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Dual coupling effective band model for polarons
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Nondiagonal couplings to a bosonic bath completely change polaronic dynamics, from the usual diagonally
coupled paradigm of smoothly varying properties. We study, using analytic and numerical methods, a model
having both diagonal Holstein and nondiagonal Su-Schrieffer-Heeger (SSH) couplings. The critical coupling
found previously in the pure SSH model, at which the k = 0 effective mass diverges, now becomes a transition
line in the coupling constant plane—the form of the line depends on the adiabaticity parameter. Detailed results
are given for the quasiparticle and ground-state properties, over a wide range of couplings and adiabaticity ratios.
The new paradigm involves a destabilization, at the transition line, of the simple Holstein polaron to one with
a finite ground-state momentum, but with everywhere a continuously evolving band shape. No “self-trapping
transition” exists in any of these models. The physics may be understood entirely in terms of competition between
different hopping terms in a simple renormalized effective band theory. The possibility of further transitions is
suggested by the results.
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I. INTRODUCTION

An electron moving in a solid (ordered or otherwise)
polarizes its surroundings, and dresses itself with bosonic
excitations which include electronic spin and charge fluc-
tuations, electronic orbital fluctuations, and phonons. The
result is a polaron; the best-known example is an electron
dressed by a combination of optical and acoustic phonons.
The phonon-dressed polaron is of enduring interest for two
main reasons:

(i) Polarons are believed to play a key role in determining
the physics of many materials.

(ii) It provides a target for any theory of quasiparticles
which tries to span the weak, intermediate, and strong coupling
regimes.

This has given the subject an interesting history (briefly
described in Sec. II), closely connected to many of the
important developments in many-body physics and quantum
field theory.

For most of this history, attention has focused on a specific
kind of “diagonal” coupling between the density of electrons
(this is a diagonal operator in a real space formulation)
and phonon displacements; the latter can be local or longer
range, as reviewed in Sec. II. Such models are now well
understood, and have led to this “paradigm” of the polaron as
a quasiparticle whose effective mass increases monotonically,
and rather quickly, with increasing coupling, especially in the
strong coupling regime. Moreover, the effective mass and all
other polaron properties change smoothly as the coupling
strength is increased (even though the crossover between
weak- and strong-coupling regimes can become very rapid as
one decreases the phonon optical frequency and/or increases
the dimension, it remains nevertheless a smooth crossover, not
a sharp transition).

However one may also have nondiagonal couplings to the
bath, only acting when the particle hops between sites (which
in the continuum limit couple to the particle momentum). We
now know that such couplings lead to results very different
from the usual polaron paradigm. Here, in the strong-coupling

regime, polarons remain rather light and can even be lighter
than the bare particle, although their dispersion is quite unlike
that of the bare particle. Sharp transitions in the polaron
properties are also possible, as first shown in Ref. [1] for a
specific model with a nondiagonal coupling (the SSH model);
there a sharp transition was found between the behavior
at weak coupling and that at strong coupling. As we shall
see shortly, this transition persists when we add diagonal
interactions to the nondiagonal ones.

These results appear to be rather general, indicating that
the old polaron paradigm needs to be replaced by a rather
different one incorporating the interplay between diagonal
and nondiagonal couplings. This is what we attempt in this
paper. The results are not just of theoretical interest—they will
force a substantial re-evaluation of our picture of polarons in
many physical systems, and of the interpretation of existing
experimental results.

The plan of the paper is as follows. Section II discusses
models containing both diagonal and nondiagonal terms,
and briefly reviews previous work. Section III describes our
method, the bold diagrammatic Monte Carlo (BDMC) and the
momentum average (MA) approximation. The former method
is also discussed in the Appendix, which is an integral part of
the paper. Sections IV and V give the main results. Section IV
discusses the results when only nondiagonal SSH terms are
present, highlighting the transition in the polaronic properties.
Section V adds diagonal terms, and shows how the transition
is influenced by these terms. Section VI summarizes the new
picture of the polaron that comes out of these results, in
the form of an effective band theory—readers looking for a
quick summary should go to this section, which also discusses
experimental applications.

II. THE MODEL

We would like to study a model which brings out the main
features of both diagonal and nondiagonal couplings without
being too complicated. In this section we first develop the
model, and then discuss a few simple key features it possesses,
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at the same time recalling some of the main results found over
the years.

A. Derivation of the dual coupling model

We begin by formulating the dual coupling model in a fairly
general way. In a site basis we start from a Hamiltonian

Ĥo = −
∑
ij

tij ({bλ})c†i cj +
∑

i

εi({bλ})c†i ci +
∑

λ

ωλb
†
λbλ

(1)

describing the hopping, with amplitude tij , of a particle
between sites i and j of a lattice, in the presence of a bosonic
bath having a single branch of excitations of frequency ωλ (here
λ labels the quantum numbers of the bosons; for example,
we can choose λ = {q,μ}, where q is a momentum and μ

a polarization; or we can choose λ = {i,μ}, with i a site
index again). Both the on-site energy εi and the hopping
matrix element tij are modulated by (i.e., are functionals
of) the boson variables bλ,b

†
λ. If we are dealing with lattice

phonons, the modulation is through the site displacement

operators x̂λ =
√

�

2Mωλ
(bλ + b

†
λ), where M is the ionic mass.

This generates the diagonal couplings (modulations of εi) and
nondiagonal couplings (modulations of tij ).

The form of (1) is quite general—the lattice may take any
form (ordered or disordered), as may the various coupling
terms. To say more we must specify how εi and tij depend on
the bosonic variables. This dependence can take many forms
for different physical systems. In what follows, we will assume
that we are dealing with a periodic crystalline lattice, and that
the bosons in questions are lattice phonons; crystal momentum
is then a good quantum number.

Let us expand the Hamiltonian (1) in terms of the phonon
variables {bλ}. Then the diagonal interaction terms are pro-
duced by expanding the on-site energy:

εi = εo +
∑

λ

U
(1)
i (λ)(bλ + b

†
λ)

+
∑
λλ′

U
(2)
i (λ,λ′)(bλ + b

†
λ)(bλ′ + b

†
λ′) + · · · , (2)

where U
(1)
i (λ) is the one-phonon diagonal coupling, U (2)

i (λ,λ′)
is the two-phonon diagonal coupling, and so on. This diagonal
term arises simply from the polarization of the background
lattice by the particle—for electrons, it is essentially a
Coulomb interaction effect.

The nondiagonal couplings are produced by expanding
tij ({bλ}) in phonon variables. This is more subtle, since the
hopping matrix element arises from electron tunneling, and so
depends exponentially on the phonon displacement. Often this
dependence is written as

tij ({bλ}) = to exp

[
−

∑
λ

Vij (λ)

ωλ

(bλ + b
†
λ)

]
, (3)

where Vij (λ) has the dimension of energy; but this form
generates only one part of the multiphonon interaction terms
(which can also appear directly in the exponent). However,
since we are only interested in the linear term, we expand (3)

to linear order in phonon variables, so that

tij ({bλ}) = to

[
1 −

∑
λ

Vij (λ)

ωλ

(bλ + b
†
λ)

]
. (4)

The physical meaning of this “Peierls” term is obvious
from the derivation—the phonons modulate the distance
between the lattice ions, and this modulates the tunneling
amplitude of the electron between sites. As we shall see,
the effective range of the tij , once it is renormalized by the
coupling to phonons, can be significantly greater than a single
lattice spacing.

In this paper we will deal exclusively with ordered lattices.
We then Fourier transform the starting Hamiltonian (1); and as
further restrictions, we will (i) keep only the linear coupling to
phonons; (ii) assume a single optical phonon branch, with
polarization index suppressed and frequency ωq; and (iii)
assume the lattice has no impurities, defects, surfaces, or
other inhomogeneities that break translational invariance. The
Hamiltonian describing such problems then has the general
structure

Ĥ =
∑

k

εkc
†
kck +

∑
q

ωqb
†
qbq

+ 1√
N

∑
k,q

V (k,q) c
†
k−qck(b†q + b−q), (5)

where we suppress the electronic spin variable. Here V (k,q) is
the sum of the Fourier-transformed diagonal and nondiagonal
terms, c†k,b

†
q are electron and phonon creation operators, k is the

electron momentum, and momentum sums are over the first
Brillouin zone. We assume N lattice sites and let N → ∞.
The elimination of both acoustic phonons and higher-order
phonon couplings restricts the applicability of (5) in the real
world. In Sec. VI we return to these approximations and their
consequences.

Splitting V (k,q) into its diagonal and nondiagonal parts,
we have

V (k,q) = g1(q) + g2(k,q), (6)

where the diagonal coupling g1(q) depends only on the phonon
momentum q, while the nondiagonal coupling g2(k,q) depends
explicitly on the particle momentum k.

The dual “H/SSH” model. So far these results are purely
formal. In most of the rest of this paper we wish to obtain
explicit results for the polaron properties in a model which
combines two specific forms for the diagonal and nondiagonal
couplings. We therefore consider a one-dimensional (1D)
chain with lattice constant ao = 1, and a bare hopping term
tij → toδi±1,j , i.e., constant nearest-neighbor hopping only.
We choose the phonons to be a set of Einstein phonons of
frequency �o. The noninteracting part of H in (5) is then

Ho = −2to
∑

k

cos k c
†
kck +

∑
q

�ob
†
qbq, (7)

giving two characteristic energy scales to and �o.
For the diagonal electron-phonon coupling we use a simple

on-site Holstein coupling [2], so that

g1(q) → go, (8)

035117-2



DUAL COUPLING EFFECTIVE BAND MODEL FOR POLARONS PHYSICAL REVIEW B 95, 035117 (2017)

with no dependence on momentum at all. For the nondiagonal
coupling we use the so-called Su-Schrieffer-Heeger (SSH)
form [3–6], which describes the modulation of the hopping
term, viz.,

ti,i+1 → to − αo(xi+1 − xi), (9)

which in momentum space gives a coupling

g2(k,q) = 2i√
N

αo[sin(k − q) − sin k] (10)

and we have introduced two new energy scales go and αo.
We see that if we scale everything in terms of to, there

are three independent parameters in this H/SSH model. The
adiabaticity parameter is

�o = �o/(4to), (11)

so that when �o � 1, the phonon dynamics is considered
as slow (and the electron dynamics is fast). One can also
define dimensionless parameters go/to and 2αo/to, with
dimensionless ratio 2αo/go. However, a better understanding
of the physics is obtained by defining

λH = g2
o

2to�o

(diagonal), (12)

λSSH = 2α2
o

to�o

(nondiagonal), (13)

whose ratio is now (2αo/go)2. Along with �o, these dimen-
sionless parameters determine the behavior of this model at
zero temperature.

This is the simplest model one can look at for a polaronic
system with both diagonal and nondiagonal couplings. It is
something of a toy model and it ignores acoustic phonons.
Nevertheless, it is good enough to reveal the main features of
an entirely new behavior for the polaron, one quite different
from the polaronic paradigm described above. How much
these general features will persist in more general models is a
question we address at the end of the paper.

B. Basic features of the model

A great deal is known about the effect of the coupling g1

on polaron dynamics, much less about g2, and still less about
the effect of a combination of the two. The main results that
have so far been established are as follows.

(i) Diagonal terms. As noted above, many models with
different diagonal couplings have been studied. The most
famous examples are the Holstein model [2] [where, as just
noted, g1(q) → go, a constant] and the Fröhlich model [7],
where the form of g1(q) depends on the spatial dimension
and on whether we deal with a lattice or a continuous
medium model. Other examples include the Rashba-Pekar
model [8], breathing-mode (BM) models [9], and various
models with displacement potential coupling [10]. A variety of
theoretical methods to study them were developed in the period
from 1940 to 1970, including perturbation expansions in the
interaction [11], semiclassical approximations [12,13], and
path integral techniques [14]. The main aim was to understand
the behavior of the polaron as the strength of the diagonal
coupling g1(q) was increased. Indeed, the problem was (and

still is) regarded as providing a key test of nonperturbative
methods, and thus of interest well beyond solid-state physics.
More recently, other methods have been developed, notably the
dynamical mean-field theory (DMFT) [15] and the momentum
average (MA) approximations [16–18]. The predictions of
all of these methods can now be checked by a wide variety
of numerical techniques, including exact diagonalization,
variational methods, various types of quantum Monte Carlo
simulations, and in one dimension, by density matrix renor-
malization group (DMRG) methods. The literature on all this
is now enormous [19].

These diagonal models all have certain broad features in
common. For weak coupling, there is typically very little
phonon dressing, and the polaron properties are only slightly
renormalized. This weak coupling regime is sometimes called
the large polaron regime (although that term may be more
appropriate for continuous models). As the coupling is
increased, there is a crossover to the small polaron regime,
where a robust polarization cloud is formed, and the electronic
properties are strongly renormalized. The effective mass then
increases rapidly with coupling (e.g., exponentially fast in
the Holstein model). For a long time there was significant
confusion over the idea that in this strong-coupling regime the
polaron might become self-trapped (i.e., localized), although
it is now clear that such self-trapping is impossible in a clean
system for any finite coupling and any �o > 0. Disorder
in real systems can of course localize polarons, particularly
when they are heavy; but this is a different effect. Another
related, and long-standing controversy, was over whether there
is a sharp transition or a smooth crossover between the two
regimes. This question was settled by the work of Gerlach
and Löwen [20] who showed that for diagonal models having
gapped bosonic modes, sharp transitions in the polaronic
properties are impossible; all physical quantities must vary
smoothly with coupling strength. We note that the so-called
“self-trapping transition,” which has in the past often been
asserted to exist at some finite value of the coupling, is actually
typically an artifact of numerical approximations, arising when
the effective bandwidth is decreasing rapidly with increasing
coupling constant—it does not actually exist.

Thus we see that from all of this work a general consensus
has emerged for the diagonal coupling model, both on the
essential physics and on the detailed quantitative picture. We
will call this the diagonal polaron paradigm; as conventionally
understood, it involves a smooth crossover between weak and
strong coupling, and between light, large polaron and heavy,
small polaron behavior, with no sharp transition of any kind;
and for a clean system, no self-trapping or localization of the
polaron on any particular site.

(ii) Nondiagonal terms. Much less work has been done on
the nondiagonally coupled model, and most of this has been
in the context of applications to systems like polyacetylene
(the SSH model [3,4,21]) and other polyacenes [22,23], as
well as excimers [24], MX chains [25], and the cuprate
superconductors [26]. Most theoretical studies of the single
polaron in such models have been fairly recent, and we can
separate them into two categories.

First, several studies have argued that in dual coupling
models, having both diagonal and nondiagonal interactions,
one can discern a self-trapping transition line in the two-

035117-3



MARCHAND, STAMP, AND BERCIU PHYSICAL REVIEW B 95, 035117 (2017)

dimensional plane of the two couplings. Evidence cited for
this has typically come from variational analyses, using either
a Toyozawa ansatz [27] or a “global-local” ansatz [28]. There
are also perturbative analyses [29–31], supplemented by exact
diagonalization studies [29] on very small (four-site) lattices,
that have claimed evidence for a crossover (not a transition)
between large and small polaron regimes as a function of
a nondiagonal SSH coupling (note that Refs. [30,31] have
nondiagonal coupling to acoustic rather than optical phonons).

Second, a few papers have looked at the entanglement
between the polaronic particle and the phonon bath as a
function of the coupling constants—this was first done for
the Holstein model [32], and then for the SSH model [33]. In
the pure Holstein model the entanglement increases smoothly
during the crossover between the large and small polaron limits
(this is described as a cliff-like transition by Zhao et al. [32],
but in fact their results show only a smooth change in the
entanglement). Stojanović and Vanević then found, in the SSH
model, a nonanalyticity in the entanglement as a function of
the SSH coupling [33], but they then argued that this did not
signal any kind of transition in the polaronic properties (in
particular, no change in the ground state), but rather a loss of
coherence of the polaron.

In Secs. IV and V we will demonstrate that the physics is
very different from that proposed by these earlier analyses. In
fact, there really is a sharp transition line in the dual coupling
parameter plane, but it has nothing to do with any kind of
“phase transition” or even a crossover between large and small
polarons, or to a self-trapped state; nor is it in the same part of
the parameter space as the transitions claimed in the previous
work. Instead, it is associated with a change in the ground state,
coming from a continuous evolution of the band structure as
a function of the nondiagonal coupling. The k = 0 polaron
effective mass actually diverges along the transition line—
but this is simply because of the shift of the ground-state
momentum; the bandwidth is finite even at the transition. Thus,
the polaron is mobile everywhere in the parameter plane, even
on the critical line. The crossover between large and small
polarons turns out to be entirely associated with the diagonal
part of the coupling—the nondiagonal coupling plays no role
in this. Sections IV and V gives full details of the results, and
Sec. VI describes the new picture that emerges from them.

III. METHODS: PERTURBATIVE AND NUMERICAL

One reason we are confident in the accuracy of the results
discussed herein is that we have been able to benchmark
them against results found with the extremely powerful
diagrammatic Monte Carlo (DMC) method invented by
Prokof’ev, Svistunov, and Tupitsyn [34]. In the current work
we have augmented this method with an improved version,
the bold diagrammatic Monte Carlo (BDMC) method, and
we have also used the much faster momentum averaging
(MA) approximation. In what follows we describe how they
are applied to the present problem—technical details for the
BDMC method are relegated to the Appendix. We also say a
little about perturbation theory—this turns out to work well
only in the extreme antiadiabatic regime when �o � 1.

In Ref. [1], results were reported for the SSH model
using the above methods and also the limited phonon basis

exact diagonalization (LPBED) method [35]. The agreement
between the LPBED, DMC, BDMC, and MA results was found
to be excellent, and we expect this to also be true for the present
dual-coupling model because all these methods also work well
for the Holstein model.

A. Perturbation theory

For perturbative work, we write 	(k,ω) = ∑
l 	l(k,ω),

where 	l(k,ω) is the sum of all self-energy graphs containing
l internal boson lines. Both the Rayleigh-Schrodinger and
Wigner-Brillouin versions of perturbation theory are then
applied. In Rayleigh-Schrödinger (RS) perturbation theory it is
well known [36] that for polaron models with Einstein phonons
and �o < 4to, the first-order contribution to Ek exhibits an
unphysical maximum at some momentum km > 0, and an
unphysical divergent energy at larger momenta. Because of
this, we can only calculate the ground-state energy and the
effective mass if the ground state is located at k = 0. At second
order, the unphysical maximum is eliminated and so is the
divergent negative ground-state energy, but for �o < 4to one
finds instead a positive divergent energy at larger momentum.

In Wigner-Brillouin (WB) perturbation theory, where the
polaron energy is approximated using the implicit equation
Ek = εk + Re	(k,Ek), no singular values for Ek are found
anywhere in the Brillouin zone. WB is also useful as a
consistency check for any numerical code: if electron lines
are not dressed, and only contributions of up to two phonon
lines are allowed, the resulting self-energy must converge to
	2(k,ω). Since the polaron energy Ek is the lowest pole of the
Green’s function G(k,ω) = [ω − εk − 	(k,ω)]−1, with these
restrictions any numerical results must coincide with WB.

B. Momentum average (MA) approximation

The MA technique is a nonperturbative approximation
which has been applied successfully to a number of polaron
problems [16–18,37,38]. It sums all diagrams in the self-
energy expansion, up to exponentially small contributions
which are discarded. The MA self-energy is then expressed
in closed form as a continued fraction, and evaluates this very
efficiently. MA can be systematically improved [17] so that its
convergence can be assessed. It can also be cast in variational
terms, as keeping contributions only from processes consistent
with a certain structure of the phonon cloud. In its simplest,
original formulation (already surprisingly accurate for the
Holstein model), the phonon cloud can be arbitrarily far from
the electron and contain arbitrarily many phonons, but its size
is limited to one site [17,39]. For the Edwards model [40]—
another model describing boson-modulated hopping—it was
shown that to correctly describe the polaron dynamics, the
minimum extent of the cloud is over three adjacent sites (again,
an arbitrary number of bosons is allowed at each site, and the
particle can be arbitrarily far away from the cloud) [37].

The MA results presented here have been generated using
a straightforward generalization of the work in Ref. [37]. On
general grounds, we expect it to be accurate if �o is not too
small; if phonons are energetically expensive, having them
spread over many sites becomes very unlikely. Of course, one
can generalize MA to allow for more extended clouds, but
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the calculations become rather cumbersome. As shown below,
the MA results produced here are quantitatively quite accurate
as long as �o � 0.1 or so. Note that we are using here what
is technically called a MA(0) method, which does not allow
additional phonons to exist away from the polaron cloud. As a
result, it cannot describe the polaron + one-phonon continuum,
expected to appear at an energy �o above the polaron ground-
state energy. MA properly captures this continuum for MA(1)

or higher level approximations, which include these states
among those kept in the variational space [17]. However, here
we are concerned with the polaron band which lies below
this continuum, and this MA version is already sufficient to
describe it accurately, and to allow us to efficiently evaluate
various trends.

C. Bold diagrammatic Monte Carlo (BDMC)

The BDMC method [41–43] is an elaboration of the earlier
diagrammatic Monte Carlo (DMC) algorithm [34]. Both
belong to a category of unbiased computational methods, in
which no assumptions are made about the solution or the type
of diagrams that contribute most to the final answer. Instead,
all the diagrams are summed using stochastic sampling,
and the result is exact within the statistical error bars. The
DMC method was further developed to study the Fröhlich
polaron [44,45], the Holstein polaron [46], and the spin
polaron [47], among others. Recently, it was also extended
to many-polaron problems [48].

The method is formulated in imaginary time, where all
diagrams are real functions of the internal lines. For diagonal
coupling models, with V (k,q) = g1(q), this removes any sign
problem because in any self-energy diagram all emitted bosons
are reabsorbed, so the vertices contribute a positive factor
g1(q)g1(−q) = |g1(q)|2 > 0 irrespective of the topology of
the diagram. In this case their sum is convergent, and success
is guaranteed.

For models with nondiagonal couplings g2(k,q), however,
this is no longer necessarily true. Hermiticity of the Hamil-
tonian guarantees that g2(k′, − q) = g∗

2 (k′ + q,q), so if we
consider the vertex product g2(k,q)g2(k′, − q) for a phonon
line with momentum q, its contribution is positive only if
k′ = k − q, i.e., if this phonon line is not crossed by other
phonon lines. At first sight, it looks as if these contributions
are complex, not real; however, this is not the case because of
symmetries. For example, for our dual-coupling H/SSH model,
a purely imaginary contribution comes from diagrams where
an odd number of phonon lines are either emitted by a Holstein
process and absorbed by a SSH process, or vice versa. One can
check that the contribution of such a diagram is canceled by
that of its time-reversed pair. Only diagrams with an even
number of both Holstein and of SSH vertexes survive. These
have real expressions, but diagrams with crossed phonon lines
can now have either sign.

Thus we see that for αo 	= 0, our model has a sign problem.
It is not a severe problem because at least all the noncrossed
diagrams are positive, but it makes it desirable to perform
partial summations of diagrams, which may further mitigate
it. This idea gave rise to the BDMC algorithm, in which free
propagator lines are replaced by “bold” lines which already
include some of the self-energy contributions. This is done in

an iterative fashion, with proper care to avoid double counting
of diagrams.

To the best of our knowledge, our results reported in Ref. [1]
and here are the first BDMC results for a single polaron
problem; in the Appendix we explain in more detail how these
calculations were done.

IV. RESULTS: HOLSTEIN AND SSH MODELS

Before looking at the results when we have both couplings
in the system, we examine each model separately. The physics
of the diagonal Holstein model is well known—our purpose
in discussing it here is to demonstrate the accuracy of the
methods. We then examine the SSH model using the same
methods, and discuss the physics around the critical coupling
where the transition takes place, and the physical mechanism
which causes the transition.

A. Pure Holstein model

The standard properties of interest in the diagonally
coupled models like the Holstein model are (i) the polaronic
properties, notably the quasiparticle dispersion relationship
Ek and the related quasiparticle weight Zk , along with the
polaronic effective mass m∗, as functions of both quasiparticle
momentum and electron-phonon coupling strength; and (ii) the
energy Egs of the polaronic ground state, i.e., the minimum
quasiparticle energy, as a function of the coupling strength.

In what follows we describe one set of results for this model,
to see how well the different numerical methods work in this
well-understood case; this also serves to illustrate the main
features of the standard polaron paradigm. Both MA and DMC
data are given (there is no difference between DMC and BDMC
results; BDMC is simply computationally more efficient).

Figure 1 shows different quasiparticle quantities for the
Holstein polaron. To be specific, we assume an adiabacity
parameter �o = 0.125. Figures 1(a) and 1(b) show the polaron
dispersion Ek and quasiparticle (qp) weight Zk in half of the
Brillouin zone, in the weak coupling regime (for λH = 0.25).
Here the MA results overestimate the bandwidth—as already
discussed above, this is because this is a MA(0)-type method,
which does not properly account for the location of the
polaron + one-phonon continuum (higher level MA approx-
imations fix this problem [17]). As the Holstein coupling λH

increases, the polaron bandwidth decreases below �o and
the agreement becomes excellent everywhere, as shown in
Figs. 1(c) and 1(d) for λH = 1. The agreement improves even
further for larger λH (not shown), since any flavor of MA
becomes exact [16] in the limit λH → ∞. The decreasing
bandwidth corresponds here to an increasing effective mass
m∗(k), where we define this mass in the usual way as

m∗(k) =
[
∂2Ek

∂k2

]−1

. (14)

The inverse of this effective mass is shown in Fig. 1(f) for k =
0. We notice how rapidly the bandwidth and corresponding
inverse effective mass decrease for λH > 1 [thus, for λH = 1,
we see from Fig. 1(c) that the bandwidth ∼0.25to, whereas for
λH = 2, it is ∼0.005to]. However, we also note that there is no
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FIG. 1. Results for the 1D Holstein model, using DMC (symbols)
and MA (lines). (a) Polaron energy Ek and (b) its qp weight Zk , for
λH = 0.25; (c) polaron energy Ek and (d) its qp weight Zk , for
λH = 1.0; (e) polaron ground-state energy Egs and (f) its inverse
effective mass m/m∗(k = 0) vs λH at k = 0. In all cases, to = 1,
�o ≡ �o/(4to) = 0.125, and λSSH = 0. DMC data are from Ref. [46].

sudden collapse or discontinuity of any kind in the effective
mass as a function of λH .

In Fig. 1(e) we look at the ground-state energy, and confirm
that the MA and DMC methods agree with each other;
ground-state properties are described accurately by MA for all
couplings λH . No qualitative changes are expected for these
properties, if �o is increased. Note that the accuracy of the
MA results is improved, especially at intermediary couplings,
over that shown in Fig. 10 of Ref. [16]. This is because here
we allow for a polaron cloud extending over up to three
adjacent sites, whereas there we only considered a one-site
cloud.

These results illustrate well the standard diagonal polaron
paradigm. As coupling increases, the bandwidth decreases
monotonically with a corresponding increase in the effective
mass. The basic shape of the dispersion relation is unchanged,
with the usual monotonic increase of energy with momentum,
qualitatively similar to that of the bare particle. All properties
vary smoothly with λH ; as expected, there is no trace of any
kind of transition or nonanalyticity in either the quasiparticle
properties or the energy [20], as functions of either the coupling
strength or the momentum. Although details will change if we
change the momentum dependence of the coupling g(q), the
polaron behavior is qualitatively similar.
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FIG. 2. Results for the 1D SSH model with �o ≡ �o/(4to) =
0.125 from BDMC, MA, and first- and second-order RS and WB
perturbation theory. (a) Shifted polaron energy Ek − E0 and (b) its
qp weight Zk , for λSSH = 0.25,0.5,1,1.094,1.21,1.96, with BDMC
(symbols) and MA (lines). (c) Polaron ground-state energy Egs, (d)
the ground-state momentum kgs, (e) the ground-state qp weight Zgs,
and (f) the inverse effective mass m/m∗(k = kgs), all as functions of
λSSH. (c)–(f) The same color code described in the legend of (c). For
BDMC results, error bars are shown only when they are larger than
the size of the symbols. In all cases, to = 1 and λH = 0.

B. Pure SSH model

In the SSH model we need to look at the quasiparticle
properties a little differently. This is because the key feature
is the sharp transition which we find at a critical coupling
λ∗

SSH(�o); this transition changes the way we must characterize
the polaron quasiparticle. In addition to the usual quantities
Ek,Zk , and m∗, we also need to look at the ground-state
momentum kgs, which changes rather quickly once λSSH >

λ∗
SSH; and the ground-state energy, which of course now

depends on kgs.
(i) Numerical results. To see what happens, we begin in

Fig. 2 with SSH results for the same value �o = 0.125 as
above, so we can directly compare with the Holstein result
of Fig. 1. Figures 2(a) and 2(b) show the polaron energy Ek

(shifted so that all curves start at zero) and qp weight Zk . For
weak couplings, the curves look rather similar to those of the
Holstein model—the dispersion is monotonic and it flattens
out just below the continuum (whose energy is again slightly
overestimated by MA). However, for medium and strong
couplings the results are very different. The dispersion does not
simply become flatter; instead it changes its shape so that the
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ground state is no longer at kgs = 0. In Figs. 2(c) and 2(d)
we see clearly that the transition involves a nonanalytic
dependence of both the ground-state energy Egs(kgs) and the
ground-state momentum kgs on the coupling constant, with
discontinuities in all derivatives of these quantities with respect
to λSSH at λSSH = λ∗

SSH. Notice from Figs. 2(c) and 2(d) that,
even though perturbation theory gives a very poor description
of Egs and kgs as functions of λSSH, nevertheless a second-order
Rayleigh-Schrödinger calculation does capture the correct
position of the singularity.

This pattern is repeated in calculations of Zk and the
effective mass m∗(k) as functions of λSSH, provided we
evaluate these at the bottom of the band (k = kgs). Indeed
we see from Fig. 2(f) that the effective mass m∗(kgs) → ∞
as λSSH → λ∗

SSH; this is accompanied by a divergence in
the derivative ∂Z(kgs)/∂λSSH [see Fig. 2(e)]. However, the
divergence in m∗(kgs) is simply due to the inflection point
in Ek at k = 0 when λSSH = λ∗

SSH, and therefore does not
reflect a collapse of the bandwidth, as obvious from Fig. 2(a)
(the dispersion curve at the transition point λ∗

SSH = 1.094
has a finite bandwidth). In fact, even for large couplings the
bandwidth is still considerable. Thus, for λSSH = 1.96, the
bandwidth is ∼0.1to as opposed to ∼0.007to for the Holstein
model at similar coupling λH = 1.96. We also notice that well
above the transition, the effective mass varies rather slowly; in
fact m∗(kgs) ≈ 10–20 m even for large λSSH.

We see that we are dealing here with a sharp transition
between a weak- and a strong-coupling regime. The weak-
coupling regime has a single nondegenerate ground state
located at kgs = 0. Since the system is inversion symmetric,
the strong-coupling regime is doubly degenerate, with ground-
state wave-vectors ±kgs 	= 0. As emphasized in Ref. [1],
the transition arises from a nonanalyticity in the function
Egs(λSSH ) at λSSH = λ∗

SSH. The nonanalyticity is clearly not
associated with any localization or self-trapping of the polaron;
nor is it a quantum phase transition. This is because although
we work at T = 0, we are only treating the single-electron
case. A phase transition involves the cooperative behavior of a
macroscopic number of degrees of freedom, which is simply
impossible in the one-electron limit, where only a finite and
rather small average number of phonons are associated with the
single polaron cloud. It is of course possible that the transition
we have found may evolve into a critical phase transition at a
finite particle concentration; however we cannot support such
claims based on the current data.

It remains to check how the results vary with the adiabaticity
parameter �o. In Figs. 3 and 4 we show all of the same results
as those in Fig. 2, but now for �o = 0.75 and 25. The main
observations we can make here are:

(a) The basic behavior of the dispersion relation as a
function of λSSH is just as before, but as �o increases, the
bandwidth steadily increases, and the effective mass m∗(kgs)
decreases—indeed, quite remarkably, for large �o the polaron
is actually lighter than the bare band particle except in the
region near the critical coupling, where its mass diverges. The
transition is signaled as before by nonanalytic behavior in all
functions at λSSH = λ∗

SSH; the basic behavior of kgs and E(kgs)
as functions of λSSH is similar to that for small �o. Notice how
well perturbation theory works in the extreme antiadiabatic
limit �o � 1; the reason for this is discussed below.
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FIG. 3. Results for the 1D SSH model with �o = 0.75. We show
the same quantities as in Fig. 2; in (a) and (b) we show results for
λSSH ranging from 0.25 to 4.0.

(b) As �o increases, the qp weight is less and less affected
by the nondiagonal coupling to the phonons, and is not much
smaller than the free particle result Zk = 1; for �o � 1, we
see that Zk remains considerable even at very large couplings.
This is of course the exact opposite of what happens in any
diagonally coupled model, no matter what the form of g(q).

(c) We also see that as �o increases, the transition coupling
λ∗

SSH slowly decreases. In Fig. 5 we show this behavior in more
detail, by drawing the “critical line” λ∗

SSH(�o) as a function of
the adiabaticity ratio, which separates the weak-coupling and
strong-coupling regimes, and along which the effective mass
diverges. All methods, even first-order perturbation theory,
work well in the antiadiabatic limit �o � 1, where we see
that λ∗

SSH → 0.5, a result which we explain below.
On the other hand we do not show any numerical results

for the adiabatic limit �o → 0 in Fig. 5, because all these
methods become inaccurate here—note the large error bars
for �o � 1. This is because the average number of phonons
in the polaron cloud increases rapidly with decreasing �o,
and the convergence of the BDMC code is then drastically
slowed. MA results do converge, however the three-site cloud
assumption becomes questionable in this limit. As noted in
Ref. [1], LPBED results based on a five-site cloud restriction
suggest that as �o → 0, λ∗

SSH actually reaches a maximum and
then decreases. Thus what actually does happen for small �o

is an open question. This region can be studied using other
numerical methods [49] that have already been successfully
applied to the Holstein model in the adiabatic limit.
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FIG. 4. Results for the 1D SSH model, with �o = 25. We show
the same quantities as in Fig. 2; in (a) and (b) we show results for
λSSH ranging from 0.5 to 3.5.

(ii) Physics of the pure SSH polaron. The behavior discussed
above is most easily understood if we begin from the
antiadiabatic limit, �o → ∞, where perturbation theory can
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FIG. 5. Transition line λ∗
SSH vs �o in the pure SSH model,

separating the weak-coupling regime, with its nondegenerate ground
state at kgs = 0, from the strong-coupling regime with its doubly
degenerate ground state at ±kgs 	= 0. The inset shows the same data
over a wider range of phonon energies. Results from BDMC, MA,
and perturbational RS and WB of both first and second order are
shown. Other parameters are λH = 0,to = 1.

be applied (for a preliminary discussion of this limit see
Ref. [1]). Consider the first-order contribution to the polaron
self-energy, viz.,

	1(k,ω) = 1

N

∑
q

|V (k,q)|2
ω + iη − εk−q − �o

.

Since the range of εk is just the bandwidth, i.e., ∼O(to), it
follows that when �o � to,ω, the denominator is ∼−�o. The
integral can then be carried out, and we find

lim
�o→∞

	1(k,ω) = −toλSSH[2 − cos(2k)].

Higher-order diagrams contributing to 	l(k,ω), i.e., containing
l internal phonon lines, scale as (1/�o)2l−1, and can thus be
ignored for sufficiently large �o [note that we deal here with an
asymptotic series—the number of diagrams at level l is ∼(2l −
1)!!, which for l > �o outweighs the factor (1/�o)2l−1; but
for �o � 1, this simply means that low-order perturbation
theory gives very accurate results [50], unless we go to very
long times]. It then follows that the polaron energy Ek = εk +
	(k,Ek) in this limit is well approximated by

Ek = −2toλSSH − 2to cos(k) + toλSSH cos(2k). (15)

In other words, apart from an overall shift, the energy contains
both nearest-neighbor and second-nearest-neighbor hopping
terms. The former favors a k = 0 ground state, while the latter,
because of its unusual sign, favors a ground state at k = ±π

2 ,
together with a “folded” dispersion. For small λSSH the former
term dominates, but if λSSH is sufficiently large, the behavior
is controlled by the phonon-mediated second-nearest-neighbor
term. The transition takes place at the inflection point where
the effective mass diverges, i.e., when

m

m∗(k = 0)
= −2to[1 − 2λSSH] → 0,

explaining why, in Fig. 5, lim�o→∞ λ∗
SSH = 0.5. These con-

siderations are confirmed by the data shown in Fig. 4 for
�o = 100to. As expected, here all perturbative results agree
well with the BDMC and MA results.

In physical terms, what has happened here is that the
phonon-modulated hopping has opened a new “channel” for
particle motion. Direct hopping of a particle away from its
phonon cloud has an exponentially small probability when
phonons are energetically costly. This is why in diagonal
coupling models, with V (k,q) = g1(q), the effective hopping
amplitude (and hence the inverse effective mass) is exponen-
tially suppressed. However, in a nondiagonal hopping model
with V (k,q) = g2(k,q), the particle can move phonons along
as it hops. In the SSH model discussed here, the particle can
hop to the neighboring site while creating a phonon on that
site, and then hop one site further while absorbing this same
phonon. This gives rise to an effective second-nearest-neighbor
hopping, i.e., we now have an effective low-energy band
Hamiltonian for the polaron of form

Ek = −2t1 cos k − 2t2 cos 2k, (16)

where t1 is the renormalized value of the bare to, and t2 is the
effective second-nearest-neighbor hopping term. The phonons
have not gone away, of course, but for this lowest polaron band
Im	(k,ω) = 0, since there are no lower states for the polaron
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to decay to. For the SSH model the transition at λSSH = λ∗
SSH

occurs because t2 has a negative sign—the physical reason for
this is that the phonon increases one bond length, but decreases
the other (cf. discussion in Ref. [1]).

More complicated scenarios are found in other V (k,q)
models; however the underlying idea is the same. For example,
in the Edwards model [37,40,51], the particle first creates a
string of three consecutive bosons and then goes back and
removes them, again resulting in effective second-nearest-
neighbor hopping (this time with a positive sign, so that there is
no transition). Similar results are obtained in t-Jz models [52].
Here the particle goes twice around closed Trugman loops [53].
On the first circuit it creates a string of bosons, which are all
removed on the second circuit. This gives rise to both effective
second- and third-nearest-neighbor hopping.

Now consider what happens when �o decreases. The one-
phonon mechanism for the transition is then supplemented by
processes involving more and more phonons, which will create
not only second-nearest-neighbor hoppings, but also longer-
range hopping terms (and lead to increasing disagreement
between low-order perturbation theory and the BDMC and
MA results). Note that if the phonons modulate only the
nearest-neighbor hopping—as in the SSH model—then only
terms t2n can be generated dynamically, because there must be
an even number of hops to absorb all emitted phonons, and so
the carrier cannot end up an odd number of sites away from its
initial location without changing the number of bosons. The
t2n+1 terms are either renormalized bare terms, like t1, or are
generated by mixing with the continuum as �o decreases and
the band is flattened. Of course, in models where phonons
modulate longer-range hopping and/or coupling is beyond
linear, any tn can be generated dynamically.

To investigate this dynamical mechanism further we fit the
polaron dispersion Ek , obtained from BDMC, to a functional
form

Ek = −
5∑

n=0

2tn cos(nk), (17)

up to fifth-nearest-neighbor hopping. The results are shown
in Fig. 6. For �o = 100to, in Fig. 6(d), the fits agree with
Eq. (15): t1 ≈ to, t2 ≈ −toλSSH/2, and the higher tn�3 are too
small to show. As �o decreases, a fit to Ek with only first-
and second-nearest-neighbor hopping remains acceptable,
although the values of t1 and t2 deviate significantly from
the asymptotic limits [compare Figs. 6(b) and 6(c)]. The
transition occurs when t1 = −4t2; the crossing of these lines
agrees well with λ∗

SSH (dashed line), for these larger values
of �o.

However, if we now go to �o = 0.5, shown in Fig. 6(a), then
longer-range hopping must be included to obtain reasonable
fits. For simplicity, we continue to plot only t1 and −4t2.
The t1 and −4t2 lines cross at a value above λ∗

SSH, because
of the n � 3 hopping terms. The role of these terms can
be seen directly if we compute the inverse effective mass
1/m∗(k = 0) = ∑5

n=1 n2tn. This value is shown by triangles,
and it indeed vanishes at λ∗

SSH.
Clearly as �o decreases further it becomes impractical to

try and unravel all the higher-order terms. This is why we
cannot explain all the details of the transition in this limit,
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FIG. 6. Effective hopping constants t1 (squares) and −4t2 (cir-
cles) in the SSH model, obtained from a fit of Ek as described by
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�o = 100to. Triangles, shown only in (a), represents

∑5
n=1 n2tn. See

text for more details.

nor can we predict what happens as �o → 0 based on these
methods and results.

Let us now summarize what we have found for the polaron
with purely off-diagonal SSH coupling. Just as we saw
that the physics of the diagonally coupled polaron could be
summarized in one key feature, viz., the smooth crossover
from weak to strong coupling, with no intervening transition,
we see that the nondiagonally coupled polaron’s behavior
also turns on one key feature, viz., the range and sign of the
phonon-mediated long-range hopping terms, which may lead
to a sharp transition in polaron properties. The physics here
is intrinsically more complicated because one can imagine a
wide variety of scenarios, depending on the relative sizes and
signs of the different terms. This will be particularly true in the
quasiadiabatic regime when �o is small, where we do not rule
out a whole sequence of transitions as the bare off-diagonal
coupling increases. In the simple SSH model studied here,
there is only one transition in the regime we have studied,
where we assume that �o is not too small—the reason for
this was discussed above. But clearly these results constitute
just the tip of the iceberg as far as possible different behaviors
are concerned, and it will be interesting to study different
off-diagonally coupled models, having different forms for
V (k,q).

V. DUAL-COUPLING MODEL: COMBINED
HOLSTEIN AND SSH COUPLINGS

In any real polaronic system there will generically be both
diagonal and nondiagonal couplings between the electrons and
the phonons (or whatever other kind of bosonic excitation
is involved). Thus it is crucial to know how the competing
(and very different) effects coming from each coupling end up
working together. In what follows we investigate a combined
“Holstein + SSH” model, with both λH and λSSH finite. Note
that even though Eqs. (8) and (10) suggest that the results
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depend on the sign of go/αo, this sign is in fact irrelevant. This
is because, as we noted when discussing the sign problem, all
contributions with odd powers in either go and/or αo cancel
out. Thus the parameters λH and λSSH are sufficient to fully
characterize the couplings in this model.

Before discussing our results, it is worthwhile trying to
guess what might be the result of combining the couplings.
If we take the “effective band” idea seriously, then one can
argue that (i) the main effect of the diagonal coupling is to
simply reduce the bandwidth of the cos k bare band, i.e., to
severely renormalize the nearest-neighbor hopping to down
to t1; and (ii) the main effect of the nondiagonal coupling is
to create longer-range hopping terms of the form t2n cos 2nk.
Thus everything will now depend on the relative strength of
these terms—if we imagine first putting in the nondiagonal
term, to create the long-range hoppings, and then add the
diagonal term, we expect that not only will to be renormalized
down to t1, but that there will also be a reduction of the higher
tn, for n � 2. Note that if the higher tn are renormalized down
by the same factor as the renormalization of to to t1, the critical
line λ∗

SSH will be unchanged as a function of �o: there will only
be an overall weakening of all hopping amplitudes. However,
one can also imagine a scenario where the higher tn are less
strongly reduced than to—the critical coupling λ∗

SSH will then
be reduced from its value when there is no diagonal coupling.
Conversely, if the tn are more strongly reduced, we expect
λ∗

SSH to increase. Which scenario will be exhibited is not a
priori clear, nor is it clear how these results will depend on the
adiabaticity ratio.

What is clear is that these questions are not going to be
answered by perturbation theory. To find the transition line we
return again to MA and BDMC results. In Fig. 7 we begin with
data similar to that displayed earlier for the SSH model, i.e.,
plots of the variation of the quasiparticle behavior as a function
of k and of λSSH, but now for a small but finite λH = 0.25.
The results are shown here for the intermediate adiabatic ratio
�o = 0.75. We see that the curves are not significantly changed
from the pure SSH results by the addition of the diagonal
coupling. This is further confirmed by the data shown in Fig. 8,
for a larger diagonal coupling λH = 0.5.

Above we discussed two possible scenarios for the behavior
of the transition line as a function of the diagonal coupling.
To see which of these is actually enacted, we show in Fig. 9
the transition value λ∗

SSH as a function of λH . We see that the
critical line moves down as we increase λH , i.e., the diagonal
coupling suppresses the bare nearest-neighbor coupling more
strongly than it does the higher nearest-neighbor couplings.

Curiously, for larger λH we see a peak in the critical line
followed by a decrease in λ∗

SSH at small �o; this is clear from
the results for λH = 1, and the λH = 0.5 case is also consistent
with the possible existence of a peak at even lower �o. This is
reminiscent of the LPBED results found for λH = 0 at �o <

0.125 (see Fig. 4 of Ref. [1]). As before, we emphasize that
our results are not accurate in the limit of small �o; however
it is interesting that they suggest that such a peak followed by
a decrease as �o → 0 may actually be the typical behavior of
λ∗

SSH in the adiabatic limit.
We also show, in the inset of Fig. 9, how the second-order

RS perturbation theory compares against the MA predictions.
There is no reason to expect perturbation theory to be accurate
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FIG. 7. Polaron properties for the combined H/SSH model. We
show the same plots as those shown in Fig. 2 for the pure SSH
model, but now with a finite diagonal coupling λH = 0.25. We choose
�o = 0.75,to = 1. In (a) and (b), the values of λSSH are shown in the
legend.

away from the antiadiabatic limit, and indeed that is the case for
λH 	= 0; we believe that the excellent agreement for λH = 0
is accidental.

These results give only a partial characterization of the
transition behavior. For a full characterization, we need a
map of the critical surface λ∗(�o), where λ∗ ≡ (λ∗

SSH,λ∗
H )

is the locus of values of the two-dimensional coupling λ =
(λSSH,λH ) upon which the effective mass diverges. Clearly a
complete map of this critical surface is a large undertaking,
but just as one can produce a set of curves of λ∗

SSH(�o) for
different fixed values of λH , one can also do the converse, i.e.,
produce a set of curves of λ∗

H (�o) for different fixed values of
λSSH.

This is what Fig. 10 does, showing two such curves for
λSSH = 0.7 and 0.8. Since the minimum value of λ∗

SSH(�o)
is 0.5, as we reduce λSSH the region occupied by the polaron
dispersion with a kgs = 0 minimum should grow, and when
λSSH � 0.5 it should fill the entire parameter space. Figure 10
confirms this expectation, and we see that here a solution for
a fixed λSSH exists only if �o is sufficiently small. This is
unlike Fig. 9, where a solution exists for a given λH at any �o

(excluding, possibly, the strongly adiabatic region).
For λ∗

H = 0 and λSSH = 0.8 the transition is at �o ≈ 1.53,
in agreement with Fig. 9. As λ∗

H is increased, the transition
line moves towards lower �o, enclosing the region where the
ground state has the minimum at kgs = 0. As λSSH decreases,
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FIG. 8. The same plots as in Fig. 7, but now for λH = 0.5. As
before, �o = 0.75,to = 1. In (a) and (b), the values of λSSH are shown
in the legend.

this region indeed grows and should asymptotically fill the
entire phase space.

This completes our detailed discussion of numerical and
perturbative results for the dual-coupling H/SSH model.
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for λH = 0 (circles), λH = 0.5 (squares), and λH = 1 (triangles).
Big circles show BDMC data for λH = 0. The inset compares these
values with those predicted by second-order RS perturbation theory.
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H vs �o for the H/SSH model. MA

results are shown for λSSH = 0.7 (full line) and λSSH = 0.8 (dashed
line).

VI. AN EFFECTIVE BAND PARADIGM FOR POLARONS

It is convenient to summarize all of these results in a new
effective theory for the polaron in its lowest band. We will see
that this picture is actually rather simple in the regime where
�o = �o/4to > 1, i.e., where the phonons do not overlap with
the bare band. We begin by summarizing the key features
of our results, and then we explain how these features are
encapsulated in an effective band model.

A. Key features of the dual coupling model

We single out here the following results found above as
being most revealing:

(i) Ground-state momentum. In a purely diagonal coupling
model, nothing happens to the ground-state momentum—we
always have kgs = 0. In the nondiagonal SSH model, kgs

departs rapidly from zero when we exceed the critical coupling
λ∗

SSH (itself a function of �o). In the dual coupling model, a
nonzero kgs is found everywhere above the critical surface
λ∗(�o).

(ii) Ground-state effective mass. In a purely diagonal model
like Holstein, the effective mass at the bottom of the lowest
band varies smoothly for any coupling strength—there is no
“band collapse,” only a rapidly decreasing bandwidth and
rapidly increasing effective mass, for large λH . In the purely
nondiagonal SSH model, however, the mass does not become
very large for large coupling λSSH. Instead it continues to be of
roughly the same magnitude as the bare mass, except near the
critical line λ∗

SSH(�o), where it increases sharply, diverging to
infinity right on this line. For the dual coupling model, viewed
as a combined function of the dual coupling λ(�o), we see
these two behaviors combined—the effective mass increases
as before with λH , and for a given fixed value of λH , it varies
only slowly with changing λSSH, except near the critical surface
λ∗(�o) where m∗(kgs) diverges.

We emphasize yet again that no phase transition is involved
here—all that is happening is a change in the band shape, so
that at a critical value of the coupling, the band mass at one
specific value of momentum diverges.
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(iii) Critical surface. The position of the critical surface
depends only weakly on the adiabaticity parameter �o for
sections with constant λH , although varying λSSH can change
things rapidly, as shown in Fig. 10. Further work needs to be
done to clarify this in the adiabatic limit. We see that it is useful
to think of the physics of the dual-coupled model in terms of
this critical surface. However, this leaves unanswered the more
fundamental question of what controls the surface.

(iv) Shape of lowest band. This question is answered if
we look at the band shape. For diagonal coupling only, the
shape of the lowest polaron band will not be strongly affected
by the coupling to the phonons if �o = �o/4to > 1 (in one
dimension). The band will narrow as we increase the coupling,
and the cos k form will be weakly distorted by higher-order
phonon terms, but m∗(k = 0) will simply decrease smoothly
as we increase the effective coupling, and the bottom of the
band will remain at k = 0.

When we have nondiagonal couplings, large longer-range
hoppings are generated, which radically alter the band shape.
This happens even when �o � 1 (cf. Fig. 4). Moreover, the
overall bandwidth does not become arbitrarily small with
increasing effective coupling, like for diagonal coupling, but
remains considerable.

In the dual coupling model, we see that these two mecha-
nisms work relatively independently: the diagonal couplings
cause a rapid but smooth contraction of the bandwidth, with
little change in the band shape, whereas the nondiagonal
couplings alter the band shape and prevent the bandwidth from
narrowing excessively.

B. The effective band Hamiltonian

Perhaps the most important insight to come from the studies
recounted here is that, provided the phonon excitations do
not overlap the lowest band (i.e., assuming �o > 1), we can
understand all of the numerical results for the lowest polaron
band in terms of a polaron band energy Ek characterized
by a set of effective hopping parameters tn(λ,�o) [compare
discussion in Sec. IV B and Eq. (17)].

1. Quasiparticle picture

This suggests the following more general ansatz for the po-
laron problem with both diagonal and nondiagonal couplings,
when �o > 1. Suppose we start from a dual-coupling model
having the general form in Eq. (5), in which the phonons are
assumed to be optical in nature, i.e., with a gap energy �o.
However, we make no special assumptions about the form of
V (k,q), so that now we have a starting Hamiltonian

Ĥ = −
∑

k

εkc
†
kck +

∑
q

�ob
†
qbq

+ 1√
N

∑
k,q

V (k,q) c
†
k−qck(b†q + b−q), (18)

where εk is the bare band dispersion (before coupling to
phonons).

Then we argue that for analysis of the low-energy polaron
physics, we can replace the Hamiltonian H in (18) by an

effective Hamiltonian Heff having the general form

Ĥeff =
∑

k

ε̃kC̃
†
kC̃k +

∑
q

�̃oB̃
†
qB̃q

+ 1√
N

∑
k,q

W̃ (k,q) C̃
†
k−qC̃k(B̃†

q + B̃−q), (19)

where “tildes” denote renormalized quantities. As we saw
previously, if we start with a simple nearest-neighbor hopping
in one dimension (so εk = −2to cos k), the renormalized band
energy takes the form

ε̃
(1D)
k = −2

∑
n

t̃n(λ,�o) cos kn (20)

in which t̃1 is the renormalized value of to, and the t̃n are
the set of new multisite hopping parameters which have been
created by the nondiagonal coupling to phonons; the operators
C̃k create these new effective band “quasiparticles.” The other
terms in Eq. (19) describe a set of “continuum” excitations,
created by the bosonic operators B̃q , with renormalized energy
�̃o, and a renormalized “hybridization”’ coupling W̃ (k,q)
between the band quasiparticles and the continuum excitations.
There are new energy scales in this effective Hamiltonian—a
renormalized interaction W̃ (k,q) between the effective band,
with renormalized bandwidth D̃ ∼ O(t̃1), renormalized gap
�̃o to continuum excitations, and a renormalized adiabaticity
parameter �̃o = �̃o/D̃.

The key advantage of this quasiparticle picture is that
except in the effective antiadiabatic regime, where the effective
adiabaticity parameter �̃o < 1, the renormalized coupling
W̃ (k,q) plays little role—it is considerably smaller than the
original V (k,q), most of whose effects have already been
absorbed into the renormalized band. What this means is that
unless �̃o ∼ O(1) or less, the effective band energy ε̃k will
differ very little from the exact Ek that one finds in either an
exact numerical calculation, or in experiments. Thus we will
find that

t̃n ∼ tn (�̃o > 1), (21)

where the coefficients {tn} are extracted from fitting to the
exact band dispersion Ek (or numerical approximations to
it). Only when, as �̃o is decreased, the continuum states
approach the top of the effective band, will there be significant
differences between ε̃k and Ek , because of level repulsion
between the effective band and the continuum excitations. The
quasiparticle picture discussed here assumes that �̃o > 1 is
always satisfied.

We make no attempt here to determine the parameters
in this effective Hamiltonian as functions of the underlying
parameters in Eq. (5). The philosophy we adopt is similar
to that involved in, e.g., the Landau Fermi liquid theory:
the parameters in Ĥeff are ultimately to be determined by
experiment on specific system(s), where possible; one predicts
the results for different experiments in terms of the t̃n, and uses
the results to determine the t̃n.

Thus the form given above for Ĥeff constitutes a hypothesis
for the results of both experiments and nonperturbative
numerical work, and is thus in principle testable. The key
result in the present work, as we saw in Sec. IV B, is that all
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of the features found here in the dual coupling model can be
understood in terms of the behavior of the {tn} defined in (17);
the following aspects are particularly important:

(a) If we only have diagonal couplings in the model, then
the t̃1 term generally dominates [54] the sum of Eq. (20) and
we have a very simple band polaron, whose bandwidth and
effective mass vary continuously with coupling strength. The
actual dispersion Ek will hardly differ from the quasiparticle
form ε̃k = −2t̃1 cos k (in one dimension) when �̃o is large;
only when the continuum gap energy �̃o ∼ t̃1 will we see a
distortion of the simple cosine form for the band dispersion.
To see this, consider Fig. 1(c), where λH = 1 in the Holstein
model; the distortion of Ek away from a simple cosine form,
caused by the continuum states, is quite small even when �o

is as small as 0.5. This is because here t̃1 < 0.15to, so that the
renormalized adiabaticity parameter �̃o ∼ 1; the continuum
is well above the lower quasiparticle band. For large diagonal
coupling, the cos k form for the quasiparticle band will be
accurate except for very small �o.

(b) Introducing a nondiagonal coupling generates the t̃n
with n = 2,3, . . . ; with increased coupling strength, they
become steadily more important. If their signs are negative,
a transition to a new polaron with finite kgs is eventually
achieved, once |t̃2| outweighs t̃1; as |t̃2|/t̃1 increases further,
kgs → π/2. A key result comes out of the H/SSH model,
where we saw that increasing the diagonal coupling λH , while
keeping the nondiagonal coupling λSSH constant, suppresses
the lowest-order hopping term t1 faster than it does the higher
terms t2,t3, etc. This then makes it easier for the system to
make the transition (i.e., it then happens for a smaller value
of λSSH). The renormalized band, now parametrized in terms
of the {t̃n}, simply evolves in shape as λSSH increases. For any
finite diagonal λH , the bandwidth remains finite, no matter
what is the nondiagonal λSSH.

(c) The transition line in no way marks any kind of quantum
critical point, or collapse of the bandwidth. It simply marks
the locus of points where the ground-state momentum starts
to shift away from zero. The renormalized bandwidth is never
zero (see the plots of Ek in Figs. 2–4, 7, and 8); although
the k = 0 effective mass diverges along the transition line,
this is simply because k = 0 then marks a point of inflection
of the dispersion relation Ek , at which ∂2Ek/∂k2 = 0. The
renormalized adiabaticity ratio �̃o also is finite at the transition
point.

2. Transitions in the band structure

We have already remarked above that the transition found
here is completely unconnected with the rapid crossover found
in the polaronic bandwidth as λH is increased—indeed there
is never a transition as a function of λH . It also seems
unlikely that anything in particular should happen to the
electron-phonon entanglement at the transition we have found,
since the effective band structure is varying continuously, and
certainly for �o � 1, nothing special happens to the mixing
between the polaronic band and the higher energy continuum.
In this connection we note that Ref. [33] finds some sort of
transition in the entanglement between the polaron and the
phonons, however we believe that what they have found is
unconnected to the transition discussed here. This is because

unlike what we find, their transition only occurs for sufficiently
small �o, and even when present it is at different values of the
coupling.

We emphasize that one expects to see rather complicated
effects when the lowest polaron quasiparticle band begins to
overlap with the optical phonon—at this point level crossing
and real transitions become possible, with a large scale
reorganization of states at the top of the polaron band. This
is not a quantum phase transition, at least in the conventional
sense of the term (indeed, if one applied the term to describe
this overlap of states for a single quasiparticle, it could also
be applied to describe a wide variety of chemical and nuclear
reactions, which would completely divest it of its original
significance).

VII. CONCLUSIONS: MORE GENERAL
MODELS, AND EXPERIMENTS

All the concrete results found in Secs. IV and V were for
the dual H/SSH model. However this model is still fairly
specialized; it involves only couplings linear in the phonon
variables, and couples electrons to gapped optical phonons
only. How general are such results, and what might they have
to do with experiments on real systems? Let us look at these
questions in turn.

A. More general couplings

We can obviously ask what happens if (i) we go to more
general models with combined diagonal and nondiagonal
couplings, and (ii) if we also include acoustic phonons, and
even perhaps higher-order phonon terms, such as the quadratic
couplings in Eq. (2).

Once we look at the system in terms of the effective band
Hamiltonian, it becomes clear that there is almost certainly a
lot more interesting physics to be revealed in dual coupling
models of this kind. This is because there is no reason in
principle why one cannot imagine a destabilization of the
kgs = 0 ground state to other ground states in which, for
example, the t3 hopping term dominates (which could, as t3
began to dominate over t1, have a kgs → π/3 or 2π/3). In
this way one can envisage a hierarchy of states, each having a
different ground-state momentum, with critical lines/surfaces
existing between them. Clearly, to see this full complexity,
one would have to begin by allowing modifications of the
form of the diagonal and nondiagonal couplings g1(q),g2(k,q),
thereby exploiting the full freedom allowed by the momentum
dependence of each—the Holstein and SSH coupling forms
are merely the simplest that one can imagine. One way to
get more interesting physics of this kind would be looking
for nondiagonal couplings g2(k,q) with longer range in real
space, i.e., with a more sharply peaked behavior in momentum
space. Thus a fairly clear prediction arising from our effective
Hamiltonian is that of possible multiple “effective band”
transitions as one varies the nondiagonal couplings.

Another possibility, recently demonstrated in a model
combining SSH and BM coupling [38], appears when the
diagonal coupling is also longer range. In such cases, in-
terference between the two couplings can lead to additional
renormalization of to and even change its sign. For example,

035117-13



MARCHAND, STAMP, AND BERCIU PHYSICAL REVIEW B 95, 035117 (2017)

in the limit �o � 1 of Ref. [38], this occurs through processes
where SSH coupling moves the electron to a neighboring site
while emitting a phonon at the original site, and then BM
coupling absorbs that phonon without changing the electron
location (the order of the two processes can be reversed
and the contributions add up). This generates an additional
contribution to t1 whose sign is controlled by the product of
the two couplings. If it is negative and if its magnitude is large
enough, one expects to see a second transition to a kgs = π .
Indeed, this was observed in Ref. [38].

The way in which any coupling to acoustic phonons
and phonon pair excitations might affect these results is an
interesting question. We tend to believe that they will only
further renormalize the effective band energy ε̃k , as well
as introduce dissipative processes for arbitrarily low energy,
but that they will not alter the basic result that nondiagonal
coupling to optical phonons can reorganize the band and
change the ground-state momentum. However, this question
merits further study.

Finally, it is now known that even small nonlinear coupling
to phonons, of the Holstein type (i.e., local in real space)
has significant effects both on the physics of the single
polaron [55], and at finite carrier concentrations [56]. It should
be clear from the above discussion that such nonlinear terms
in either kind of coupling may open additional channels to
generate longer-range hoppings. Whether this can lead to
qualitatively different behavior from that discussed above for
linear couplings is another question that merits further study.

B. Experiments and conclusions

So far we have not discussed the experimental relevance of
our work. The main reason is that, apart from a few notable
exceptions [57], both computational efforts to calculate these
couplings and the models used to extract such couplings
from fits of experimental measurements tend to focus on a
pure model, i.e., either on only diagonal or only nondiagonal
coupling. What would be far preferable would be attempts
to compare theory and experiment directly, using the kind of
computations discussed here—experiments would allow one
to extract the renormalized parameters rather than the bare
ones, and they will be quite different if the couplings are strong.
It almost goes without saying, in view of the results found here,
that any attempt to compare experiments with theories which
do not include the effect of Peierls couplings is likely to give
very misleading results.

We would like to emphasize that this means that values
for the dimensionless polaronic electron-phonon couplings
attributed to specific materials, which are typically based on
a combination of numerical and experimental data, may be
quite wrong. Again, we would like to draw the analogy with
Fermi liquid theory, to make this clear. In its original form,
the Landau theory was unable to calculate the size of the di-
mensionless fermion-fermion couplings (the so-called “Fermi
liquid parameters”; for 3He, these are the famous Fλ

l ) for a
given system; all it could do was say how they must relate to
experiment. However one cannot match experiments in a one-
to-one relation with the Fermi liquid parameters—if there are
n parameters of significant magnitude for a given system, one
needs to measure n experimental quantities involving indepen-

dent combinations of these parameters before one can establish
the values of these parameters. Even for a simple isotropic,
translationally invariant system like 3He this is not simple. If
one tries to interpret experiments without including some of the
parameters, then the results will simply be wrong. We are in the
same position now with the interpretation of polaronic data—if
we try to extract values of the couplings from experiment while
only including diagonal couplings, then we will get incorrect
answers if the nondiagonal couplings are not very small.

One way out of this impasse could be provided by the use of
cold atoms and/or polar molecules trapped in optical lattices as
simulators of such mixed Hamiltonians [38,58–60]. As typical
in such systems, they would permit the tuning of individual
coupling strengths within wide ranges, such that properties
like those discussed here could be investigated in a significant
area of the parameter space.

To conclude, we have given a fairly exhaustive charac-
terization of the behavior of polarons in the dual coupling
H/SSH model, in terms of an effective band paradigm, in
which diagonal interactions cause a continuous narrowing of
a low-energy quasiparticle band, and nondiagonal interactions
add nonlocal hopping terms to this band, which gradually
change its shape, and eventually force the ground state to
move, at a definite transition point, to nonzero momentum.
Indeed, we see no evidence for, nor any theoretical reason
to expect, any sudden changes to the polaronic band, for any
value of either diagonal or nondiagonal coupling to phonons.
The effective band quasiparticle picture works if the phonon
energy is larger than the renormalized bandwidth—otherwise
level mixing between the phonons and the polaronic states
gives a more complicated picture. The behavior of physical
quantities in an H/SSH model will typically be rather different
from what one expects from a simple Holstein model, and this
needs to be taken into account in comparisons between theory
and experiment.

It is also worth emphasizing again that the generation
of the longer-range effective hoppings in the nondiagonal
models means that their polarons will remain rather light
even at very strong coupling strengths. As a result, studying
the effects of strong off-diagonal coupling at finite particle
concentrations becomes a particularly interesting and relevant
question, unlike for the diagonal models whose polarons
are unphysically heavy in this limit. A recent study [61]
indeed reveals qualitative differences if both diagonal and
off-diagonal couplings are included for a half-filled chain, but
clearly much more work needs to be done before we can fully
appreciate the richness of this problem.
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APPENDIX: BOLD DIAGRAMMATIC MONTE
CARLO TECHNIQUE

We herein distinguish between methods sampling the
Green’s function (G-DMC), and the self-energy (	-DMC).
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FIG. 11. Diagrams contributing to Gi,first(τ, k). Relevant indices
are only shown for the the first few diagrams. Each phonon propagator
i has a momentum qi , and each electron propagator j has a momentum
kj = k − ∑

i′∈{j}i′ qi′ , where {j}i′ is the set of phonons propagators
covering the electron propagator i ′.

The bold diagrammatic Monte Carlo (BDMC) algorithm is
essentially a 	-DMC method, but relies on a faster sampling
based on a self-consistent procedure relying on Dyson’s
identity [41–43]. In this Appendix we provide a more detailed
summary of our own implementation to polaron problems.

1. Green function, self-energy, and diagrammatics

The main quantity of interest here is the T = 0 retarded
polaron Green function. We write this as

G(t, k, μ) = −i�(t)
∑

n

e−it[En(k)−μ]|〈n, k|k〉|2, (A1)

in terms of eigenstates |n, k〉 and En(k) of the full Hamiltonian;
here μ is the chemical potential, which for this one-electron
system is just an overall shift in energy. In the absence of
interactions this reduces to G0(t, k, μ) = −i�(t)e−it[ε(k)−μ].
In the frequency domain we write

G(ω, k, μ) =
∑

n

Zn(k)

ω − En(k) + μ + iη
, (A2)

with infinitesimal η > 0.
As noted by Prokof’ev et al., the sign problem can be

avoided by analytic continuation of the Green’s function
to imaginary time τ = it , and corresponding imaginary
frequency ξ = −iω, so that the exponential in (A1) is real
and positive definite. However, the analytic continuation and
the Fourier transformation do not commute. Writing [42]
Gi(ξ, k, μ) = G(ω = iξ, k, μ), we define the imaginary time
Green’s function to be

Gi(τ, k, μ) = −iG(t = −iτ, k, μ), (A3)

where the superscript i denotes imaginary quantities. For con-
venience we actually calculate G̃i(τ, k, μ) = −Gi(τ, k, μ).
Figure 11 shows Gi(k, τ ) up to second-order diagrams. The
relevant indices which need to be sampled are shown only for
the first-order diagram.

For 	-DMC and BDMC we need to use the proper
self-energy, defined as usual by organizing Gi diagrams as
blocks of inseparable phonon tangles linked by bare electron
propagators, so that the self-energy is the sum of all possible
diagrams that cannot be separated into a number of pieces
by cutting only an electron line. Then Dyson’s equation in
imaginary frequency reads

Gi(ξ, k, μ) = 1

Gi −1
0 (ξ, k, μ) − 	i(ξ, k, μ)

, (A4)

where 	i(ξ, k, μ) is the Fourier transform of 	i(τ, k, μ).
Prokof’ev and Svistunov showed [43] that most of the relevant
observables can be extracted directly from the imaginary
time self-energy without using Dyson’s equation first to
obtain the Green’s function; 	i(ξ, k, μ) is calculated with the
DMC algorithm using similar diagrammatic rules to those of
G-DMC for propagators and the interaction vertices, but now
using the topology of the 	 diagrams. Each diagram included
in 	 corresponds to an infinite number of diagrams in G,
making 	-DMC much more efficient.

2. MC sampling, normalization, and orthonormal functions

In both G-DMC and 	-DMC it is useful to introduce a
constant shift in energy μ to allow for a good sampling of dia-
grams with larger imaginary time. In G-DMC, normalization
is most easily achieved using G̃i(τ = 0, k) = 1. We similarly
can normalize 	̃i(τ, k, μ) = −	i(τ, k, μ) using

	̃i(τ = 0, k) = 1

2π

∫ 2π

0
dq g(k − q, q)g(k, − q), (A5)

which differs from G̃i(τ = 0, k) due to the contribution of two
vertices. This is the approach used in this work. Alternative
normalization schemes consist in enlarging the configuration
space with unphysical diagrams that can be calculated ana-
lytically or selecting a subset of the physical diagrams that
can be calculated analytically. The other diagrams are then
normalized by calculating the ratio between this normalization
sector and the rest of the configuration space.

The accuracy of the normalization and of the data collected
will depend closely on the histogram spacing used. A notable
improvement over a simple histogram is to use a bin size
increasing with τ , giving a better sampling at small times for an
accurate normalization, while accumulating enough points per
bin at large τ to average over statistical noise. When collecting
statistics with variable-size bins, we need to include a factor
of 1/δτ , with δτ the size of the bin.

A further improvement consists in expanding the function
sampled over the range of each bin with a set of orthonormal
functions Fn(τ − τm) centered at the bin center τm. An
arbitrary function f (τ ) can be written as

f (τ ) =
∑

a

caFa(τ − τm) + correction, (A6)

for τ ∈ [τm − δτ/2, τm + δτ/2], with coefficients ca . A finite
set of functions is sufficient if the bin size δτ is not too
large, and if the function is smooth on this range. The
Gram-Schmidt orthogonalization procedure can be used to
normalize the chosen set. The functions used herein are the
Legendre polynomials Pn(τ − τm), but normalized such that∫ δτ/2
−δτ/2 dτF 2

a (τ ) = 1, instead of the usual Pn(1) = 1. Collecting
statistics for a specific bin is now done for each coefficient ca .
After an update, if the diagram has a length that falls on the
bin’s range, each coefficient is updated with

ca → ca + Fa(τ − τm). (A7)
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3. Updates

The minimal set of updates is similar to G-DMC. The set
must include updates to insert and delete phonons, and an
update to change the total length of the self-energy diagram.
We must start with at least one phonon and we cannot allow
this first phonon to be removed; so an extra update to change
the momentum of this first phonon is needed. The absence
of the bare propagator before and after the proper self-energy
part means that the insertion of a phonon must now allow for
a change of the diagram length by considering also phonons
inserted past the current length of the diagram. Each type of
update is assumed to be chosen with equal probability 1/4. We
refer below to the current diagram with all its specific values
for time and momentum indices as ν, and to the suggested
updated diagram as ν ′, while Wν (Wν ′) are the weights of the
current (updated) diagram.

Phonon insertion and deletion can be balanced together. For
insertion, we sample the momentum uniformly over [0, 2π [,
then choose the time of the first vertex τ1 uniformly on ]0, τ ]
with τ the time of the final vertex of the diagram ν. We use
the value of the phonon propagator ∝ e−ω(q)(τ2−τ1) to sample
the time of the second vertex between [τ1, τmax], where τmax is
some fixed cutoff. This keeps the probability distribution closer
to the ratio of weights, but ignores the more complicated values
of the electron propagators. The exponential distribution also
prevents too many update suggestions that would result in
very long and costly diagrams. The resulting probability
distribution for inserting a specific phonon is then

Pinsert = 1

4

1

2π

1

τ

ω(q)e−ω(q)(τ2−τ1)

1 − e−ω(q)(τmax−τ1)
. (A8)

The inverse update, deletion, simply selects one phonon out of
the nph phonons not including the first one, with a probability
of

Pdelete = 1

4

1

nph − 1
. (A9)

The acceptance ratios for the updates are therefore

Rinsert = F(ν ′)
Wν ′

Wν

2πτ

nph

1 − e−ω(q)(τmax−τ1)

ω(q)e−ω(q)(τ2−τ1)
, (A10)

Rdelete = F(ν ′)
Wν ′

Wν

(nph − 1)

2πτ

ω(q)e−ω(q)(τ2−τ1)

1 − e−ω(q)(τmax−τ1)
, (A11)

where the extra factor

F(ν ′) = 1 if ν ′ is a proper 	 diagram,

0 otherwise, (A12)

prevents improper diagrams from being generated.
In our own implementation we actually replace the update to

change the length of the diagram by a more general update that
will shift any vertex to a new time. We first select one of the
vertices at random, except for the first one which we will keep
fixed at τ = 0, and then select a new position for this vertex
anywhere between the previous vertex and the next one. The
last vertex is a special case for which we will select a new
position between the previous one and a maximum τmax. In
its simplest version, the position is uniformly distributed such
that the acceptance ratio is simply the ratio of the weights.

2

=

double counting

+

+

= +

= + + +

+ + +

= + + + +

+ +

double counting

FIG. 12. Drawing first- and second-order self-energy diagrams
with a more complicated (bold) propagator composed of the bare
propagator and first-order Green’s function diagrams. The bold
propagator is shown as a dashed thick line. The diagrams are assumed
to be in frequency space such that the length of a propagator does not
matter.

Finally the update to change the momentum of a phonon
simply selects one of the phonons and changes the momentum
from its previous value to any other value with equal
probability, again with an acceptance ratio equal to the ratio
of the weights.

Given that we never remove the first phonon, ergodicity for
the special case of a Hamiltonian with more than one branch
will require an extra update to change the phonon branch of a
specific phonon.

4. BDMC, bold line, and double counting

Figure 12 shows how we implement the BDMC algorithm.
The first-order diagrams for the self-energy generated with
the thick “bold” line give two diagrams while the two
second-order diagrams now account for 15 types of diagrams.
We have, however, double counted two types of diagrams
up to this order, something that needs to be forbidden to
obtain the correct answer. To improve the bold propagator
self-consistently the BDMC algorithm goes as follows:

(1) Initialize G̃i
≈(τ, k, μ) = G̃i

0(τ, k, μ) for a set {k}.
(2) Draw a first diagram for each k.
(3) MC sampling of diagrams for 	̃i(τ, k, μ) for each k.

Diagrams are drawn using G̃i
≈. Repeat n times.

(4) Fourier transform 	̃i(τ, k, μ) to get 	̃i(ξ, k, μ).
(5) Use Dyson equation to get G̃i

≈(ξ, k, μ).
(6) Fourier transform back to get a new G̃i

≈(τ, k, μ).
(7) Go back to step 3 until convergence G̃i

≈ ≈ G̃i .
We note the need to solve for all momenta at once because

the momentum of a specific electron propagator can have any
value after a phonon is created. The chemical potential should
also be made momentum dependent, to ensure that for each
value of momentum calculated, the method samples the large τ

behavior accurately. When calculating the bold propagator of
momentum k′ inside a diagram of momentum k, we will need to
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= +

forbidden groups of phonons that 
can be absorbed in the bold line

+ ++

+ + +

+

+

+ + +

+…

FIG. 13. Forbidden and allowed self-energy bold diagrams up to
third order.

match the chemical potential by adjusting G̃i
≈[τ, k′, μ(k′)] to

G̃i
≈[τ, k′, μ(k′)] exp{[μ(k) − μ(k′)]τ } to calculate the value of

the diagram. The set of updates for 	-DMC described above
only requires one modification to F(ν ′) which should now
return 1 only if the diagram is not going to cause any double
counting, and 0 otherwise.

Since we are now using a bold line, we need to avoid
drawing a diagram which could be obtained by expanding
the bold line. In other words, any phonon or group of self-
contained phonons lines that can be absorbed in the bold line
without changing the topology and the momentum of the rest of
the diagram should not be allowed. By a self-contained group

0

1
2 3

0 0
1

0
1
2

0
2

0
2
3

0
3

3

0

1 2 3

0 0
1

0
1
2

0
2

0 0
3

3

all phonon lists are different,
diagram allowed

repeated phonon lists,
diagram forbidden

FIG. 14. Algorithm to check if a self-energy diagram is allowed
in BDMC. Each phonon is assigned a unique number and each
propagator has a list of phonons covering it. Diagrams with each
list being unique are allowed, and diagrams with repeated lists are
forbidden.

of phonons, we mean that the group only has one incoming
and one outgoing electron line of the same momentum, and no
other phonon line. Figure 13 gives a few examples of forbidden
and allowed diagrams. Figure 14 shows a simple algorithm
to check if a diagram is forbidden or allowed by assigning
each phonon a unique number and creating lists of phonons
covering each electron propagator. Each propagator needs to
have a distinct phonon list to be allowed. Allowed diagrams
are referred to as fully crossed diagrams.
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