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Type-II Dirac semimetal stabilized by electron-
phonon coupling
Mirko M. Möller1,2, George A. Sawatzky1,2, Marcel Franz1,2 & Mona Berciu1,2

There is major interest, in condensed matter physics, in understanding the role of topology:

remarkable progress has been made in classifying topological properties of non-interacting

electrons, and on understanding the interplay between topology and electron–electron

interactions. We extend such studies to interactions with the lattice, and predict non-trivial

topological effects in infinitely long-lived polaron bands. Specifically, for a two-dimensional

many-band model with realistic electron–phonon coupling, we verify that sharp level cross-

ings are possible for polaron eigenstates, and prove that they are responsible for a novel type

of sharp transition in the ground state of the polaron that can occur at a fixed momentum.

Furthermore, they result in the appearance of Dirac cones stabilized by electron–phonon

coupling. Thus, electron–phonon coupling opens an avenue to create and control Dirac and

Weyl semimetals.

DOI: 10.1038/s41467-017-02442-y OPEN

1 Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada. 2 Stewart Blusson Quantum Matter Institute,
University of British Columbia, Vancouver, BC V6T 1Z4, Canada. Correspondence and requests for materials should be addressed to
M.M.Möl. (email: moellerm@phas.ubc.ca) or to M.B. (email: berciu@phas.ubc.ca)

NATURE COMMUNICATIONS |8:  2267 |DOI: 10.1038/s41467-017-02442-y |www.nature.com/naturecommunications 1

12
34

56
78

9
0

mailto:moellerm@phas.ubc.ca
mailto:berciu@phas.ubc.ca
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The study of the role played by topology in systems of non-
interacting electrons, and in systems with electron–electron
interactions, is by now a well-established and robust area of

research1–4. One recent development is the prediction5 and
experimental observation6,7 of Type II Dirac/Weyl semimetals.
They differ from the ordinary type I Dirac/Weyl cones found, e.g.,
in graphene, in that they are strongly tilted5 and have no analog
in high-energy physics, because the corresponding particle would
break Lorentz invariance. A consequence of the strong tilting is
that electron and hole pockets coexist at the Fermi energy and
touch at the Dirac/Weyl point, which leads to many interesting
properties, e.g., a strong signature in the quantum oscillations of
the density of states8.

The study of the interplay between topological properties and
electron-lattice interactions has only very recently started to
receive attention. So far, a few issues have been addressed; one is
the effect of the topological order of the electronic sector on the
properties of phonons, and whether it is possible to experimen-
tally identify a topological state by measuring phonon linewidths
or changes in the infrared reflectivity, Raman scattering, etc.9–12.
Another issue is whether coupling to thermal phonons present at
high temperatures can enhance the stability of an electronic
topological phase; here there is some disagreement between
results obtained from model Hamiltonians13–18 and from first-
principle calculations19,20. Density functional theory studies have
also asked whether lattice distorsions due to applied pressure or
to excitation of specific phonon modes (e.g., by ultrafast laser
spectroscopy) can favor a topological phase due to the corre-
sponding change in the lattice symmetry group21,22. Throughout,
the electron–phonon coupling is assumed to be weak and its
vertex depends only the phonon momentum q, but not on the
quasiparticle momentum k. Physically, this means that the cou-
pling to the lattice modifies the on-site energy of electrons, but
not their hopping integrals.

In weakly doped systems, sufficiently strong electron–phonon
coupling significanly renormalizes the properties of the quasi-
particle and leads to the formation of a polaron, i.e., the bare
particle dressed by a phonon cloud. The single-particle spectrum
consists of one or more coherent polaron bands at low energies
(the lowest eigenstates), and a broad continuum extending over a
wide range of higher energies, in the whole Brillouin zone (BZ).
The latter contains finite lifetime eigenstates, due to scattering of
the quasiparticle on phonons not bound to the cloud. In previous
work addressing electron–phonon coupling, the topologically
interesting features (and the Fermi energy) fall within this con-
tinuum. What are the consequences of the finite lifetimes on
topological properties is still an entirely open question. One
available result, in the context of graphene, is that the Dirac point
survives such smearing even for very strong electron–phonon
coupling, because the vanishing density of states in the bare
particle spectrum inhibits scattering, and thus lifetimes close to
the Dirac point remain long23.

When the Fermi energy lies within the infinitely long-lived
polaron bands one may be tempted to think of the polarons as
being just like bare particles (with renormalized dispersion) and
therefore inheriting their properties, but the presence of the
phonon clouds does have non-trivial consequences. In models
like Holstein24 and Fröhlich25,26, where the electron–phonon
coupling comes from the modulation of the on-site energy of the
particle, additional quasiparticle bands are pushed below the
continuum at strong-enough coupling. Apart from the ground
state polaron, the most studied excited state is the so-called sec-
ond bound state in the Holstein model27,28. It is now well
understood that the fast crossover into the strongly-coupled,
small polaron regime, is due to level repulsion between this state
and the low-energy polaron29–32. As shown in ref. 33, only

smooth crossovers are allowed in such models, suggesting that
quasiparticle states never cross each other because the phonon
clouds always mediate some degree of level repulsion, so the
existence of Dirac cones is impossible. Very recently, true tran-
sitions have been found in models where the electron–phonon
coupling comes from the modulation of the particle hopping34–36,
however what happens here is that the shape of the polaron band
changes with increased coupling, so that the miminum moves
from the free-particle ground state (GS) momentum to some
other value. This may happen continuously34,35 or dis-
continuously36, but again it is not due to level crossing. It is thus
not a priori clear if sharp level crossings can occur in polaron
spectra.

Here we demonstrate that for an electron–phonon interaction
which depends on both k and q, sharp level crossings do appear
in polaron spectra; that they are responsible for a new type of
sharp transition in the ground state of the polaron that occurs at a
fixed momentum; and that they lead to the appearance of type-II
Dirac cones (and presumably of Weyl cones in similar 3D
models), whose location in the BZ is controlled by the strength of
the electron–phonon coupling. Our work suggests a new pathway
for their realization. Of course, direct experimental tuning of the
carrier-phonon coupling is difficult, however one can use pump-
probe experiments to resonantly excite phonons, which then
couple to the carriers37. By optically pumping a suitable material,
it may therefore be possible to create Dirac cones and to shift
their location in the BZ, thus directly controling the topological
properties of the material.

Results
Stabilization of type II Dirac point. We now present and discuss
the spectrum of the polaron that forms when a hole is doped into
a two-dimensional (2D) Lieb lattice, depicted in Fig. 1b. The
Hamiltonian, discused in detail in Methods, describes electrons
hopping among the sites of the Lieb lattice coupled to an Einstein
phonon mode. As detailed in Methods, there are two relevant
electron–phonon couplings: α characterizes the phonon
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Fig. 1 Polaron spectrum at various electron–phonon couplings (color
online). a The infinitely long-lived polaron bands obtained from the spectral
function Aγ,γ(k, ω). For M→M/2 the symmetry of the bands is indicated in
blue for p+ and red for p−. Parameters are tsp= −1, tpp= −0.49,ϵs = ϵp = 0,
Ω= 1 and α= 0.1…0.4. In the bottom panel β= 0.75α, in all other panels β
= α/2. (b) The Lieb lattice. Arrows indicate the direction of oscillation of
the phonons
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modulation of the tsp hopping between a central atom and its
adjacent ligand atoms, while β characterizes the phonon mod-
ulation of the tpp hopping between two neighbor ligand atoms.

Our key results are illustrated in Fig. 1, where we plot the
evolution of the low-energy part of the polaron spectrum with
increasing electron–phonon coupling α for β = α/2, except in the
bottom panel where β = 3α/4. For an Einstein phonon with
energy Ω = 1, the continuum starts at much higher energies than
those displayed, thus all shown states are infinitely long-lived
polarons. The parameters are chosen such that in the absence of
electron–phonon coupling, the lowest bands do not cross (see
Methods Section). In the right panels, blue/red colors indicate
even/odd character (p±) under the (x, y)→ (y, x) reflection σ̂xy.

The odd p− band couples more efficiently to phonons36 and
moves faster toward lower energies with increasing
electron–phonon coupling, so that for α ≈ 0.3 the two bands
touch at the M point. For even larger α, the p− band becomes the
low-energy band near M, and a tilted Dirac point appears where
the two bands cross. Its position moves from M toward Γ with
increasing coupling, e.g., for α = 0.4 it is located at (0.9,0.9)π.

The σ̂xy symmetry only prevents band mixing on the M − Γ
line; everywhere else we expect to see mixing between the two
bands. Indeed, an avoided level crossing is observed at ≈(1, 0.9)π
on theM − X cut. In Fig. 2 we confirm that the two polaron bands
do indeed only cross at a single point in the BZ. Using a k-space
grid with a mesh-size of 0.01π we first find the wavevector kC of
the Dirac point. The panels show the spectral weight along cuts
(kx, ky) = kC + δk(cosϕ, sinϕ) which pass through the Dirac point,
for various values of ϕ illustrated in the bottom right panel. They
prove that the crossing does indeed take place at a single point,
and also show that the resulting Dirac cone is strongly tilted.

Sharp polaron transition at fixed momentum. The final major
result is the demonstration of a new type of sharp GS polaron
transition. Consider first the top four panels of Fig. 1, where we
see that the GS moves fromM to X for some α ≤ 0.2 (for all values
of α, we scanned the whole BZ; the GS is always either atM or X).
This looks, therefore, like the discontinuous sharp GS transition
found for the 1D version of this model36, coming from a change
in the shape of the lowest polaron band. However, the behavior

here is more interesting and rich than in the 1D model. A hint is
provided by the bottom panel, for α = 0.4 and β = 0.75α, that
shows the GS back at the M point, but now with odd symmetry.

The full evolution of the GS is illustrated in Fig. 3, where we
plot the polaron energies at the M point for both the even and
odd bands, plus the lowest value at the X point, vs. α. In panels (a)
and (b) corresponding to β/α = 0.5 and 0.75, respectively, we see
two discontinuous transitions as the GS jumps from M (even)→
X→M (odd) with increasing α. This is already very interesting:
such polaron behavior, i.e., a GS momentum that does not evolve
monotonically with increased electron–phonon coupling, has not
been seen before.

The truly new feature, however, is seen in Fig. 3c: here the GS is
always at the M point, but it has a transition from even to odd
symmetry as α increases. This is clearly a sharp polaron transition
occuring at fixed GS momentum, driven by band crossing. It is
thus qualitatively different from the only two other known kinds
of sharp polaron transitions34–36, which are due to a band
deformation and are accompanied by a change of the GS
momentum. It is interesting to point out that until rather
recently, the consensus in the community was that sharp polaron
transitions are not possible. This was proved rigorously for q-
dependent models of the Holstein and Fröhlich type33. Our
results show that a lot more work is needed to understand all the
possible scenarios which can occur for different types of k and q-
dependent electron–phonon couplings.

Discussion
These results clearly prove that a sharp crossing of two polaron
bands is indeed possible in a model with suitable symmetries.
While this may seem to be rather obvious, to the best of our
knowledge such a crossing has not been explicitly demonstrated
for coherent polaron bands before, despite the very long history
of polaron studies.

Our results also demonstrate that this crossing leads to the
appearance of a tilted Dirac point whose location (and very
existence) can be controlled through the strength of the
electron–phonon coupling. This opens the possibility of dyna-
mically driving a system from a trivial state into one with Dirac/
Weyl points that can be tuned to the Fermi energy, by resonant
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pumping of appropriate phonon modes37. As mentioned in ref.
22, this would boost the number of phonons and effectively
enhance the electron–phonon coupling to desired modes, in a
way that may be more efficient than raising the temperature to
generate thermal phonons. Such control may enable exploitation
of topology in interesting new ways.

It is important to emphasize that this band crossing is not due
to just a trivial renormalization of the bare bands because of
coupling to the lattice. As discussed in ref. 36 for the 1D version
of this model, this type of electron–phonon coupling not only
renormalizes tsp and tpp and shifts the on-site site energies ϵs and
ϵp by different amounts, but also generates longer-range tss; t′pp
and t′sp hoppings. There is no a priori reason to expect that these
changes will conspire to drive a band crossing, and in fact one can
propose models where instead they push the two bands further
apart. It is therefore significant that in our physical model, the
electron–phonon coupling facilitates the appearance of the Dirac
points. We have checked that this is the case for a wide range of
parameters, even those for which the bare bands are far apart, if
the electron–phonon coupling is sufficiently large.

Experimentally, there is a variety of ways to engineer Lieb
lattices. They have been realized in cold atom systems38 and
photonic systems39, and an electronic Lieb lattice has recently
been realized as a molecular lattice on a Cu(111) substrate40.
Another possible route toward the experimental realization of our
model is to grow a monolayer of BaBiO3 on a suitable substrate
using molecular beam epitaxy. The perovskite BaBiO3 is known
to have fairly strong electron–phonon coupling, although likely
weaker than needed for what we propose here. However, coupling
to substrate phonons may significantly enhance the
electron–phonon coupling within a monolayer (a similar
mechanism is believed by many to be responsible for the higher
Tc in FeSe monolayers grown on SrTiO3

41). Moreover, doping of
such thin layers is more easily achieved than is the case for 3D
systems. Furthermore, it is reasonable to expect that the phe-
nomena described here are not restricted to only the Lieb lattice
in 2D, and also that similar 3D models may stabilize 3D Weyl
points, but this remains to be verified. Finding suitable candidates
requires detailed ab-initio calculations, beyond the scope of this
work.

To conclude, we have explicitly verified that sharp crossings of
polaron bands can occur in realistic models of electron–phonon
coupling. They may lead to a new type of sharp GS transition,
where the GS momentum remains unchanged but a symmetry of
its wavefunction changes discontinuously. The crossings also
result in the appearance of four type-II Dirac points along kx =
±ky, whose position can be tuned. Our findings suggest that at
least at lower energies, electron–phonon couplings can be used to
control the properties of Weyl and Dirac semimetals.

Methods
The model. We study a single carrier in the 2D Lieb lattice42,43 sketched in Fig. 1b,
consisting of a square lattice of ions whose valence orbital is s-type (other sym-
metries have qualitatively similar properties), bridged by ligands whose active
orbitals are of pσ-type. The ligand atoms are assumed to be much lighter and thus
host Einstein phonons with frequency Ω. Vibrations along the bond directions
couple most strongly to the carrier; the other phonons will be ignored. The lattice
(phonon) Hamiltonian is therefore:

Ĥph ¼ Ω
X
i

byi;xbi;x þ byi;ybi;y
� �

ð1Þ

where we set ħ = 1 and byi;x=y creates a phonon at the corresponding px/y ligand of
the ith unit cell.

The kinetic energy of the electron is given by

T̂tot ¼
X
i;j;γ;γ′

tγ;γ′i;j c
y
i;γcj;γ′: ð2Þ

Here cyi;γ creates an electron in the γ = s, x, or y orbital of the unit cell centered at
site Ri. For the on-site energies t

γ;γ′
i;i ¼ δγ:γ′ϵγ we choose 0 = ϵx = ϵy ≡ ϵp . We include

nearest-neighbor (NN) sp hopping between a central site and its four ligands, as
well as NN pp hopping between adjacent ligands. Their values tγ;γ′i;j / rγ;γ′i;j

���
���
�n

depend on the interatomic distances rγ;γ′i;j . For sp hopping n = 2, whereas for pp
hopping n = 2 for semiconductors and n = 3 for transition metal oxides44. In a
linear approximation valid for small out-of-equilibrium displacements

ûi;x=y ¼ byi;x=y þ bi;x=y
� �

=
ffiffiffiffiffiffiffi
2M

p
, we can expand tx;yi;i ¼ tpp 1� β byi;x=y þ bi;x=y

� �h i
,

ts;xi;i ¼ tsp 1� α byi;x þ bi;x
� �h i

etc., where tpp and tsp are equilibrium hopping

integrals. For an electron tpp> 0 and tsp> 0, while for a hole both hopping integrals
become negative.
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Thus, T̂tot ¼ T̂sp þ T̂pp þ Ĥsp
el�ph þ Ĥpp

el�phj. The first two terms are the hopping
on the undistorted lattice:

T̂sp ¼ �tsp
P
i
cyi;s ci;x � ci�x̂;x þ ci;y � ci�ŷ;y

� �þH:c:

T̂pp ¼ �tpp
P
i
cyi;x ci;y � ci�ŷ;y þ ciþx̂�ŷ;y � ciþx̂;y

� �þH:c:

and the electron–phonon couplings are:

Ĥsp
el�ph ¼ αtsp

P
i;γ¼x;y

cyi;γ ci;s þ ciþγ̂;s
� �

byi;γ þ bi;γ
� �

þH:c:

Ĥpp
el�ph ¼ βtpp

P
i
cyi;x ci;y � ci�ŷ;y � ciþx̂�ŷ;y þ ciþx̂;y

� �

´ byi;x þ bi;x
� �

þ βtpp
P
i
cyi;y ci;x þ ciþŷ;x

�

�ciþŷ�x̂;x � ci�x̂;x
�

byi;y þ bi;y
� �

þH:c:

Choosing the lattice constant a = 1, we have α ¼ 4=
ffiffiffiffiffiffiffi
2M

p
and β = nα/4.

The Hamiltonian we study is Ĥ ¼ T̂tot þ Ĥph. It is important to note that it is
invariant under the reflection (x, y)→ (y, x), which we denote as σ̂xy (inclusion of
longer-range hoppings is not expected to change this, as all hoppings must obey the
symmetry of the lattice). Because momenta k ¼ ðk; kÞ= ffiffiffi

2
p

are also invariant under
σ̂xy , their corresponding eigenfunctions must be eigenfunctions of σ̂xy as well (this
is not true elsewhere in the BZ).

Free carrier spectrum. Here we briefly review the bare spectrum, in the absence of
electron–phonon coupling; more details are available in ref. 45. Hereafter the
carrier is taken to be a hole. In this case, as shown in Fig. 4a, the lower two of the
three bare bands are close together when ϵs ≈ ϵp and the effects of the
electron–phonon coupling on the low-energy polaron bands will be more pro-
nounced, as shown below.

The character of the bare bands is easy to infer on the Γ→M cut, because of
invariance to σ̂xy. There is one odd band (red dashed line) of p− character, i.e., its
eigenstate is / cyk;x � cyk;y

� �
0j i, and two even bands (blue, full line) which are

bonding and anti-bonding mixtures of the s and p+ states. Which of these has the
lowest energy at the M point depends on parameters. For those of Fig. 4, namely ϵs
= 0 and tsp = − 1, tpp = −0.4 (hopping integrals are negative for a hole and we set ϵp
= 0), s + p+ is the lowest state. However, the p− state can be pushed below it either
by increasing tpp

�� �� and/or ϵs . The two bands are degenerate at M if

tpp ¼ ϵs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16t2sp þ ϵ2s

q� �
=8. Further increasing tpp

�� �� moves the p− band below the

s + p+ band in the vicinity of the M-point, and the point kC ¼ kC; kCð Þ= ffiffiffi
2

p
(and its

symmetric counterparts) where the two bands cross is pushed toward Γ. Note that
the different σ̂xy eigenstates prevent band mixing so kC is a sharp band-crossing
point as illustrated in Fig. 4b. A straightforward analysis of the model in the
vicinity of this point yields an effective Dirac Hamiltonian with a tilted cone, i.e., a
type-II Dirac cone. The Dirac point is protected by the mirror symmetry of the
lattice, much like Dirac points in graphene which are protected by a combination
of time reversal and inversion symmetries. As in graphene or d-wave

superconductors we expect the Dirac points here to give rise to topologically
protected edge modes that span projections of the crystal momenta kC and −kC
onto the edge BZ. In the type-II Dirac semimetal these edge modes will overlap in
energy with the bulk modes and might therefore be more difficult to observe.

Momentum average approximation. This is a non-perturbative, variational
approximation that has been shown to provide highly accurate results at all
electron–phonon coupling strengths for both Holstein46–48 and SSH34,35 couplings.
For the 1D version of the present model, it was favorably tested against exact
diagonalization in ref. 36; the 2D version is a straightforward generalization. We
implemented two different flavors of MA, with a one-site and with a two-site cloud.
The latter has a bigger variational space and thus is more accurate, but differences
between the two sets of results are quantitatively small, indicating that convergence
has essentially been achieved. All results we show are from the two-site cloud
version.

Data availability. All data that support the findings of this study are available from
the corresponding authors upon request.
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