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Bipolarons bound by repulsive phonon-mediated interactions
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When dressed particles (polarons) exchange quantum phonons, the resulting interactions are generally
attractive. If the particles have hard-core statistics and the coupling to phonons is through the kinetic energy terms,
phonon-mediated interactions are repulsive. Here, we show that such repulsive phonon-mediated interactions bind
dressed particles into bipolarons with unique properties. These bipolaron states appear in the gap between phonon
excitations, above the two-polaron continuum. While thermodynamically unstable, the bipolaron is protected by
energy and momentum conservation and represents a quasiparticle with a large dispersion and a negative effective
mass near zero momentum. We discuss possible experimental implementation of the conditions for the formation

of such repulsively bound bipolarons.
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I. INTRODUCTION

Most composite objects in nature are bound by conservative
forces, which are attractive. Dissipative forces act to reduce
the stability of bound objects by allowing tunneling out of
bound states, except in specific cases when dissipation traps
the system in a local minimum of a conservative potential
[1]. For particles in a lattice, the dispersion is finite and the
two- or few-particle continuum is bounded from both below
and above. As a consequence, such particles can be bound
by conservative repulsive interactions, which push the bound
state to an energy above the continuum [2]. The influence
of such “repulsively bound” states on quantum walks of
interacting bosons was recently demonstrated in experiments
probing the dynamics of ultracold atoms in an optical lattice
[3]. Repulsively bound states are fundamentally important as
(1) they are expected to restrict certain quantum phases of
many-body quantum systems to a finite range of Hamiltonian
parameters [4]; (ii) they can induce correlations between
particles in the high energy part of the continuum through
virtual excitations; (iii) they are thermodynamically unstable
states, which can nevertheless trap quantum systems thus
impeding thermalization.

Here we demonstrate the binding of particles by repulsive
phonon-mediated interactions in the Peierls model (also known
as the Su-Schrieffer-Heeger (SSH) model in the context
of polyacetylene) [5-9]. This problem is unique for two
reasons. First, phonon-mediated interactions in the celebrated
Holstein and Frohlich models are generally attractive [10—13].
However, as we showed recently, the interactions between
hard-core particles induced by coupling to quantum phonons
described by the less studied Peierls model are repulsive [14].
Second, the spectrum of phonons is unbounded from above.
Any bound state embedded in the continuum of phonons
should be expected to decay through coupling to phonons.
However, if the phonons are gapped and the dispersion of
the bound state is smaller than the gap, this decay may be
prohibited by conservation of energy. Under such conditions,
the continuum of two particles + phonon states separates into
bands and the repulsive phonon-induced interactions lead to
the formation of a stable bound state of two bare particles
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dressed by phonons, i.e., a bipolaron [15] pushed to an energy
between the bands. The repulsive bipolaron is particularly
relevant to ultracold quantum simulators for which tunable
gapped phonons can be engineered.

In general, dressing of particles by a bosonic or fermionic
field leads to a variety of rich effects, ranging from polaronic
effects [16-23] and BCS [24-26] pairing in the dilute filling
limit to Peierls and Mott physics at finite fillings [27]. Polarons
and bipolarons represent a classical problem in quantum field
theory [28-30], and have acquired much recent attention
due to experimental advances in atomic, molecular, and
optical (AMO) physics, with realizations of polaron continuum
models as impurities in BECs [31-35] and Fermi liquids
[36—40] and polaron lattice models with cold atoms dressed by
Rydberg excitations [41] and polar molecules [42,43] in optical
lattices, self-assembled ultracold dipolar crystals [44—47],
ions in rf traps [48], and superconducting qubits [49-52].
The interest in polaron physics stems from a fundamental
research goal: understanding renormalization of quasiparticles
and emergent interactions in quantum field theory. In most of
these studies the focus is on ground-state properties. Excited
states are, however, a part of a rich and complex spectrum,
where interactions between dressed particles are much less
studied and understood. To this end, stable bipolarons in the
spectral region above the two-polaron continuum represent a
paradigm for binding of dressed particles.

II. MODEL

We consider the Peierls model for hard-core particles (e.g.,
spinless fermions, hard-core bosons) on a one-dimensional
lattice, H = Hp + Hpn + V, where

My =—tY (e +He) (1)

is the tight-binding model of the bare particles with nearest-
neighbor (NN) hopping (H.c. is the Hermitian conjugate) for
which {¢;.cl}, = 8;j. {ci.c;}, = {c].cl}, =0, and i is the
site index. The subscript + refers to the anticommutator for
fermions and the commutator for bosons, respectively. We
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enforce the hard-core condition ciT ¢

0. Hpn is given by
Hon = 72y blbi. 2)

with [b;,b1] = 8, [b;.b;] = [b],b]] = 0. This term describes
Einstein phonons of frequency €2, i.e., an infinite ladder of

states separated by 7 €2. The interaction,

V=g (et +He)b] + b — bl —bi). (3

1

is the Peierls particle-phonon coupling. This interaction
describes the modulation of the hopping amplitude by out-
of-phase “breathing mode” phonons [5-9]. We characterize
the particle-phonon coupling by the dimensionless parameter,

A =2g%/hQu. “)

In this work, we focus on the antiadiabatic limit 7,g < 72
(as follows from the discussion below, the regime of particular
interesthereist <« g < h€2) and investigate the conditions for
the formation of repulsively bound bipolarons. The repulsive
bipolaron is separated from the higher bipolaron + phonon
states by energy gaps that are proportional to 2. Thus, the
repulsive bipolaron is expected to be stable in this limit.

III. EFFECTIVE HAMILTONIAN

We set the lattice constant a to unity in all the following
equations.

In the two-bare-particle sector, the Peierls interaction
(3) induces both repulsive phonon-mediated density-density
interaction and “pair-hopping” interactions for particles with
hard-core statistics [14] as we explain below.

In the antiadiabatic limit, the contribution of N-phonon
excitations decays as (g/hQ)". This allows us to derive an
effective theory to order (g/h€2) by projecting out higher
energy multiphonon states. For more details, see Appendix A.
We note that this approach has been shown to be quantitively
accurate in the antiadiabatic limit [14,23] and furthermore
elucidates the intricate physical mechanisms induced by
interactions with phonons. We will comment on the generality
of our results in a following section.

We first consider a single particle coupled to phonons. This
effective Hamiltonian first derived in Ref. [23] reads

h = —e€ Zﬁi + Z(_tcjci-&-l + l‘zciTCi+2 +H.c), (5

1 L

where now the c¢ operators act in the space of polarons.
This Hamiltonian describes a dressed particle characterized
by the NN hopping ¢ and an effective phonon-mediated
next-nearest-neighbor (NNN) hopping t, = g?/hQ2 = At /2,
arising from the interaction between the bare particle and
the phonons. The NNN hopping can be viewed as a second-

order process: cle) =V> cleLﬂO) :V> cj+2|0). Note that
the NNN hopping must be positive 7, > 0.

This term leads to a reduced effective mass at strong
coupling and thus indicates a departure from typical polaronic
behavior of the Holstein and Frohlich models, where the
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coupling enhances the polaron’s effective mass. For more
details, see Ref. [53].

The four processes chO) = cjilbji1|0) A cl.T|O) and

cj|0) =V> cjilbj|0) A ciT|0> give rise to the polaron for-
mation energy €y = 4g2>/h2 = 2it. The resulting polaron
dispersion is

Ep(k) = —eg — 2t cos(k) + 21, cos(2k). (6)

Here we are particularly interested in the case of #, > f,
where the dispersion is dominated by the phonon-mediated
interactions. Note that #, can exceed ¢ even if g//i2 < 1. For
a particular example, consider the case of g/A<2 = 0.1 and
g > 10¢, yielding the desired result.

Repeating the calculation for two particles [14], we find

hy = hi + € Zﬁiﬁi-&-la (N

illustrating the appearance of phonon-mediated NN repulsion.
Its origin can be explained as follows: If the particles are
n > 2 sites apart, each lowers its energy by €, through hops
to its adjacent sites and back, accompanied by virtual phonon
emission and absorption, as explained above. However, if the
particles are on adjacent sites, then the hard-core condition
blocks half of these processes, i.e., each particle can only
lower its energy by €y/2. Thus, there is an energy cost for
particles to be adjacent equal to €y = 2At.

This Hamiltonian also includes “pair-hopping” interactions
which mediate the hopping of NN pairs via exchange of
phonons. In this process the pair moves as a whole as opposed
to hopping of one particle past the other which is forbidden by
the hard-core statistics. In the antiadiabatic limit considered
in this work, the NNN hopping precisely compensates for the
pair-hopping process. See Ref. [14] for more details.

Two Peierls polarons in the limit g/iQ2 <« 1 are thus
described by the limiting case of the t — #, — V model,

Her = —€0 p_ i =1 Y _(clcin +He)

+1n Z(Cjci-ﬂ +Hc)+V Z A, (8)

with V = €y = 2At and 1, = At /2.

This model is characterized by NNN hopping and pair
hopping for NN bound pairs both with a sign opposite to
that of the NN hopping. Thus, this model cannot be taken as
a limit to a long-range power law hopping model. This is a
unique feature of this model which explains why the repulsive
bipolarons formed in this model are different from the r, = 0
repulsively bound pairs, as we shall demonstrate below.

To understand phonon-mediated pairing, we first study
the full phase diagram of the model (8) in the entire range
of V and t,. We derive an exact Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) equation of motion (EOM) to
solve for the two-particle propagator [54,55] G(K,n,w) =
(K,1| G(w) |K,n) defined for two-particle states |K,n) =
> e’“j’%ﬂm c;(cl.T 4 10) with n > 1. We extract bound state
properties from the pole of the propagator that appears above
the continuum band.
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FIG. 1. V —t, phase diagram. ¢ is the bare NN hopping. The
gray shaded region represents unbound polarons, while the light and
dark salmon colored regions represent K = 0 bipolarons and stable
bipolarons, respectively. The blue solid line corresponds to the Peierls
model for which V = 4t,. The Peierls model line is right on the
boundary between the region of stable bipolarons and the K =0
bipolarons at #, = t; ~ 0.8 corresponding to Ac ~ 1.6; the value of
A marking the onset of stable Peierls bipolarons, where A = 2g%//iQt.
The blue dashed line corresponds to the Peierls model supplemented
with one unit of NN repulsion between the bare particles. The black
diamond symbols mark the two points A = 1.6 and A =4 on the
Peierls line for which splitting of the repulsive bipolaron states from
the continuum is illustrated in Fig. 2.

The continuum is the convolution of two single polaron
bands satisfying the conservation of momentum. We briefly
outline the calculation procedure in Appendix B.

(@) A\=1.6

E (in units of t)

R — 0 1 2 3
K (in units of a)
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IV. RESULTS

We set /i = 1 and study the phase diagram of the model (8).
Figure 1 shows the regions in parameter space characterizing
the appearance of stable repulsive bipolarons, metastable
repulsive bipolarons, and unbound polarons. We define stable
bipolarons as those with energy separated from the continuum
at all values of the bipolaron momentum K. By contrast,
metastable bipolarons are defined as bipolarons with energy
dispersion split from the continuum at K = 0, while merging
with the continuum at other values of K. Such bipolarons may
dissociate by momentum-changing collisions.

To understand the binding mechanism, we first consider
the effect of the #, term on the continuum band. As A
increases, the NNN hopping dominates leading to a transition
of the single polaron dispersion from one with a minimum
at k =0 to one with a doubly degenerate dispersion with
two minima at finite k = £ /2. This leads to an asymmetry
in the two-polaron continuum with upward shifting near the
center of the Brillouin zone above the zero of energy. Note that
the asymmetry is reversed for , — —t, as the single polaron
band would then have two maxima instead of two minima.
Thus, this NNN hopping cannot be considered as a cutoff to a
longer-range hopping as we argued before. As #, increases, the
continuum band broadens near the bottom and narrows at the
top and near the edges (not shown) until |#,| > |t], after which
this asymmetry decreases (see Fig. 2) as the NNN hopping
dominates and the NN hopping becomes a perturbative term.

To bind polarons, the interaction must compensate for the
kinetic energy lost by binding. For t, = 0, binding happens
for V > 2t [56]. However, t, enhances the kinetic energy
of individual polarons shifting the continuum band center
upwards as explained above. Thus, a higher V is required
to bind polarons. This is what we observe in numerical
calculations shown in Fig. 1. The K = 0 bound states first
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FIG. 2. Energy spectrum of two hard-core bare particles in the one-dimensional Peierls model. The red line represents the repulsive
bipolaron dispersion and the blue shaded region shows the two-polaron continuum band for (a) A = 1.6 and (b) A = 4, where A = 2g2/hQt,
t is the bare NN hopping, and a is the lattice constant. For A = 1.6, parts of the band are split from the continuum, while for A = 4 the
whole band is split except near the edges of the Brillouin zone. The inset of (b) illustrates the repulsive bipolaron log probability distribution
I (K) =logo[ P,(K)] defined for P,(K) = |(K,BP|K,n) |2, where |K,BP) is the bipolaron state and n is the relative separation of the
particles for Kgp = 0 (salmon) and Kgp = 7 (indigo). In both cases, the particles are NN with highest probability. Note that for Kgp = 7, even
n relative separation between particles is forbidden. For more details, see Appendix B.
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appear at a critical value #; ~ 0.8¢. For f, < 5, a bound state
is split everywhere in the Brillouin zone, once it is split at
K =0. As t, surpasses t;, the asymmetry is lost and the
continuum edges shift upwards and become closer in energy
to the continuum center. Thus, a greater V is required to split
the entire spectrum at higher K. This implies that metastable
K =0 bipolarons can decay into the continuum near the
Brillouin zone edges by collisions with other bipolarons or
through other K-changing mechanisms.

For the Peierls model, the ratio V/#, = 4 is fixed, as shown
by the blue line in Fig. 1. When #, > £7, the Peierls model
line is right on the boundary between the region of stable
bipolarons and the K = 0 bipolarons. Figure 2 demonstrates
the splitting of repulsively bound states from the continuum for
two points on this line marked by symbols in Fig. 1. Figure 2(a)
corresponds to A = 1.6 (t, = t}), illustrating the onset a bound
state at K = 0. Figure 2(b) corresponds to A = 4, illustrating
the onset of a bound state split from the continuum at all
values of K. This state merges with the continuum near the
edge of the Brillouin zone. The V /1, = 4 line at ¢, > ¢} thus
marks the onset of stable bipolarons. Note that any repulsion
between bare particles contributes directly, pushing the energy
of the bound state from the continuum. This is illustrated in
Fig. 1 by the dashed line, which corresponds to the Peierls
model supplemented with one unit of NN repulsion between
the bare particles.

The bipolarons illustrated here have interesting properties.
As can be seen from the dispersion of the bound state in
Fig. 2, the bipolaron has negative effective mass at the band
center and positive effective mass at the band minimum.
Therefore, coupling the K = 0 bipolarons to photons may
result in negative refraction [57-60]. Even more interestingly,
the dispersion of the bipolaron exhibits large curvature, which
increases with the coupling strength, as illustrated in Fig. 3.

O~
_2, \\\\\
oy Tl A=16
s -4 ~— A=16__
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Jrd A=4.0
C
>
-8l
éi A=6.0
< —10Ff
al
A=8.0
_12,
_1 L L L L L L
8.0 0.5 1.0 1.5 2.0 2.5 3.0

K (in units of a)

FIG. 3. The repulsive bipolaron dispersion Ex = Egp(K) —
Egp(0) in units of the bare NN hopping ¢ for various values of
) =2g%/hQt. a is the lattice constant. The dashed line represents
the onset of Peierls bipolaron formation. The two blue lines were
illustrated in Fig. 2, while the red lines label strong coupling
bipolarons. Note that the bipolaron dispersion exhibits both large
curvature and bandwidth, which increase with the coupling strength.
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The unique shape of the bipolaron band in Fig. 3 can be
explained by considering the limit V > ¢,t,. The dispersion
is then ~[(2t2/V)+ 2t,]cos(K) + (2t22/ V)cos(2K). The
first term represents NN hopping of a bound pair comprising
two NN hops of the constituent polarons in the same direction
with amplitudes ¢2/V and an additional pair-hopping t,.
The second term represents NNN of a bound pair where one
particle moves two sites away from the its bound partner by
NNN hopping and then the partner follows, costing an energy
V in the process. In the Peierls limit, V = 4t,, the analytical
expansion acquires higher order corrections. However, this
simple analytical form provides a way to explain the unusual
form of the bipolaron band. In particular, the second term
~cos(2K) is responsible for the unusual curvature of the
dispersion with a minimum at finite K < 7. This analysis
makes clear that the pair-hopping term is responsible for
the bipolaron’s enhanced band width and reduced effective
mass.

To illustrate this quantitatively, we plot in Fig. 4 the inverse
of the bipolaron’s effective mass m* as a function of A. We
find that |m*| decreases rapidly with XA, and consequently,
with V, as V = 2Ar for the Peierls polarons. For contrast,
a repulsively bound pair in the bare + — V model with #, = 0
has an effective mass my = —V/(2t?) [56], which leads to
linear growth of |mg| with V. Furthermore, the energy gap
between the K = 0 bipolaron and the two-polaron continuum
A grows with A, as seen in the inset of Fig. 4. This suggests that
the K = 0 bipolaron is sufficiently stable at strong coupling.
This radically distinct behavior highlights the unique nature
of the bipolaron which is expected to be highly mobile
near K = 0.

1/m* (in units of ta?)

2 g 6 8 10 12 14 16
A

FIG. 4. The dependence of the inverse effective mass, ta*/m*, for
the repulsive bipolaron on A = 2g2/iQt. The effective mass of the
bipolaron m* is defined as m* = (3> Egp(K)/dK?)~" for K =0, ¢ is
the bare NN hopping, and a is the lattice constant. The inset illustrates
the dependence of the energy gap A between the repulsive bipolaron
and the edge of the two-polaron continuum band on XA at various
values of K. The dark blue and dark red solid lines label the gaps
for K =0 and K = 7, respectively; the dashed, dash-dotted, and
dotted lines label the gaps for K = /4, K = 7 /2, and K = 37 /4,

respectively. Note that A vanishes for K = .
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V. BEYOND THE ANTIADIABATIC LIMIT

In the previous section, we considered the antiadiabatic
limit. At lower values of phonon frequency, the bipolaron
acquires higher order vertex corrections. This leads to quanti-
tative changes in the results. However, previous studies suggest
that the qualitative physics in the antiadiabatic limit persists
at lower phonon frequencies [14,23]. In particular, Ref. [23]
shows that the sharp transition of the ground state of a single
Peierls polaron from k =0 to finite k occurs both in the
adiabatic and antiadiabatic regimes. The critical value of A
corresponding to the transition varies within a small range
between 0.5 and 1.25 as the phonon frequency is decreased
from the antiadiabatic limit to within the adiabatic regime. The
polaron dispersion varies smoothly as the phonon frequency is
decreased beyond the antiadiabatic limit and exhibits no irreg-
ularities in both the antiadiabatic and adiabatic limits. Since
here we consider the same model, we expect a similarly smooth
variation of the bipolaron dispersions beyond the antiadiabatic
limit. In fact, the features of the bipolarons considered here can
be traced back to the interplay of the bare particle statistics and
phonon-mediated hopping for the single Peierls polaron.

For example, as discussed above, the repulsive interactions
stem from the statistics blocking the phonon-mediated hopping
of bare particles into the same lattice site, thereby eliminating
part of the renormalization energy (polaron formation energy)
of the individual polarons. Since the renormalization energy of
the single polaron is a smooth function of phonon frequency,
the repulsive interactions are expected to extrapolate smoothly
beyond the antiadiabatic limit. The result displayed in Fig. 4,
showing the decrease of the bipolaron mass with the coupling
strength, is a consequence of pair hopping, which is closely
connected to the NNN polaron hopping. The NNN polaron
hopping is responsible for the decrease in the single polaron
mass in the antiadiabatic regime at strong coupling. As
Ref. [23] shows, the single Peierls polaron becomes heavier
as the phonon frequency is decreased but remains light well
beyond the antiadiabatic limit. The same should be expected
for the repulsive bipolaron.

Note that we cannot argue that the results of the present
work apply to the adiabatic regime. However, we use the above
observations to suggest the validity of our qualitative results at
phonon frequencies beyond the antiadiabatic approximation,
as long as i< is larger than the bipolaron’s bandwidth, the
condition that ensures a gap between the bipolaron state and
the higher continuum states.

To tackle this problem more rigorously, one may attempt
to use numerically exact approaches. However, typical large-
scale computational techniques are limited to the ground state,
while the repulsive bipolaron state of interest is an excited state.
One possible approach to circumvent this difficulty and access
a solution beyond the antiadiabatic limit is through a tailored
variational approach. This typically requires some educated
guess to the wave function. In this context, our results act as a
guess to the variational calculation. On the other hand, a renor-
malization group approach can perhaps capture the arguments
we presented above providing an insight into a solution in the
adiabatic limit. We leave all such efforts to future work.
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VI. EXPERIMENTAL CONSIDERATIONS

A. Ultracold quantum simulators

The Peierls model can be realized in a variety of tight-
binding models by implementing out-of-phase breathing-
mode lattice distortions. Most promising are the experimental
scenarios with polar molecules or cold atoms dressed by
Rydberg states in optical lattices. In this case, the hard-core
bare particles are the rotational excitations (for molecules)
or electronic excitations (for cold atoms). If the molecules or
atoms are trapped in a Mott insulator phase [61], the excitations
can be transferred between different sites of an optical lattice
through couplings mediated by the dipole-dipole interactions.
The transfer of such excitations between sites of an optical
lattice has been observed for molecules in Ref. [62] and for
Rydberg atoms in Ref. [63].

The bosonic field is provided by the translational motion
of the trapped species in the lattice potential. Under such
conditions, the translational excitations are nearly dispersion-
less Einstein optical lattice phonons coupled to the internal
excitations of molecules or atoms due to the radial dependence
of the dipolar interactions. This was illustrated for polar
molecules in Refs. [42,43] and for cold atoms dressed with
Rydberg excitations in Ref. [41]. In both of these cases, the
hopping term couples to lattice distortions giving rise to a
Peierls coupling g = —3(¢/a)«/h/2m<2, where m is the mass
of the molecule or atom and a is the lattice constant. The
frequency of lattice phonons in a one-dimensional array is
Q = 2/h)v/VoEg, where Vj is the lattice depth and Ex =
2% /2ma? is the recoil energy. The dimensionless Peierls
coupling is then A = 18Egt/(hw2). Thus the values of A,
which correspond to different points on the solid line in Fig. 1,
can be obtained by varying 2.

In order to achieve the values of A > A of the antiadiabatic
limit, one can either increase ¢, which can be done for cold
atoms by dressing with Rydberg states, or decrease €2, which
can be done for either atoms or molecules by simply decreasing
the intensity of the optical lattice laser intensity. In the latter
case, care must be taken to prevent the Mott insulator phase
from melting. The Mott insulator phase can be stabilized by
inducing an on-site repulsion between molecules or atoms.
This can be done either by tuning the scattering length of
molecules or atoms by magnetic Feshbach resonances [64]
or by orienting molecules with weak dc fields to induce
strongly repulsive dipolar interactions between molecules in
the same internal state. It must be noted that the presence of a
dc field may induce additional phonon-mediated interactions
[42,43]. Therefore, the field must be weak enough to ensure
that the phonon-induced interactions discussed here remain
dominant.

The bipolaron appears as a sharp peak above the two-
polaron continuum. Therefore, any measurement of the spec-
tral function acts as a probe for the bipolaron. An angle-
resolved photoemission spectroscopy (ARPES)-like measure-
ment scheme is well suited for this purpose. To this end, the
stimulated Raman spectroscopy scheme proposed in Ref. [43]
can be adopted to measure the two-particle spectral function
A(K,w) = —Im[G(k,1,w)]/7.
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B. Quantum materials

Here we point out the fundamental importance of the
Peierls model for quantum materials. The Peierls model takes
into consideration the linear term in the expansion of the
hopping: #(R; — R;) ~t + a(R; — R;) around the lattice
equilibrium position. Here, ¢ represents the hopping amplitude
at equilibrium positions, R; labels the position operator of
lattice site i, and o depends on the lattice parameters 2 and
M, the oscillator mass. Second quantizing the R operators
(and defining g in terms of the lattice parameters) yields the
Peierls model with the coupling in Eq. (3).

This interaction describes the coupling of the particle’s
motion to breathing-mode lattice distortions and represents
linear corrections to the Born-Oppenheimer approximation in
solids. Even at low temperatures, zero-point motion may lead
to drastic changes in the quasiparticle behavior if the coupling
g is comparable to the hopping amplitude ¢. It is therefore
important to distinguish effects of the Peierls coupling in
quantum materials and identify their experimental signatures.
This model for hard-core particles can be applied to excitons in
semiconductors and two-dimensional materials. Alternatively,
it can be applied to triplet pairing of fermionic excitations.
In all these materials, the repulsive bipolaron spectral peak, if
present, must broaden due to coupling to low-energy phonons
and will manifest itself as a resonance in a continuum.

To study the stability of the bipolaron in these systems,
it would be interesting to develop an open quantum system
description with couplings to dissipative channels given by
the Peierls Hamiltonian. We leave the study of these effects to
future work, which will focus on variational approaches to the
problem in a broader region of parameter space.

VII. CONCLUSION

The repulsive Peierls bipolaron represents a quasiparticle
that can be potentially realized with ultracold quantum simu-
lators. It does not have a direct analog in quantum materials
as the presence of acoustic phonons should embed such states
into a strongly dissipating environment. The lifetime of this
quasiparticle in quantum materials would be finite. However,
it can leave a signature as a resonance in a continuum.

The repulsive bipolaron discussed here is different from
typical repulsively bound pairs in# — V models. The repulsive
bipolaron is bound by phonon-mediated density-density and
pair-hopping interactions. Experimental observations of field-
or bath-mediated interactions is fundamental to understanding
complex phenomena in coupled field theories. Additionally,
the bipolaron possesses both pair hopping and NNN hopping
which typical repulsively bound pairs do not exhibit. This
means that quantum interference effects in quantum walks
of the repulsive bipolaron ought to be different from those
of t — V or extended Hubbard repulsively bound states. The
repulsive bipolaron has a significantly smaller effective mass
than the Hubbard repulsively bound pair owing to the pair-
hopping kinetic terms.

Our proposal represents an interesting mechanism for
realizing repulsive interactions between pseudospins or exci-
tons. Generally, excitons interact via dynamical interactions
that are attractive owing to the specific tensorial form of
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the resonant dipole-dipole coupling [65]. Under conditions
discussed here, excitons would interact via a phonon-mediated
repulsive interaction giving rise to a Frenkel biexciton [66—68]
dressed with phonons. Note that Frenkel biexcitons have never
been observed in quantum materials because the hopping
of the excitations is determined by the dipolar interactions
between molecules, whereas the dynamical interactions be-
tween the excitations are determined by higher-order (e.g.,
quadrupolar) interactions due to the symmetry of the molecular
states. The mechanism introduced here could be the leading
mechanism for pairing of excitons in materials such as solid
molecular hydrogen [69], possessing high energy phonon
modes.

This emergent phonon-mediated repulsion can be used as
a tunable parameter in quantum simulators. Applications can
range from stabilizing pre-associated repulsively bound pairs
in models with bare repulsive interactions to realization of
spin models with pair hopping and repulsion. For instance,
the extension of our effective model to frustrated lattices such
as triangular lattices would enable the study of frustration in
spin liquids [70] and supersolids [71]. Studies of a frustrated
model closely related to ours reveals a supersolid phase in one
dimension [72] and on the triangular lattice [73]. The persis-
tence of phonon-mediated interactions at finite concentrations
and in higher dimensions is vital for this research direction.
We note that the phonon-mediated NN repulsion is a result
of statistics blocking hopping to NN sites. Thus, it is likely
that the effect will persist in ensembles of a greater number
of particles, as the more confinement the particles experience,
the more likely they are forced to be NN and interact via the
repulsive mechanism discussed here. Phonon-mediated pair
hopping is also likely to survive in the antiadiabatic limit. This
is because a single phonon virtual excitation can allow for
hopping of at most a pair of NN particles excluding “cluster
hopping” of ensembles of three, four, and higher number of
neighboring particles. A systematic approach must be devel-
oped to analyze all such terms and potential corrections at finite
concentrations.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN IN THE ANTIADIABATIC LIMIT

Our method is inspired by the technique developed
in Ref. [74]. This technique provides an effective Hamiltonian
description for the dressed particles. Formally, the polaron
operators in the full Hilbert space are mimicked by the action
of the bare particle operators in the low-energy subspace, if the
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Hamiltonian is appropriately modified to include the relevant
particle-phonon corrections. Below we outline the procedure.

1. Single-bare-particle sector

Let P be the projector onto the zero-phonon Hilbert

subspace, which is spanned by the states CJ-L |0), Vi. The effective
Hamiltonian in this subspace is, to second order,

1

hy=T+PV—=-VP,
! Ey—Hp
where T = —t > (c;[ciﬂ + H.c.) is the bare kinetic energy, V
is the bare particle-phonon coupling from Eq. (3), and Hy =

‘Hpn. The projection is straightforward to carry out and leads to
A . 4g° . A
h=T--- i+, (AD)

where 75 = +1, Zi(cjc[+2+H.c.) is a phonon-mediated
NNN hopping with 7, = g?/Q = At/2 (note the unusual
4g2

sign). For convenience we define €g = =2-.

The polaron dispersion is, therefore,
Ep(k) = —€g — 2t cos(k) + 21, cos(2k).

It is straightforward to verify that if r > 41, i.e.,if A < %, the

polaron ground state (GS) momentum is 0. For A > % the po-
laron GS momentum is kp = arccos %2, going asymptotically
to 7 as A — oo.

2. Two-bare-particle sector

Repeating the projection onto the two-bare particle-zero-

phonon subspace spanned by the states cjcl.T 210), Vi = 1,4,
we find

ﬁz:—EOZﬁj‘Ff‘i‘f‘Z_l_VZﬁiﬁi-ﬁ-l? (Az)

where V = €. Note that this term simply adds to any bare NN
interaction. The hard-core condition excludes processes where
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a particle hops past the other via 7. Thus, T> represents the
pair hopping of NN pairs as a whole. See Ref. [14] for more
details.

APPENDIX B: BOGOLIUBOV-BORN-GREEN-
KIRKWOOD-YVON (BBGKY) EQUATION
OF MOTION (EOM)

The repulsive bipolaron bound state dispersion can be
calculated using the BBGKY EOM approach [54,55], which
we outline below.

We define

o KR+
VN

Vn > 1, and the propagators G(K,n,w) = (K, 1| G(w) |K,n),
where G(a)) =(w+in— fzz)’l is the resolvent of interest. We
use the short-hand notation g(n) for G(K,n,w). The bound
state energy (once a bound state appears) is at the highest
discrete pole of these propagators above the two-polaron
continuum. Using the identity G(a))(a) +in— ﬁz)’l =1, we
generate the EOM:

(@+in+2¢ —Bx — V)g(l) =1 —akxg2) + Bxg?3),
(w+in+2€)8Q2) = —ag[g(D) + B3]+ frg@), (BD
and for any n > 3,
(w+in+2€e)g(n) = —aglgn — 1)+ gn + 1)]
+Bklg(n —2) + g(n +2)1.  (B2)

Here, ax = 2t cos(%), Bx = 2t cos(K).

The physically acceptable analytical solution for recurrence
relations of this type is available in [75], however, it is rather
complicated and its poles cannot be extracted analytically.
A general solution can be found numerically. Results in
Fig. 1 represent solutions obtained by solving this system of
equations numerically.

We note that for K = 7, ax vanishes limiting the EOM to
odd n. This explains why even 7 states are forbidden as shown
in the inset of Fig. 2(b).

T

|K,l’l> = Z Cici+n|0)’
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