinger equation may not be feasible.
The application of machine-learning (ML) tools for

solving problems in condensed-matter physics has recently
become popular [2–34]. In all of these applications, ML is
used as an efficient method to solve one of three problems:
interpolation, classification, or clustering. Interpolation
amounts to fitting multidimensional functions or func-
tionals, whereas classification and clustering are used to
separate physical data by properties. For example, ML
can be used to identify quantum phases of lattice spin
Hamiltonians [5,6,12,16,19,23,24]. However, in order to
identify a quantum phase transition by interpolation and/or
classification, the aforementioned ML models must be
trained (fed on input) by the data describing both phases
on both sides of the transition. The distinct feature of the
present work is a ML method that requires information
from only one phase and extrapolates the properties of
lattice models to and across the transitions. To illustrate
the method, we consider four different problems: lattice
polaron models with zero, one, and two sharp transitions
and the mean-field Heisenberg model with a critical
temperature. In all cases, we show that the phase transitions
(or lack thereof) can be accurately identified.
We first consider a generalized lattice polaron model

describing an electron in a one-dimensional lattice with
N → ∞ sites coupled to a phonon field:

H ¼
X
k

ϵkc
†
kck þ

X
q

ωqb
†
qbq þ Ve-ph; ð2Þ

where ck and bq are the annihilation operators for the
electron with momentum k and phonons with momentum
q, ϵk ¼ 2t cosðkÞ and ωq ¼ ω ¼ const are the electron and
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phonon dispersions, respectively, and Ve-ph is the electron-
phonon coupling. We choose Ve-ph to be a combination
of two qualitatively different terms Ve-ph ¼ αH1 þ βH2,
where

H1¼
X
k;q

2iffiffiffiffi
N

p ½sinðkþqÞ−sinðkÞ�c†kþqckðb†−qþbqÞ ð3Þ

describes the Su-Schrieffer-Heeger (SSH) [35] electron-
phonon coupling and

H2 ¼
X
k;q

2iffiffiffiffi
N

p sinðqÞc†kþqckðb†−q þ bqÞ ð4Þ

is the breathing-mode model [36]. The lowest energy
eigenstate of the model (2) represents polarons known to
exhibit two sharp transitions as the ratio α=β increases from
zero to large values [37]. At α ¼ 0, the model (2) describes
breathing-mode polarons, which have no sharp transitions
[38]. At β ¼ 0, the model (2) describes SSH polarons,
which exhibit one sharp transition in the polaron phase
diagram [35]. At these transitions, the ground state
momentum and the effective mass of the polaron change
sharply.
Method.—We use Gaussian process (GP) regression as

the prediction method [39], described in detail in
Supplemental Material [40]. The goal of the prediction
is to infer an unknown function fð·Þ given n inputs xi and
outputs yi. The assumption is that yi ¼ fðxiÞ. The function
f is generally multidimensional, so xi is a vector.
GPs do not infer a single function fð·Þ but rather a

distribution over functions, pðfjX; yÞ, where X is a vector
of all known xi and y is a vector of the corresponding
values yi. This distribution is assumed to be normal. The
joint Gaussian distribution of random variables fðxiÞ is
characterized by a mean μðxÞ and a covariance matrix
Kð·; ·Þ. The matrix elements of the covariance Ki;j are
specified by a kernel function kðxi;xjÞ that quantifies the
similarity relation between the properties of the system at
two points xi and xj in the multidimensional space.
Prediction at x� is done by computing the conditional

distribution of fðx�Þ given y and X. The mean of the
conditional distribution is [39]

μðx�Þ ¼
Xn
i

dðx�;xiÞyi ¼
Xn
i

αikðx�;xiÞ; ð5Þ

where α ¼ K−1y and d ¼ Kðx�;XÞ⊤KðX;XÞ−1. The pre-
dicted mean μðx�Þ can be viewed as a linear combination of
the training data yi or as a linear combination of the kernels
connecting all training points xi and the point x�, where the
prediction is made. In order to train a GP model, one must
choose an analytical representation for the kernel function.

To solve the interpolation problem, one typically uses a
simple form for the kernel. In the limit of large n, any
simple kernel function produces accurate interpolation
results [39]. For example, k can be approximated by any
of the following functions:

kLINðxi;xjÞ ¼ x⊤
i xj þ α; ð6Þ

kRBFðxi;xjÞ ¼ exp

�
−
1

2
r2ðxi;xjÞ

�
; ð7Þ

kMATðxi;xjÞ ¼
�
1þ

ffiffiffi
5

p
rðxi;xjÞ þ

5

3
r2ðxi;xjÞ

�

× exp ½−
ffiffiffi
5

p
rðxi;xjÞ�; ð8Þ

kRQðxi;xjÞ ¼
�
1þ jxi − xjj2

2αl2

�−α
; ð9Þ

where r2ðxi;xjÞ ¼ ðxi − xjÞ⊤ ×M × ðxi − xjÞ and M is a
diagonal matrix with different length scales ld for each
dimension of xi. The length-scale parameters ld, l, and α
are the free parameters. We describe them collectively by θ.
A GP is trained by finding the estimate of θ (denoted by θ̂)
that maximizes the logarithm of the marginal likelihood
function:

logpðyjX; θ;MiÞ ¼ −
1

2
y⊤K−1y −

1

2
log jKj − n

2
log 2π:

ð10Þ

For the extrapolation problem, the prediction produced
by Eq. (5) is clearly sensitive to the particular choice of the
kernel function. While different interpolation problems can
be solved with the same mathematical form of the kernel
function, different extrapolation problems generally require
different kernels. The key for successful extrapolation is
thus to find the appropriate kernel function. Because we
aim to solve a variety of different problems with varying
underlying physics, the procedure for constructing the
kernel must be fully automated and independent of the
particular problem under consideration.
Here, we follow Refs. [47,48] to build a prediction

method based on a combination of products of different
kernels (6)–(9). To select the best combination, we use the
Bayesian information criterion (BIC) [49],

BICðMiÞ ¼ logpðyjX; θ̂;MiÞ −
1

2
jMij log n; ð11Þ

where jMij is the number of kernel parameters of
kernel Mi. Here, pðyjX; θ̂;MiÞ is the marginal likelihood
for an optimized kernel θ̂. It is impossible to train and
try models with all possible combinations of kernels. We
use an iterative procedure schematically depicted in Fig. 1.
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We begin by training a GP model with each of the kernels
(6)–(9). These kernels have one (LIN), d (RBF and MAT),
and two (RQ) free parameters [50]. The algorithm then
selects the kernel—denoted k0—that leads to the model
with the highest BIC and combines k0ð·; ·Þ with each of
the original kernels ki defined by Eqs. (6)–(9). The kernels
are combined as products k0ð·; ·Þ × kið·; ·Þ and additions
k0ð·; ·Þ þ kið·; ·Þ. Each kernel in the combination is scaled
by a constant factor, which introduces another free param-
eter for the product or two parameters for the sum. For each
of the possible combinations, a new GP model is con-
structed and a BIC is computed. The kernel yielding the
highest BIC is then used as a new base kernel k0, and the
procedure is iterated. This fully automated algorithm is
applied here to four different problems, yielding physical
extrapolation results, thus showing that Eq. (11) can be

used as a criterion for building prediction models capable
of physical extrapolation.
Results.—All GP models are trained by the dispersions

EðKÞ, where E is the polaron energy and K is the polaron
momentum. These dispersions are calculated for infinite
lattices using the momentum average (MA) approach from
previous work [37,51–55]. The models are trained to
predict the polaron energy as a function of K and the
Hamiltonian parameters α, β, and ω. The vectors xi are thus
xi ⇒ fK;ω; α; βg, while fð·Þ is the polaron energy. Once
the models are trained, we numerically compute the ground
state momentum KGS and the polaron effective mass from
the predicted dispersions [56]. Note that we always train all
models by the polaron dispersions in one phase and the
models have no a priori information about the existence of
another phase(s). The transition is encoded in the evolution
of the polaron band as a function of x. All results are in
units of t.
Figure 2 shows the predictions for the pure SSH polaron

model (β ¼ 0, one sharp transition in the polaron phase
diagram). The vertical lines show where the training points
end and the extrapolation begins. As can be seen, the GP
models predict accurately the location of the transition and
can be used for quantitative extrapolation in a wide range
of the Hamiltonian parameters to strong electron-phonon
coupling. All models, including the ones trained by
quantum calculations far removed from the transition point,
predict accurately the location of the transition. As the
coupling to phonons increases, the polaron develops a
phonon-mediated next-nearest-neighbor hopping term:
EðKÞ ¼ −2t cosðKÞ þ 2t2ðλSSHÞ cosð2KÞ, where t2ðλSSHÞ
is a function of λSSH [35]. The transition occurs when the

FIG. 1. Schematic diagram of the kernel construction method
employed to develop a Gaussian process model with extrapola-
tion power. At each iteration, the kernel with the highest Bayesian
information criterion (11) is selected. The labels in the boxes
correspond to the kernel functions defined in (6)–(9).

FIG. 2. Extrapolation of the polaron ground state momentum KGS (left) and effective mass m� (right) across the sharp transition at
λSSH ¼ 2α2=tℏω ≈ 0.6 for the model (2) with β ¼ 0. The black solid curves are the accurate quantum calculations. The symbols are the
predictions of the GP models trained by the full polaron dispersions EðKÞ at values of λSSH ≤ λ�, where λ� is shown by the vertical lines
(solid for circles, dashed for triangles, and dot-dashed for pentagons). The GP models are used for interpolation (open symbols) and
extrapolation (full symbols). The algorithm of Fig. 1 yields the kernel kRQ × kLIN þ kRBF for the GP models represented by the triangles
and pentagons and kRQ × kLIN × kMAT for the circles. Left inset: The polaron dispersions used as input (dashed curves) and predicted by
the GP model (solid curves) with λ� ¼ 0.5 with the triangles showing the position of the dispersion minimum. Right inset: The polaron
dispersions predicted by the GP model trained with λ� ¼ 0.6 (solid curves) in comparison with the quantum calculations (symbols).
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second term dominates. Figure 2 shows that the GP models
trained using the algorithm of Fig. 1 extrapolate accurately
this evolution of the polaron energy.
The power of this method is better illustrated with the

example of the mixed breathing-mode–SSH model (α ≠ 0,
β ≠ 0) with three phases [37]. The dots in Fig. 3 represent
the points of the phase diagram used for training the
GP model with the optimized kernels. Remarkably, the
model trained by the polaron dispersions all entirely in
one phase predicts both transitions. The location of the
first transition is predicted quantitatively. The second
transition is predicted qualitatively. If the model is trained
by the polaron properties in two side phases and the
prediction is made by extrapolation to low values of λSSH
(lower panel in Fig. 3), both transition lines are predicted
quantitatively.

As a third independent test, we applied the method
to the Holstein polaron model defined by Eq. (2) with
Ve-ph ¼ const

P
k;qc

†
kþqckðb†−q þ bqÞ. Such a model is

known to have no transitions [38]. We find that the method
presented here can extrapolate accurately the polaron
dispersions to a wide range of the Hamiltonian parameters
and yields predictions that exhibit no sign of transitions.
Since it is often not feasible to explore the entire phase
diagram with rigorous quantum calculations, especially for
models with many independent parameters, predicting the
absence of transitions is as important as locating different
phases.
Finally, we demonstrate the method on an analytically

soluble model. We consider the Heisenberg model
H ¼ −ðJ=2ÞPi;jS⃗i:S⃗j in the nearest-neighbor approxima-
tion. Employing a mean-field description, the resulting free
energy density at temperature T is [1,57,58]

fðT;mÞ ≈ 1

2

�
1 −

Tc

T

�
m2 þ 1

12

�
Tc

T

�
3

m4; ð12Þ

where m is the magnetization and Tc ¼ 1.25J the critical
temperature of the phase transition. T > Tc corresponds
to the paramagnetic phase, while T < Tc is the ferromag-
netic phase.
We train GP models by the results of Eq. (12) in the

paramagnetic phase far away from Tc (shaded region in the
inset in Fig. 4). We then extrapolate the function fðT;mÞ
across the critical temperature and compute the order
parameter m0 which minimizes fðT;mÞ. Figure 4 demon-
strates thatm0 thus predicted can be accurately extrapolated
across Tc and far into a different phase. This demonstrates
again the general idea behind the technique developed here:

FIG. 3. The polaron ground state momentum KGS for the mixed
model (2) as a function of β=α for λSSH ¼ 2α2=tℏω. The color
map is the prediction of the GP models. The curves are the
quantum calculations from Ref. [37]. The models are trained by
the polaron dispersions at the parameter values indicated by
the white dots. No other information is used. The optimized
kernel combination is ðkMAT þ kRBFÞ × kLIN (upper panel) and
ðkMAT × kLIN þ kRBFÞ × kLIN (lower panel).

FIG. 4. GP prediction (solid curves) of the free energy density
fðT;mÞ of the mean-field Heisenberg model produced by
Eq. (12) (dashed curves). Inset: The order parameter m0 that
minimizes fðT;mÞ: symbols, GP predictions; dashed curve,
from Eq. (12). The GP models are trained with 330 points at
1.47 < T < 2.08 (shaded area) and −1.25 < m < 1.25.
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useML to predict the evolution of continuous functions that
encodes phase transitions.
It is important to point out that the iterative kernel

selection algorithm of Fig. 1 must be analyzed before the
present method is used for the quantitative extrapolation.
As the iterations continue, the kernels become more
complex, more prone to overfitting, and more difficult to
optimize. The quantitative accuracy of the prediction may,
therefore, decrease. Supplemental Material [40] illustrates
the convergence to Figs. 2–4 with the kernel optimization
levels and also the increase of the prediction error after a
certain number of levels. To prevent this problem, we stop
the kernel optimization when the prediction error is
minimal, as explained in Supplemental Material [40].
We emphasize that this does not affect the prediction of
the transitions: Once a certain level of Fig. 1 is reached,
kernels from the subsequent optimization levels predict the
transitions. We have confirmed this for all the results
(Figs. 2–4) presented here. Thus, if the goal is to predict
the presence or absence of transitions, this method can be
used without validation. It is sufficient to check that
subsequent levels of the kernel optimization do not produce
or eliminate transitions. In order to predict quantitatively
the quantum properties by extrapolation, the training data
must be divided into the training and validation sets. The
models must then be trained with the training set and the
error calculated with the validation set. The kernel opti-
mization must then be stopped, when the error is minimal.
This is a common approach to prevent the overfitting
problem in ML with artificial neural networks.
Summary.—We have presented a powerful method for

predicting sharp transitions in Hamiltonian phase diagrams
by extrapolating the properties of quantum systems. The
method is based on Gaussian process regression with a
combination of kernels chosen through an iterative pro-
cedure maximizing the predicting power of the kernel. The
model thus obtained captures the change of the quantum
properties as the system approaches the transition, allowing
the extrapolation of the physical properties, even across
sharp transition lines.
We believe that the present work is the first example of

the application of ML for the extrapolation of physical
observables for quantum systems. We have demonstrated
that the method is capable of using the properties of the
quantum system within a given phase to predict not only
the closest sharp transition but also a transition removed
from the training points by a separate phase. This makes the
present method particularly valuable for searching phase
transitions in the parts of the parameter space that cannot
be probed experimentally or theoretically. Given that the
training of the models and the predictions do not present
any numerical difficulty [59], the present method can also
be used to guide rigorous theory or experiments in search
for phase transitions. Finally, we must note that, although
the present extrapolation method works well for all four

problems considered, we cannot prove that it is accurate for
an arbitrary system so the predictions must always be
validated, as is common in machine learning.
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