
Journal of Physics: Condensed Matter

PAPER

Differences between the insulating limit
quasiparticles of one-band and three-band cuprate
models
To cite this article: H Ebrahimnejad et al 2016 J. Phys.: Condens. Matter 28 105603

 

View the article online for updates and enhancements.

You may also like
Fractional charge and fractional statistics
in the quantum Hall effects
D E Feldman and Bertrand I Halperin

-

Spin-polaron concept in the theory of
normal and superconducting states of
cuprates
V V Val’kov, D M Dzebisashvili, M M
Korovushkin et al.

-

A time-reversal invariant topological phase
at the surface of a 3D topological insulator
Parsa Bonderson, Chetan Nayak and
Xiao-Liang Qi

-

This content was downloaded from IP address 206.87.213.161 on 11/08/2023 at 16:55

https://doi.org/10.1088/0953-8984/28/10/105603
https://iopscience.iop.org/article/10.1088/1361-6633/ac03aa
https://iopscience.iop.org/article/10.1088/1361-6633/ac03aa
https://iopscience.iop.org/article/10.3367/UFNe.2020.08.038829
https://iopscience.iop.org/article/10.3367/UFNe.2020.08.038829
https://iopscience.iop.org/article/10.3367/UFNe.2020.08.038829
https://iopscience.iop.org/article/10.1088/1742-5468/2013/09/P09016
https://iopscience.iop.org/article/10.1088/1742-5468/2013/09/P09016


1 © 2016 IOP Publishing Ltd Printed in the UK

1. Introduction

Nearly three decades after their discovery [1], the high-
temper ature cuprate superconductors have so far eluded a 
comprehensive explanation. All these layered materials con-
tain CuO2 layers, which are antiferromagnetic insulators in 
the undoped limit and become superconducting upon doping 
[2–5]. The hole-doped side shows a more robust supercon-
ductivity, extending to higher temperatures and over a wider 
range of dopings. The first step towards understanding the 
properties of these compounds is to have a proper descrip-
tion of the motion of one such hole in the CuO2 layer, and of 
the properties of the resulting quasiparticle; this has become 
one of the most studied problems in condensed matter theory 
[2–13].

Despite significant effort, even what is the minimal model 
that correctly describes this low-energy quasiparticle, is still not 

clear. (Note that throughout this work, we consider exclusively 
the case with one hole doped into the parent compound, and 
thus quasiparticle refers to the resulting low-energy excitation 
in this limit, unless explicitly noted otherwise). There is gen-
eral agreement that the parent compounds are charge-transfer 
insulators [14], and wide consensus that most of their low-
energy physics is revealed by studies of a single CuO2 layer, 
modeled in terms of Cu −d3 x y2 2 and O 2p orbitals. Because 
only ligand 2p orbitals hybridize with the −d3 x y2 2 orbitals, it is 
customary to ignore the other O 2p orbitals; this leads to the 
well-known three-band Emery model [15].

However, the Emery model is perceived as too complicated 
so it is often further simplified to a one-band t-J model that 
describes the dynamics of a Zhang–Rice singlet (ZRS) [16–18].  
We know that the t-J model with only nearest-neighbor (nn) 
hopping t is certainly not the correct model because it predicts 
a nearly flat quasiparticle energy along 0, , 0( ) ( )π π− , unlike 
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the substantial dispersion found here experimentally when a 
single hole is doped into a parent compound [19–23]. However, 
its extension with longer range hopping, the t- ′t - ″t -J model, 
was shown to reproduce the correct dispersion [24–32] for 
values of the second and third nn hoppings in rough agreement 
with those estimated from density functional theory [35, 36]  
and cluster calculations [37]. Taking this agreement as proof 
that this is the correct model, both the t-J model and its parent, 
the Hubbard model [38–40], have been assumed to offer a 
good description for all hole concentrations (not just in the 
insulating limit), and have been studied very extensively in the 
context of cuprate physics.

Here we show that this quasiparticle of the t- ′t - ″t -J model 
is qualitatively different from that of the strongly correlated, 

→∞Udd , limit of the three-band Emery model3. While both 
models predict a dispersion in quantitative agreement with 
that measured experimentally (for suitable values of the para-
meters), the factors controlling the quasiparticle dynamics are 
very different. It has long been known that both the longer-
range hopping and the spin fluctuations play a key role in the 
dynamics of the quasiparticle of the t- ′t - ″t -J model. Here we 
use a non-perturbative variational method, which agrees well 
with available exact diagonalization (ED) results, to show that 
spin-fluctuations and longer-range hopping control the quasi-
particle dispersion in different parts of the Brillouin zone, 
and to explain why. In contrast, using the same variational 
approach, it was recently argued that spin fluctuations play 
no role in the dispersion of the quasiparticle of the →∞Udd  
limit of the Emery model [41]. This claim is supported by 
additional results we present here.

This major difference in the role played by spin fluctua-
tions in determining the quasiparticle dynamics shows that 
these models do not describe the same physics in the insu-
lating limit. This suggests that the t- ′t - ″t -J model is not suit-
able for the study of hole-doped cuprates, at least not of the 
very underdoped regime, although it and related one-band 
models might be valid in other regimes, and also for electron-
doped cuprates. As we argue below, it may be possible to ‘fix’ 
one-band models and make them suitable to study underdoped 
cuprates by addition of other terms, although we do not expect 
this to be a fruitful enterprise. Instead, we believe that what is 
needed is a concerted effort to understand the predictions of 
the Emery model at finite hole concentrations. Our results in 
[41] and here, that spin fluctuations of the AFM background 
do not play a key role in the quasiparticle dynamics of this 
three-band model—unlike what was believed to be the case 
based on results from one-band models—could simplify this 
task significantly if it can be shown that spin fluctuations do 
not influence much the effective interactions between such 
quasiparticles, either. This issue is further discussed below.

The article is organized as follows. In Section 2 we review 
the three-band Emery model and briefly discuss the emer-
gence of the one-band and simplified three-band models in 
the asymptotic limit of strong correlations on the Cu sites. 
Section 3 describes the variational method, which consists in 

keeping a limited number of allowed magnon configurations 
in the quasiparticle cloud. Section 4 presents our results of the 
quasiparticle dispersion for both one- and three-band models, 
and their interpretation. Finally, section 5 contains a summary 
and a discussion of the implications of these results.

2. Models

A widely accepted starting point for the description of a CuO2 
layer is the three-band Emery model [15]:

H ∑ ∑ ∑= + +∆ + +
σ

σ
∈ ∈

↓ ↑
∈

↓ ↑T T n U n n U n n .pp pd pd
i

i pp
i

i i dd
i

i i
O,

,
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, ,
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, ,

 

(1)
The sets O and Cu contain ligand O 2p and Cu −d3 x y2 2 orbitals 

respectively, see figure  1(a). For ∈i O, †=σ σ σn p pi i i, , ,  is the 
number of spin-σ holes in that 2p orbital. Similar notation is 
used for the 3d orbitals, their hole creation operators being 

†
σdi, , ∈i Cu.
Tpp is the kinetic energy of the holes moving on the O sub-

lattice, described by a Hamiltonian with first (tpp) and second 
( ′t pp) nearest-neighbour (nn) hopping:

( )† †
ε ε∑ ∑= − +′
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δ δ
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(2)

We set the lattice constant a  =  1. ( )δ =± 0.5, 0.5  and 
( )± −0.5, 0.5  are the vectors between any O and its four nn O 

sites, and =±δr 1 sets the sign of each nn pp hopping integral 

Figure 1. (a) Sketch of the CuO2 layer, with O marked by 
squares and Cu marked by circles. The relevant orbitals are drawn 
at a few sites. The arrows indicate the hopping terms included in 
the three-band Emery model; (b) sketch of the one-band t- ′t - ″t -J 
model. Cu sites host spin degrees of freedom, except at sites 
where a Zhang–Rice singlet is centered (red circle). The arrows 
indicate the various terms in this Hamiltonian; (c) sketch of the 

→∞Udd  limit of the Emery model. Cu sites host spin degrees of 
freedom but the doped holes (red filled square) move on the O 
lattice. The arrows indicate the various terms in this Hamiltonian; 
(d) the full Brillouin zone of the CuO2 lattice (the outer square) 
which encloses the magnetic Brillouin zone (shaded).

t’pp
tpp

t’pp
tpp

kx

tpd
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(c)
Jdd

Jpd tsw

(d) ky
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π

3 Double occupancy is forbidden on Cu so here doping holes residing on O 
interact with spins located on Cu.
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in accordance with the overlap of the 2p orbitals involved, see 
figure 1(a). Next nn hopping is included only between O 2p 
orbitals pointing toward a common bridging Cu, separated by 

( )ε = 1, 0  or (0, 1); hybridization with the 4s orbital of the 
bridging Cu further boosts the value of this hopping integral.

Tpd is the kinetic energy of holes moving between neigh-
bour Cu and O orbitals:

†∑= +
σ

σ σ
∈

+T t r d p h.c.,pd pd
i

i i
u,

u u,
Cu,

, (3)

where ( ) ( )= ± ±u 0.5, 0 , 0, 0.5  are the vectors between a Cu 
and its four nn O sites, and ru are the signs of the overlaps 
of the corresponding orbitals. This term provides the main  
justification for ignoring the other sets of 2p orbitals, because 
symmetry forbids hopping of Cu holes from −d3 x y2 2 orbitals 
into the non-ligand O orbitals. We further discuss this assump-
tion below.
∆pd is the charge transfer energy which ensures that in 

the parent compound the O 2p orbitals are fully occupied 
(i.e. contain no holes). Finally, Upp and Udd are the Hubbard 
repulsion in the 2p and 3d orbitals, respectively. Longer range 
Coulomb interaction between holes on O and Cu can also be 
added, but for the single doped-hole problem analyzed here,  
it leads to a trivial energy shift.

Strong correlations due to the large Udd, the large Hilbert 
space with its three-orbitals basis, and the need for a solu-
tion for a hole concentration equal or larger (in the hole doped 
case) than one per Cu, make this problem very difficult to 
solve. While progress has been made with a variety of tech-
niques [42–62] (which however have various restrictions, such 
as rather high-temperatures and/or small clusters for quantum 
Monte Carlo methods, and/or additional approximations, such 
as setting tpp  =  0 for convenience), it is customary to further 
simplify this model before attempting a solution.

A reasonable way forward is to use the limit →∞Udd  to 
forbid double occupancy of the 3d orbitals. Then, the undoped 
ground-state has one hole per Cu. Virtual hopping processes 
lead to antiferromagnetic (AFM) superexchange between the 
resulting spin degrees of freedom, so that the parent com-
pound is a Mott insulator with long-range AFM order [63]4.

Doped holes enter the O band and the issue is how to accu-
rately describe their dynamics as they interact with the spins 
at the Cu sites. Here we compare two such descriptions for the 
single doped hole case.

2.1. One-band models

In their seminal work [16], Zhang and Rice argued that the 
doped hole occupies the linear combination of the four O 2p 
ligand orbitals surrounding a central Cu, that has the same 
x y2 2−  symmetry like the Cu 3d orbital hosting the spin. 
Furthermore, exchange locks the two holes in a low-energy 
Zhang–Rice singlet (ZRS). They also argued that the dynamics 

of this composite object, which combines charge and spin 
degrees of freedom, is well captured by the one-band model:

[ ˆ ˆ ˆ ]″= + + +′H P P HT T T .AFM (4)

The first term describes the hopping of the ZRS (marked in 
figure 1(b) by the ‘missing spin’ locked in the ZRS) on the 
square lattice of Cu sites that hosts it. Originally only nn hop-

ping T was included: ˆ
⟨ ⟩

†= ∑ +σ σT t d d h.c.i j i j, , , , with ∈i j, Cu. 
The projector P removes doubly occupied states, therefore this 
term allows only Cu spins neighboring the ZRS to exchange 
their location with the ZRS. This mimics the more complex 
reality of the doped hole moving on the O sublattice and 
forming ZRS with different Cu spins.

Although in [16] it was argued that only nn ZRS hoping 
is important, longer-range second ( ˆ ′T ) and third ( ˆ″T ) nn hop-
ping was later added the model on a rather ad-hoc basis. As 
discussed below, this is needed in order to find a quasiparticle 
dispersion similar to that measured experimentally. These 
terms are defined similarly to T̂  with hopping integrals ′t  and 
″t , respectively. For cuprates, ″∼− ∼′t t t t/ 0.3, / 0.2 are consid-

ered to be representative values [64], in agreement with var-
ious estimates [35–37]. In the following, we refer to this as the 
t- ′t - ″t -J model, whereas if ″= =′t t 0 we call it the t-J model.

The term ⟨ ⟩= ∑ ⋅H J S Si j i jAFM ,  describes nn AFM super-
exchange between the Cu spins Si, with ∼J t/ 0.3 for cuprates 
[33, 34]. It leads to AFM order in the undoped system [63], 
and also controls the energy of the cloud of magnons that are 
created in the vicinity of the ZRS, as it moves through the 
AFM.

The t-J model also emerges as the →∞U  limit of the 
Hubbard model [38–40], but with additional terms of order 
J. One of them, ⟨ ⟩− ∑J n n/4 i j i j, , gives trivial energy shifts for 
both the undoped and the single-hole doped cases of interest 
to us in this work, so its presence can be safely ignored in 
this context. More interesting is the so-called three-site term 

ˆP PT s3  [65–68], where

ˆ ( )† † †

ε ε
ε ε ε ε∑ ∑= −

σ
σ σ σ σ σ σ σ

∈ ≠
+ − + + − + −

′
′ ′T

J
d n d d d d d

4
s

i
i i i i i i i3

Cu,
, , , , , , ,

 

(5)
describes ZRS hopping through an intermediate Cu site and 
permits spin swapping with the spin at this intermediate site.  
As shown below, this term affects the quasiparticle dispersion 
but it is not clear that it should be included in the model, because 
the original Hamiltonian is the Emery, not the Hubbard, model.

In fact, a perturbational derivation of the low-energy 
Hamiltonian obtained by projecting the three-band model onto 
ZRS states reveals a much more complicated Hamiltonian 
than the t- ′t - ″t -J model, with many other terms [69, 70]. We 
are not aware of a systematic study of their impacts, but their 
presence underlies one important issue with this approach: the 
hoped-for simplification due to the significant decrease in the 
size of the Hilbert space comes at the expense of a Hamiltonian 
whose full expression [69, 70] is very complicated. Using 
instead simpler versions like the t- ′t - ″t -J model may result in 
qualitatively different physics than that of the full one-band 
model. Here we argue that this is indeed the case.

4 Of course, long range AFM order is forbidden in a 2D layer by the 
Mermin–Wagner theorem, see [63]. However, in the real material there is 
weak coupling between CuO2 layers, sufficient to stabilize the long range 
AFM order.
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2.2. Simplified three-band model

An alternative is to begin at the same starting point, i.e. the 
limit →∞Udd  resulting in spin degrees of freedom at the Cu 
sites. However, the O sublattice on which the doped hole 
moves is kept in the model, not projected out like in the one-
band approach, see figure 1(c). This leads to a bigger Hilbert 
space than for one-band models (yet smaller than for the Emery 
model) but because spin and charge degrees of freedom are no 
longer lumped together, the resulting low-energy Hamiltonian 
is simpler and makes it easier to understand its physics.

The effective model for a layer with a single doped hole, 
which for convenience we continue to call ‘the three-band 
model’ although it is its →∞Udd  approximation, was derived 
in [71] and reads:

= + + +H H H T T .J ppeff AFM swappd (6)

The meaning of its terms is as follows:

⟨ ⟩
∑= ⋅
′

H J S Sdd
i j

i jAFM
,

is again the nn AFM superexchange between the Cu spins 
Si, so ≡J Jdd  of the one-band models. The main difference 
is indicated by the presence of the prime, which reflects the 
absence of coupling for the pair that has the doping hole on 
their bridging O. The next term,

∑= ⋅
∈

+H J s SJ pd
i O

i i
u

u
,

pd

is the exchange of the hole’s spin † σ= ∑α β α αβ βp psi i i
1

2 ,  with 

its two nn Cu spins. It arises from virtual hopping of a hole 
from a Cu to the O hosting the doped hole.

Like in (1), Tpp is the kinetic energy of the doping hole 
as it moves on the O sublattice. It is supplemented by Tswap 
which describes effective hopping mediated by virtual  
processes where a Cu hole hops onto an empty O orbital,  
followed by the doping hole filling the now empty Cu state 
[71]. This results in effective nn or next nn hopping of the 
doped hole, with a swapping of its spin with that of the Cu 
involved in the process. The explicit form of this term is:

⟩⟨†∑ ∑= − | |
σ σ

σ σ σ σ−
∈ ≠

+ +
′ ′

′ ′ ′ ′T t s p p i i ,sw
i

i i
u u

u u u, u ,swap
Cu, ,

reflecting the change of the Cu spin located at Ri from σ to 
σ′ as the hole changes its spin from σ′ to σ while moving 
to another O. The sign s 1=±η  is due to the overlaps of the 
respective 2p and 3d orbitals.

For typical values of the parameters of the Emery model 
[2–5] and using Jdd (∼0.125 eV) as the unit of energy, the 
dimensionless values of the other parameters are ∼t 4.1pp , 
∼′t t0.6pp pp, ∼t 3.0sw  and ∼J 2.8pd . We use these values in the 

following, noting that the results are not qualitatively changed 
if they are varied within reasonable ranges. For complete tech-
nical details of the derivation of this effective Hamiltonian 
and further discussions of higher order terms, as well as 
a comparison with other work along similar lines [11, 13, 
72–76], the reader is referred to the supplemental material 
of [71].

3. Method

The ground state of the undoped layer is not a simple Néel-
ordered state. This is due to the spin fluctuations term 

( )⟨ ⟩= ∑ +− + + −H J S S S S/2 i j i j i jsf ,  present in HAFM, which play an 
important role in lower dimensions. A 2D solution can only 
be obtained numerically, for finite size systems [77–82]. The 
absence of an analytic description of the AFM background 
has been an important barrier to understanding what happens 
upon doping, because the undoped state itself is so complex. 
It is also the reason why most progress has been computa-
tional in nature and mostly restricted to finite clusters. While 
such results are very valuable, it can be rather hard to gauge 
the finite-size effects and, more importantly, to gain intuition 
about the meaning of the results.

Because our goal is to verify whether the two kinds of 
models have equivalent quasiparticles upon one-hole doping, 
which requires us to understand qualitatively what controls 
their dynamics, we take a different approach. We use a quasi-
analytic variational method valid for an infinite layer, so that 
finite-size effects are irrelevant. By systematically increasing 
the variational space we can gauge the accuracy of our guesses 
and, moreover, also gain intuition about the importance of 
various configurations and the role played by various terms 
in the Hamiltonians. Where possible, we compare our results 
with those obtained by ED for small clusters, providing fur-
ther proof for the validity of our method.

For simplicity, in the following we focus on the one-band 
model; the three-band model is treated similarly, as already 
discussed in [41]. Because we do not have an analytic descrip-
tion of the AFM background wavefunction, we divide the task 
into two steps.

3.1. Quasiparticle in a Néel background

In the first step we completely ignore the spin fluctuations by 
setting →H 0sf , to obtain the so-called t- ′t - ″t -Jz model. As a 
result, the undoped layer is described by a Néel state ⟩|N  with 
up/down spins on the A/B sublattice, without any spin-fluc-
tuations. One may expect this to be a very bad starting point, 
given the importance of spin-fluctuations for a 2D AFM. 
At the very least, this will allow us to gauge how important 
these spin fluctuations really are, insofar as the quasiparticle 
dynamics is concerned, when we include them in step two.

It is also worth remembering that the cuprates are 3D sys-
tems with long-range AFM order stabilized up to rather high 
temperatures by inter-layer coupling, in the undoped com-
pounds. The spin fluctuations must therefore be much less 
significant in the undoped state than is the case for a 2D layer, 
so our starting point may be closer to reality than a wavefunc-
tion containing the full description of the 2D spin fluctuations.

The introduction of one doped hole results in the appear-
ance of one ZRS which evolves among the Cu spins. Magnons 
(spins wrongly oriented with respect to their sublattice5) are 

5 If AFM background fluctuations are forbidden, the ‘magnon’ is just an 
immobile flipped (wrongly oriented) spin. However, when background 
fluctuations are allowed in the vicinity of the carrier, they allow such flipped 
spins to move so the magnon acquires its own dynamics.
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created or removed when the ZRS hops between the two 
magnetic sublattices. The creation of an additional magnon 
costs up to 2J in Ising exchange energy as up to four bonds 
involving the magnon now become FM. This naturally sug-
gests the introduction of a variational space in terms of the 
maximum number of magnons included in the calculation. i.e. 
allowed to be part of the cloud that forms in the vicinity of the 
ZRS and dresses it to give rise to the quasiparticle.

This variational calculation is a direct generalization of that 
of [83], where the quasiparticle of the t-Jz model was studied 
including configurations with up to 7 adjacent magnons. That 
work showed that keeping configurations with up to three 
magnons is already accurate if t/J is not too large, so here 
we restrict ourselves to this smaller variational space. (Note 
that three is the minimum number of magnons to allow for 
Trugman loops [84], see discussion below, so a lower cutoff is 
not acceptable). The configurations included are the same as 
in [84], where this type of approach was first pioneered.

Specifically, our goal is to calculate the one-hole retarded 
Green’s function at zero temperature:

( ) ⟨ ˆ ( ) ⟩†ω ω= | |↑ ↑G d G dk, N N ,k, k, (7)

where ˆ ( ) ( )→ω ω η= − +η
−

+ HG lim i0
1 is the resolvent of the 

one-band Hamiltonian (4) and = ∑↑ ∈
⋅

↑d de .
N i ik,

k R1
Cu

i
,A

i  
Here →∞N  is the number of sites in each magnetic sublat-
tice, k is restricted to the magnetic Brillouin zone depicted in 
figure 1(d), and we set =� 1. The spectrum is identical if the 
quasiparticle is located on the spin-down sublattice: conserva-
tion of the total z-axis spin guarantees that there is no mixing 
between these spin subspaces.

The appropriate matrix element of the identity 
ˆ ( )( )ω ω η+ − =HG i 1 leads to the equation of motion:

[ ( )] ( ) ( )∑ω η ω ω+ − − − =εε
ε

J G t Fk k ki , , , 1.1 (8)

The four vectors ( ) ( )=± ±ε 1, 0 , 0, 1  point to the nn Cu sites, 
J is the Ising exchange energy cost for adding the ZRS (four 
AFM bonds are removed) and

( ) [ ( ) ( )]″= + +′ε t k k t k kk 4 cos cos 2 cos 2 cos 2x y x y (9)

is the kinetic energy of the ZRS moving on its own magnetic 
sublattice. NN hopping creates a magnon as the hole moves to 
the other magnetic sublattice; this introduces the one-magnon 
propagators:

( ) ⟨ ˆ ( ) ⟩†∑ω ω= | |
∈

⋅
↑

−
+ ↓ε εF

N
d G S dk, ,

1
e N N

i
i i

k R
k,1

Cu

i
,

A

i

with the hole on the B sublattice and therefore a magnon on a 
nn A site, to conserve the total spin.

Equation (8) is exact (for an Ising background) but its solu-
tion requires the ( ) ( )ω ≡ε εF Fk, ,1 1  propagators. Their equa-
tions of motion (EOM) are obtained similarly:

[ ] ( ) ( ) ( )

[ ( ) ( ) ( )]

ε ε ε

ε ε ε ε
ε ε

ε ε

∑

∑

″ω η

ω

+ − = + −

+ + +

′ ′

′
⊥

⊥

′

′

J F t F t F

t G F Fk

i
5

2

, , , .

1 1 1

2 2

 (10)

Note that second and third nn hopping keeps the hole on 
the B sublattice and thus conserve the number of magnons, 
linking F1 to other F1 propagators. However, nn hopping 
links F1 to ( )ωG k,  if the hole hops back to the A sublattice 
by removing the existing magnon, but also to two-magnon 
propagators, F2, if it hops to a different A site than that hosting 
the first magnon. The equation  above imposes the varia-
tional restriction that the two magnons are adjacent, so only 

F d G S S dk, , , N Ni N i i ik,2 Cu
e

,A

ik Ri

( ) 〈 ˆ ( ) 〉†ε ε ε ε εω ω= ∑ | |′ ∈ ↑
−
+
+

+ + ↑′
⋅

 

with + ≠′ε ε 0 are kept. This is a good approximation for 
the low-energy quasiparticle whose magnons are bound in its 
cloud, and thus spatially close. (Because fewer AFM bonds 
are disrupted, these configurations cost less exchange energy 
than those with the magnons apart). Of course, the hole could 
also travel far from the first magnon (using second and third nn  
hopping) before returning to the A sublattice to create a 
second magnon far from the first. Such higher energy states—
ignored here but which we consider in the three-band model, 
see below—contribute to the spin  −  polaron  +  one magnon 
continuum which appears above the quasiparticle band. The 
relevance of this higher-energy feature is discussed below.

EOM for the new propagators are generated similarly. We 
do not write them here because they are rather cumbersome, 
but it is clear that the EOM for F2 link them other F2, as well 
as to some of the F1 and to 3-magnon propagators F3. Again 
we only keep those propagators consistent with the varia-
tional choice of having the 3-magnons on adjacent sites. Since 
4-magnon configurations are excluded, the EOM for F3 link 
them only to other F3 and to various F2. The resulting closed 
system of coupled linear equations  is solved numerically to 
find all these propagators, including ( )ωG k, .

With ( )ωG k,  known, we can find the quasiparticle dis-
persion ( )E k  as the lowest pole of the spectral function 

( )     ( )ω ω= −
π

A Gk k, Im ,1 . Of course, this is the quasiparticle 

in a Néel background, i.e. when the spin fluctuations of the 
AFM background are completely ignored.

3.2. Quasiparticle in a background with spin fluctuations

To estimate the effect of the background spin fluctuations 
(due to spin flipping of pairs of nn AFM spins, described 
by Hsf) we again invoke a variational principle. Spin fluc-
tuations occuring far from the ZRS should have no effect on 
its dynamics, since they are likely to be ‘undone’ before the 
hole arrives in their neighborhood (they can be thought of as 
vacuum fluctuations). The spin fluctuations that influence the 
dynamics of the hole must be those that occur in its immediate 
vicinity and either remove from the quasiparticle cloud pairs 
of nn magnons generated by its motion, or add to it pairs of 
magnons through such AFM fluctuations.

For consistency, we keep the same variational con-
figurations here like we did at the previous step. Then, 
(8) acquires an additional term on the lhs equal to: 

( )( ) ω− ∑ ′+ ≠
⋅ +

′
′ ε εε ε

ε ε F ke , , ,J k
2 0

i
2 , describing processes 

where a pair of magnons is created through spin-fluctuations 
near the hole. Similarly, the EOMs for F1/F2/F3 acquire terms 
proportional to F3/G/F1 respectively, because spin fluctuations 
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add/remove a pair of magnons to/from their clouds. This mod-
ified system of linear equations  has a different solution for 

( )ωG k, , which accounts for the effects of the spin fluctuations 
that occur close to the hole. Comparison with the previous 
results will allow us to gauge how important these ‘local’ spin 
fluctuations are to the quasiparticle’s dynamics.

Accuracy can be systematically improved by increasing 
the variational space, and implementation of such generaliza-
tions is straightforward. As shown next, the results from the 
variational calculation with configurations of up to three mag-
nons located on adjacent sites compares well against available 

ED results and allows us to understand what determines the 
quasiparticle’s dispersion, so we do not need to consider a 
bigger variational space.

The three-band model is treated similarly, with the vari-
ational space again restricted to the same configurations with 
up to three adjacent magnons. Results for a quasiparticle in 
the Néel background (no spin fluctuations) were published 
in [41], where the reader can find details about the corresp-
onding EOMs (see also [85]). Here we will focus primarily 
on the effect of local spin fluctuations. These are introduced 
as explained above, by adding to the EOMs terms consistent 
with the variational space and whose magnon count varies by 
two.

4. Results

4.1. One-band model

We first present results for the one-band model. It is impor-
tant to note upfront that it has long been known that both spin 
fluctuations and the longer range hopping must be included 
in order to obtain the correct dispersion for its quasiparticle 
in the insulating limit [22, 32]. (By ‘correct dispersion’ we 
mean one in agreement with experimental measurements for 
the undoped compounds [21, 23]). Our results confirm these 
facts, as shown next.

The novelty is, thus, not in finding these results, but in 
using them to validate our variational method and, more 
importantly, to untangle the specific role that spin fluctuations 
and long-range hopping play in arriving at this dispersion. To 
the best of our knowledge, this had not been known prior to 
this work.

The quasiparticle dispersion ( )E k  is shown in figure 2 for 
various models: in panel (a) we set ″= =′t t 0 and freeze 
spin-fluctuations (t-Jz model). In panel (b), spin fluctuations 
close to the hole are turned on as discussed; for simplicity we 
call this the t-J model, although the true t-J model includes 
all spin fluctuations. In panel (c), we further add the longer 
range hopping; for simplicity, we call this the t- ′t - ″t -J model 
although, again, spin fluctuations are allowed only near the 
hole. Finally, in panel (d) we keep the longer range hopping 
but freeze the spin fluctuations; this is the t- ′t - ″t -Jz model. 
Panel (e) shows model dispersions explained below.

The quality of our variational approximation is demon-
strated in panels (b) and (c). Its results (thick lines) are in 
fair agreement with those of ED for a 32-site cluster, which 
includes all spin fluctuations [22, 32]. Results in panel (c) also 
agree well with those measured experimentally in the parent 
compounds [23, 32]. Our bandwidths are slightly different; 
some of this may be due to finite-size effects, as the ED band-
width varies with cluster size [71]. This also suggests that more 
configurations need to be included before full conv ergence is 
reached by our variational method (these would increase the 
bandwidth in panel (b) and decrease it in panel (c), see below). 
This conclusion is supported by [83], where full convergence 
for the t-Jz model was reached when configurations with  
up to five magnons were included. Nevertheless, the agree-
ment is sufficiently good to conclude that the essential  

Figure 2. Quasiparticle energy ( )E k  along several cuts in the 
Brillouin zone for various one-band models. In all cases J/t  =  0.3 
while ″= =′t t 0 in (a),(b), and ″= − =′t t t t/ 0.3, / 0.2 in (c),(d). 
Lines show the results of the variational calculation with the 
spin fluctuations frozen in (a) and (d), or allowed only near the 
hole in (b) and (c). Symbols in (b) and (c) are the corresponding 
ED results for a 32-site cluster [22, 32]. (e) Dispersion ( )E kqp  of 
(11) for E0  =  0 and = − =t t1, 02 3  (black); = =t t1, 0.52 3  (red); 
= − =t t1; 2/32 3  (green).
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aspects of the quasiparticle physics are captured by the three-
magnon variational calculation, and to confirm that it suffices 
to include spin fluctuations only near the hole.

Before continuing our discussion, it is worth mentioning 
that results with similar agreement with the ED dispersion 
were also obtained with various other approximations [6–13, 
24–31, 33, 34], e.g. the self-consistent Born approximation.  
A thorough comparison between all these approaches is 
beyond the scope of our work.

The results in figure 2 clearly show that both spin fluctua-
tions and longer-range hopping are needed to achieve the cor-
rect quasiparticle dispersion shown in panel (c), with deep, 

nearly isotropic minima at ( )π π,
2 2

. Absence of longer-range 
hopping leads to the well-known problem of the rather flat dis-
persion on ( ) ( )π π−0, , 0 , see panel (b) [19, 20, 22]. In panel 
(d), we show that if the longer range hopping is included but 
spin fluctuations are absent, the dispersion is rather flat along 
the ( ) ( )π π−0, 0 ,  direction. We are not aware of previous 
studies of this case.

Although ( )E k  looks very different in the four cases, it turns 
out that all can be understood in a simple, unified picture. The 
key insight is that the quasiparticle lives on one magn etic sub-
lattice, because of spin conservation. As a result, its generic 
dispersion must be of the form:

( ) ( )= + + +E E t k k t k kk 4 cos cos 2 cos 2 cos 2qp x y x y0 2 3 (11)

i.e. like the bare hole dispersion ( )ε k  of (9), but with renor-
malized second and third nn hoppings → →″′t t t t;2 3. There 
cannot be any effective nn hopping of the quasiparticle 
because this would move it to the other sublattice; this cannot 
happen without changing the magnetic background, so t1  =  0. 
Longer range hoppings that keep the quasiparticle on the same 
sublattice may also be generated dynamically, but their mag-
nitude is expected to be small compared to t t,2 3, hence (11). 
Thus, understanding the shape of the quasiparticle dispersion 
requires understanding the values of t2 and t3.

We begin the analysis with the t-Jz model. Its quasiparticle 
is extremely heavy, as shown in panel (a). Note that the vertical 
scale is an order of magnitude smaller than for the other panels. 
The reason is that every time the hole hops, it moves to the 
other magnetic sublattice and it must either create or remove 
a magnon, to conserve the total spin. As the hole moves away 
from its original location, it leaves behind a string of magnons 
whose energy increases roughly linearly with its length. This 
could be expected to result in confinement (infinite effective 
mass), but in fact the quasiparticle acquires a finite dispersion 

by executing Trugman loops (TL) [84], the shortest of which 
is sketched in figure 3(a). By going nearly twice along a closed 
loop, creating a string of magnons during the first round and 
removing them during the second round, the hole ends up at 
a new location on the same magnetic sublattice. Only second 
and third nn hopping terms can be generated through TL irre-
spective of their length, and | | | |� �t t J3,TL 2,TL  if ∼t J/ 3 [83]. 
Indeed, setting →<t t0, 02 3  in ( )E kqp  of (11) leads to the black 
curve in figure 2(e)6, which has the same shape as that of panel 
(a) (the bandwidth is proportional to | |t2,TL ). This dispersion 

is completely wrong, with ( )π π,
2 2

 as a saddle point instead of 
the ground state. Clearly, ignoring both longer range hopping 
and spin fluctuations changes completely the dynamics of the 
quasiparticle.

When the spin fluctuations are turned on in the t-J model, 
they act on a time scale τ ∼ J1/sf  much faster than the slow 
dynamics due to TL, τ ∼ | |t1/TL 2,TL . The main contributions 
to t2 and t3 now come from processes like those sketched in 
figures  3(b) and (c), where spin fluctuations remove pairs 
of magnons created by nn hopping of the hole, leading to 

| | | |� �t t t t,2,sf 2,TL 3,sf 3,TL . Moreover, we expect =t t22,sf 3,sf 
because these effective hoppings are generated by similar pro-
cesses but there are twice as many leading to second com-
pared to third nn hopping, as the hole can move on either side 
of a plaquette.

Indeed, the t-J dispersion of panel (b) has a shape similar to 
that of ( )E kqp  with =t t22 3, shown as a red curve in figure 2(e)7. 
Because ( ) ( )π− = − + −E k k E t t t k, 2 4 2 cos 2qp 0 2 3 2 , it has a 
perfectly flat dispersion along ( ) ( )π π−0, , 0  for =t t22 3. The 
dispersion in panel (b) is not perfectly flat along this cut, so in 
reality ≈t t22 3. The small correction from the factor of 2 is likely 
due to higher order processes, as well as contributions from TL 

(which remain active). Ignoring it, we find the corresp onding 

bandwidth ( ) ( )− = + =π πE E t t t0, 0 , 4 8 8qp qp 2 2 2 3 2, suggesting 
that the effective hoppings generated with spin fluctuations 
are of the order ≈ ≈t t J2 /42,sf 3,sf .

Next, we consider what happens if instead of (local) spin 
fluctuations, we turn on longer-range hopping. Unlike in the 
t-Jz model, the quasiparticle of the t- ′t - ″ ∗t -Jz model should be 
light because the longer range hoppings ″′t t,  allow the hole 
to move freely on its magnetic sublattice. It can therefore 

Figure 3. (a) Shortest Trugman loop that generates a t2,TL contribution. A much smaller t3,TL is also generated, see [83]; generation of 
(b) t2,sf and (c) t3,sf terms due to spin-fluctuations; (d) process that renormalizes ″t . The square shows the location of the hole, while the 
circles show magnons (wrongly oriented spins). The remaining spins are in their Néel order orientation and are not shown explicitly. The 
short thick arrows indicate the next step in the process, while the thin arrows in the final sketch show the effective quasiparticle hopping 
generated by those processes.

t2,TL t2,sf

t3,sf t"*

t t t t t ta)

c) d)

t t

J/2

b)

t t J/2 tt t" t t

6 In the limit �t J, ∼−t t J/TL2,
6 5 arises from sixth order perturbation theory, 

see [83].
7 In the limit �t J, = ∼t t t J J2 /sf sf2, 3,

2 2 arises from third order perturbation 
theory.
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efficiently remove magnons created through its nn hopping, 
without having to complete the time-consuming Trugman 
loops. The presence of the magnon cloud renormalizes these 
bare hoppings to smaller values, as is typical for polaron 
physics. Figure 3(d) shows one such process that renormal-
izes →″ ″ ∗t t . Similar processes (not shown) renormalize 

→ ′′ ∗t t  so both hopping integrals should be renormalized by 
comparable factors. As a result, we expect a dispersion like 

( )E kqp  but now with ′ ″ ″= ≈ ′∗ ∗t t t t t t/ / /2 3 , if we ignore the 
small TL contrib utions. This indeed agrees with the result in 
panel (d), as shown by its comparison with the green curve in 
figure 2(e) where ( )E kqp  is plotted for ″= = −′t t t t/ / 1.52 3 . For 
= −t t22 3, ( )E kqp  would be perfectly flat along ( ) ( )π π−0, 0 , . 

Thus, the change in the relative sign explains why now the dis-
persion is nearly flat along ( ) ( )π π−0, 0 ,  and maximal along 
( ) ( )π π−0, , 0 , in contrast to the previous case. However, 
while ≈t t/2,sf 3,sf  2 is always expected for the t-J model so its 
dispersion must have a shape like in figure 2(b), in the t- ′t - ″t -Jz 
model the ratio ′ ″∗ ∗t t/  mirrors the ratio ″′t t/ . If this had a very 
different value than ≈  −  2, the quasiparticle dispersion would 
change accordingly.

These results allow us to understand the dispersion of the 
t- ′t - ″t -J quasiparticle. This must have contributions from both 

the spin fluctuations and the renormalized longer range hop-
pings, plus much smaller TL terms, because the processes 
giving rise to them are now all active. Indeed, the curve in 
panel (c) of figure 2 is roughly equal to the sum of those in 
panels (b) and (d); it is interesting to note that the t2 contrib-
utions nearly cancel out, and therefore the dispersion is 
dominated by effective third nn hopping terms. The isotropic 

minimum at ( )π π,
2 2

 is therefore an accident, since the disper-

sion along ( ) ( )π π−0, 0 ,  is controlled by spin fluctuations, 
and that along ( ) ( )π π−0, , 0  is due to the renormalized longer 
range hoppings. More precisely, because ≈t t22,sf 3,sf, the 
contrib utions coming from spin fluctuation interfere destruc-
tively for momenta along ( ) ( )π π−0, , 0  so dispersion here is 
controlled by the renormalized ′ ″≈−∗ ∗t t1.5 , and viceversa. 
If ′≈ | |∗t t2,sf  (which happens to hold because ∼ | |′J t ), the sum 

gives nearly isotropic dispersion near ( )π π,
2 2

. If we change 

parameters significantly, the dispersion becomes anisotropic 
(not shown).

Before moving on to contrast this behavior with that of 
the quasiparticle of the three-band model, we briefly dis-
cuss the effect of the three-site term of (5). The variational 
results for the four models are shown in figure 4. Where direct 
compariso ns can be made, they are again in good quantitative 
agreement with other work where this term has been included, 
such as in [86]. Its inclusion has a qualitative effect only for 
the t-Jz model, where the shape of the dispersion is changed in 
its presence. This is not very surprising because, as discussed, 
the Trugman loops which control behavior in that case are 
very slow processes, and their effect can easily be overcome 
by terms that allow the hole to move more effectively. The 
three-site term is such a term and its presence increases the 
bandwidth not just for the t-Jz model, but for all cases. For 
the other three models, however, the inclusion of this term 
changes the dispersion only quantitatively: the bandwidth is 
increased but the overall shape is not affected much. The big-
gest change is along ( ) ( )π π−0, 0 , , as expected because the 
three-site term generates effective second and third nn hop-
pings with the same sign and a 2/1 ratio, i.e. similar to t2, sf and 
t3, sf. As a result, its presence mimics (and boosts) the effect of 
the local spin fluctuations.

It is interesting to note that if we allow this term to be large 
enough, we could obtain a dispersion with the correct shape 
even in the absence of spin fluctuations. However, the scale of 
this term is set by J, it is not a free parameter. As a result, we 
conclude that with its proper J energy scale, this terms does 
not change qualitatively the behavior of the quasiparticle of 
the one-band model (apart from the t-Jz case), although its 
inclusion may, in principle, allow for better fits of the exper-
imental data.

4.2. Three-band model

Results for the simplified three-band model with the spin-fluc-
tuations frozen off were discussed in [41]. To keep this work 
self-contained, we show in figure  5 the most relevant data 
for the issue of interest, namely the quasiparticle dispersion 

Figure 4. Quasiparticle dispersion when the three-site term of 
(5) is included in the one-band Hamiltonians (dashed lines). For 
comparison, the dispersions without this term are also show (full 
lines from figure 2).
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( )E k  obtained in a variational calculation with the maximum 
number of magnons nm  =  0–3. These results already suffice to 
illustrate the qualitative difference between the quasiparticle 
dynamics in the one-band and the three-band models.

The nm  =  0 curve plots the dispersion if no magnons are 
allowed, i.e. not only the spin fluctuations of the AFM back-
ground but also spin-flip processes due to Jpd and Tswap are 
turned off. It is important to emphasize that the resulting dis-
persion does contain a very important contribution from the 
terms in Tswap describing hopping of the hole past Cu spins 
with the same spin projection, so that the spin-swap leaves the 
spins unchanged.

In fact, it is the interference between these terms with those 
of Tpp that leads to this interesting bare dispersion, which 

already has deep, nearly-isotropic minima near ( )π π,
2 2

. If we 
set tsw  =  0, the bare dispersion due to only Tpp has the ground-
state at ( )π π, , whereas if Tpp  =  0, the dispersion due to the 
allowed terms in Tswap is perfectly flat because the hole is then 
trapped near a like Cu spin. However, as long as ∼t tpp sw, the 
isotropic minimum emerges at ( )π π,

2 2
. In this context, it is 

useful to note that in many numerical studies of the Emery 
model, tpp was set to zero simply for convenience. Our results 
suggest that this choice changes the quasiparticle dynamics 
qualitatively, and is therefore unjustified.

The bare hole dispersion in the three-band model thus 
already mimics this key aspect of the correct quasiparticle dis-
persion, unlike in the one-band model. Allowing the quasipar-
ticle cloud to emerge by allowing the hole to create and absorb 
magnons in its vicinity, through spin-flip processes controlled 
by Jpd and Tswap, further renormalizes the bandwidth (a typ-
ical polaronic effect) without affecting the existence of the 
isotropic dispersion near ( )π π,

2 2
. This magnon cloud is very 

important, however, for stabilizing the low-energy quasipar-
ticle, as demonstrated by the significant lowering of the total 

energy. In particular, at least one magnon must be present in 
order for a ZRS-like object to be able to form, and indeed the 
nm  =  1 curve is pushed down by  ∼  10 Jdd compared to the 
bare dispersion. We further analyze the relevance of the ZRS 
solution below.

The small difference between the nm  =  2 and nm  =  2, r 
results proves that magnons indeed sit on adjacent sites in the 
cloud. (The latter solution imposes this constraint explicitly, 
whereas the former allows the magnons to be at any distance 
from each other. In both cases, the hole can be arbitrarily 
far from the magnons, although, as expected, configurations 
where the hole is close to the last emitted magnon have the 
highest weight in the quasiparticle eigenstates.) At higher 
energies, however, these two solutions are qualitatively dif-
ferent. The former contains the expected quasiparticle  +  one-
magnon continuum starting at +E J2gs dd1, , where E1, gs is the 
ground-state energy of the quasiparticle with nm  =  1, and 
2Jdd is the energy cost to create a magnon far from it. Their 
sum is the energy above which higher-energy (excited) states 
must appear in the spectrum, describing the quasiparticle 
plus one magnon not bound to its cloud. The presence of this 
continuum guarantees that in the fully converged limit, the 
quasiparticle bandwidth cannot be wider than 2Jdd, since the 
quasiparticle band is always ‘flattened out’ below this con-
tinuum (another typical polaronic behavior). For both n2, r and 
n3, r calcul ations, the quasiparticle is already heavy enough 
that its dispersion fits below the corresponding continuum. 
This is why enlarging the variational space with configura-
tions needed to describe this feature, with at least one magnon 
located far from the cloud, does not affect the quasiparticle 
dispersion much (see [41] for more discussion).

The bandwidth of the nm  =  3, r dispersion is in decent 
agreement with numerical results for this model, as discussed 
next, suggesting that this variational calculation is close to 
fully converged. The fact that the cloud is rather small should 
not be a surprise. The variational approach explicitly imposes 
the constraint that there is at most one magnon at a site.  
As magnons sit on adjacent sites when bound in the quasipar-
ticle cloud, they prefer to occupy a compact area to minimize 
their exchange energy cost, thus creating a domain in the other 
Néel state (down-up instead of up-down). The hole prefers to 
sit on the edge of this domain, because being inside it is equally 
disadvantageous to being outside, i.e. far from magnons. 
However, since on the boundary the hole can interact with only 
one magnon at one time, a large and costly domain is unlikely.

We can now contrast the dynamics of the quasiparticle in 
the three-band model if the spin fluctuations are frozen out 
with the corresponding one-band model, namely the t- ′t - ″t -Jz 
case. Both have a quasiparticle with a small, few-magnon 
cloud, and a bandwidth ≈2 J  =  2Jdd (Note that the absolute 
energy scale is different because in the one-band models, the 
energy is shifted by the ZRS binding energy.). The key differ-
ence is that the three-band model already shows a dispersion 
with the correct shape, whereas for the one-band model the 
dispersion is much too flat along ( ) ( )π π−0, 0 , . This differ-
ence is traced back to the fact that in the one-band model, the 
bare hole dispersion also suffers from this same problem if 
″∼−′t t/ 1.5, unlike that of the three-band model. As a result, 

Figure 5. ( )E k  along several cuts in the Brillouin zone for the 
three-band model. The results are for the variational calculation 
with the spin-fluctuations turned off and configurations with up to 
nm magnons allowed. The ‘restricted’ calculations labelled n n,r r2, 3,  
imposed the additional constraint that the magnons are on adjacent 
sites. While the bandwidth is strongly renormalized with increasing 
nm, the nearly isotropic dispersion around the ground-state at ( )π π
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is a consistent feature. See text for more details.
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spin fluctuations are necessary to find the correct dispersion 
in the one-band model, as already shown, but their role in the 
three-band model should be rather limited.

To confirm this conjecture, we consider the effect of local 
spin fluctuations on the dispersion of the three-band model 
quasiparticle. In figure 6, results for the restricted variational 
approach with nm  =  2, r and nm  =  3, r (i.e. up to two or up to 
three magnons on adjacent sites) are compared to the ED results 
of [71], shown by the black full circles. Full lines (red and blue, 
respectively) show the results of figure 5, without spin fluctua-
tions. Orange lines with squares show the dispersion with spin 
fluctuations turned on near the hole. The dashed green line 
in panel (b) shows an intermediate result when spin fluctua-
tions are allowed to create a pair of magnons only if there is no 
magnon in the system, and to remove a pair if only two mag-
nons are present (the orange line also includes contributions 
from processes where spin fluctuations add a pair of magnons 
when a magnon is already present, and its reversed process).

The effect of spin fluctuations is similar to that found in 
the one-band models, as expected because the AFM back-
ground is modeled identically. They have very little effect 
on the ( ) ( )π π−, 0 0,  dispersion; beside a small shift to lower 
energies, this bandwidth is only slightly increased, bringing 
it into better agreement with the ED values for nm  =  3. Like 
for one-band models, the main effect of the spin fluctuations 
is the increase of the ( ) ( )π π−0, 0 ,  bandwidth. For nm  =  3,  
it changes from being too narrow without spin fluctuations, 
to too wide in their presence. (The nm  =  2 overestimate of the 
bandwidth is expected, see discussion in [41]).

The increased energy near ( ) ( )π π=0, 0 ,  may seem prob-
lematic but one must remember that in reality, ( )E k  is flattened 
below a continuum that appears at 2 Jdd above the ground state. 
The continuum is absent in this restricted calculation because 

configurations with a magnon far from the cloud, which give 
rise to it, are not included. This explains why the overestimated 
bandwidth is possible. In the presence of the continuum, states 
that overlap with it hybridize with it and a discrete state (the 
quasiparticle) is pushed below its edge. This will lower the 
value at (0, 0) and lead to good quantitative agreement every-
where with the ED results. (The keen reader may note that the 
ED bandwidth is also slightly wider than 2Jdd, but one must 
remember both the finite size effects of cluster ED, and the 

existence of a =ST
3

2
 polaron in its spectrum [71]. Since the 

total spin ŜT
2
 is not a good quantum number in our variational 

approximation, its quasiparticle probably overlaps somewhat 

with both the =ST
1

2
 and =ST

3

2
 spin-polarons, so it is not 

clear which ED states to compare against).
Our results show that spin fluctuations have a similar effect 

in both models. However, while they are essential for obtaining 
the proper shape of the dispersion in one-band models, they 
are much less relevant for the three-band model. This is a 
direct consequence of the different shape of the bare bands, as 
discussed, but also of having ∼ | |′J t  while ∼J t /4dd pp . In the 
three-band model, the quasiparticle creates and absorbs mag-
nons while moving freely on the O sublattice, on a timescale 
that is faster than that over which spin fluctuations act, and 
so their effect is limited. In contrast, in the one-band model, 
the timescale for free propagation of the hole on its magnetic 
sublattice (controlled by ″′t t, ) is comparable with the spin 
fluctuations’ timescale, and therefore the effect of spin fluc-
tuations is significant. They are especially important along 

π π−0, 0 ,( ) ( ), where the bare dispersion of one-band models 
is nearly flat.

5. Discussion and summary

In this work, we used a variational method to study and compare 
the quasiparticle obtained upon doping a hole in the insulating 
state of the t-J and t- ′t - ″t -J one-band models, to that of a (sim-
plified) three-band model that is the intermediary step between 
the full three-band Emery model and the one-band models.

Our variational method generates the quantum analog of the 
BBGKY hierarchy of equations of motions for a propagator of 
interest (here, the retarded one-hole propagator) [87], but sim-
plified by setting to zero the generalized propagators related to 
projections on states that are not within the variational space. 
Its physical motivation is very simple: if the variational space 
is properly chosen, i.e. if it contains the configurations with the 
highest weight contributions to the quasiparticle eigenstates, 
then the ignored propagators are indeed small because their 
residue at the ( )ω = E k  pole is proportional to their weight 
(Lehmann representation). Setting them to zero should thus be 
an accurate approximation. Numerically, the motivation is also 
clear: because the resulting simplified hierarchy of coupled 
equations can be solved efficiently, we can quite easily study 
a quasiparticle (or a few [88]) on an infinite 2D lattice, thus 
avoiding finite-size effects and getting full information about 
k dependence, not just at a few values. Moreover, by enlarging 
the variational space and by turning off various terms in the 
Hamiltonian, both of which lead to changes in the EOM and 

Figure 6. ( )E k  along several cuts in the Brillouin zone for the 
three-band model in the restricted variational approximations with 

(a) nm  =  2 and (b) nm  =  3. Circles show ED results for =S
1

2
T  from 

[71] for a 32 Cu  +  64 O cluster, shifted to have the same ground-
state energy. Full lines show the results of figure 5, without spin 
fluctuations. Orange lines with square symbols are the results if 
spin fluctuations occur near the hole. The dashed green line in panel 
(b) is the dispersion when spin fluctuations are allowed to locally 
create/remove a pair of magnons only if no other magnons are 
present/remain in the system. See text for more details.
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thus in the resulting propagators, one can infer whether the 
calculation is close to convergence and isolate and understand 
the effect of various terms, respectively. The ability to effi-
ciently make such comparisons is essential because it allows 
us to gain intuition about the resulting physics.

Our results show that even though for reasonable values 
of the parameters, the quasiparticle dispersion ( )E k  has 
similar shapes in both models, the underlying quasiparticle 
dynamics is very different. In the three-band model, the bare 
dispersion of the hole on the O sublattice, due to tpp and spin-
swap hopping tsw past Cu with parallel spins, already has a 

deep isotropic minimum near ( )π π,
2 2

, unlike the bare ( )ε k  of 

the one-band models. When renormalized due to the magnon 
cloud, it produces a quasiparticle dispersion with the correct 
shape in the whole Brillouin zone, even in the absence of spin 
fluctuations. In contrast, for the one-band models the inclu-
sion of spin fluctuations is necessary for the correct disper-
sion to emerge. This shows that the quasiparticle dynamics is 
controlled by different physics in the two models, and this is 
likely to play a role at finite concentrations as well.

Our results thus raise strong doubts whether the one-band 
t- ′t - ″t -J model truly describes the same physics like the three-
band model, at least in the strongly underdoped regime that 
evolves by weak doping of the insulating state and should be 
described by the same Hamiltonian (see further discussion 
below). We can think of three possible explanations to explain 
these differences:

 (i) The t- ′t - ″t -J model is the correct one-band model, but 
its true parameters have values quite different from the 
ones used here. Indeed, if the bare ( )ε k  dispersion had 

isotropic minima at ( )π π,
2 2

, and if its renormalized band-
width would be of the order of 2J, then spin fluctuations 
could not change it much, similar to what is observed in 
the three-band model.

  This explanation can be ruled out. An isotropic bare 
dispersion ( ) ( )ε ε π≈ −k k k k, ,  requires that ″| |′ �t t/ 1, 
which is physically unreasonable.

 (ii) The t- ′t - ″t -J model has a different quasiparticle because 
its underlying assumption, i.e. the existence of the low-
energy ZRS, is wrong. This would mean that not only 
this specific one-band model but any other one obtained 
through such a projection would be invalid.

  We can test this hypothesis by calculating the overlap 
between the three-band quasiparticle and a ZRS Bloch 
state. The latter is defined in the only possible way that is 
consistent with Néel order:

〉 〉
† †

∑| =
−

|
∈

⋅ − ↑ − ↓
+

↓
N

p p S
kZRS,

1
e

2
N

i

x y i x y i ik R

Cu

i , , , ,
i

2 2 2 2

 (12)

where

† † † † †
⎡
⎣⎢

⎤
⎦⎥

= + − −σ σ σ σ σ− + + − −
p p p p p

1

2x y i i i i i
x y x y, ,
2

,
2

, 2
,

2
,

2 2

  is the linear combination of the p orbitals neighbor to the 
Cu located at i, that has the overall x ysy2 2−  symmetry 

(our choice for the signs of the lobs is shown in figure 1). 
Note that with this definition ⟨ ⟩| | | =k kZRS, ZRS, 12  for 
any k, so there are no normalization problems [16].

  We define 〈 〉= | | |p qp k k, ZRS,ZRS
2 as the overlap 

between the quasiparticle eigenstate of momentum k and 
this ZRS Bloch state. Its value can be calculated from the 
appropriate residues of the zero- and one-magnon propa-
gators at ( )ω = E k , and is shown in figure 7(a). We do 
not plot the nm  =  0 results because a singlet cannot form 
if the Cu spins cannot flip. (For nm  =  0, there is overlap 
with the spin-up hole component of ⟩| kZRS, , and we find 

that pZRS varies from 0 at (0, 0) and ( )π0,  to 0.5 at ( )π π,
2 2

, 

but the same answer is found for a triplet. Interestingly, 
this proves that the bare hole dispersion already has 
eigenstates with the −x y2 2 symmetry near ( )π π,

2 2
).

  For nm  =  1 we find ∼p 0.9ZRS  in the entire Brillouin 
zone. Clearly, in this very small variational space, locking 
into a ZRS is the best way for the doped hole to lower 
its energy. However, the value of pZRS decreases fairly 
significantly for nm  =  2, r and nm  =  3, r. First, note that 
turning the spin fluctuations on or off has almost no effect 
on pZRS. This is consistent with our conclusion that local 
spin fluctuations do not influence the nature of the quasi-
particle in the three-band model: clearly, its wavefunction 
is not changed in their presence.

  The decrease of pZRS with increasing nm could be due 
either to increased contributions to the eigenstate from 
many-magnon configurations (which have no overlap 
with ⟩| kZRS, ), and/or from competing states such as a 
ZR triplet, and/or singlets or triplets with the hole occu-
pying a linear combination of O orbitals with s, px or py 
instead of x y2 2−  symmetry. The latter possibility can also 
be ruled out because overlaps with those Bloch states are 

Figure 7. (a) Overlap pZRS between the ZRS Bloch state of (12) 
and the quasiparticle eigenstate, as obtained in the restricted 
variational calculations with nm  =  1, 2, 3, without (full lines) and 
with (full symbols) local spin fluctuations included. The empty 
squares and the dashed line show the weight of the ZR triplet.  
(b) Overlap pZRS normalized with respect to the probability to have 
no magnon ( p0) or to have one magnon near the hole ( p1), in the 
quasiparticle eigenstate. See text for more details.
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found to be small. The largest such contribution is from 
the ZR triplet state, shown in figure 7(a) by the dashed 
line and open squares for nm  =  3, r without and with 
local spin fluctuations, respectively. This overlap is much 
smaller than with the ZRS singlet.

  Another way to confirm this is displayed in figure 7(b), 
where we compare pZRS to +p p0 1, where p0 is the prob-
ability to find the hole without any magnons, and p1 is the 
probability to find one magnon adjacent to the hole, in 
the quasiparticle eigenstate. Note that + <p p 10 1  even 
for the one-magnon variational approximation because 
the hole can also be located away from the magnon. As 
nm increases, +p p0 1 decreases even more as configura-
tions with two or more magnons now also contribute 
to the normalization. These configurations with two or 
more magnons, and those with one magnon not adjacent 
to the hole, have no overlap with ⟩| kZRS, , explaining 
the decrease in the magnitude of pZRS. However, the 
ratio ( )+ >p p p/ 0.9ZRS 0 1  in the whole Brillouin zone, 
confirming that this part of the wavefunction has a 
predominant ZRS-like nature. This is certainly the case 

near the ( )π π,
2 2

 point, where the overlap is converged to 1. 
Interestingly, at the antinodal points this ratio decreases 
with increasing nm, and here the overlap with the ZR 
triplet is largest, see figure 7(a), suggesting that a ZRS 
description is less accurate in this region.

  Thus, the zero- and one- (adjacent) magnon parts of the 
wavefunction have significant overlap with the ZRS Bloch 
state. However, ∼p 0.5ZRS  is a rather small value, and it 
is not clear whether the dressing with more magnons is 
consistent with this ZRS picture or not. It is possible that 
the two- and three-magnon components of the wavefunc-
tion have significant overlap with a ZRS  +  one magnon 
and ZRS  +  two magnon configurations, but they could 
also have quite different nature. It is not clear to us how 
to verify which is the actual situation.

  If these two- and three-magnon components have signifi-
cant non-ZRS character, however that is defined in this 
case, then clearly the difference observed in the results 
from one- and three-band models would be likely due to 
this non-ZRS nature.

  If, on the other hand, one takes these results to support 
the idea that a low-energy projection onto ZRS states is 
valid, then this is not the origin of the discrepancy in the 
quasiparticle behavior. In this case, it must follow that:

 (iii) The t- ′t - ″t -J is not the correct one-band model because 
there are other terms generated by the projection onto the 
ZRS states, like those discussed in [69, 70] or the three-
site terms, which it neglects.

If (iii) is indeed the explanation for the different behavior 
of the quasiparticles of the one- and three-band models 
in the insulating limit, then in our opinion this implies that 
the strategy of using one-band models to study cuprates is 
unlikely to succeed. The main reason for this strategy, as men-
tioned, is to make the Hilbert space as small as possible for 
computational convenience. This, however, is only useful if 
the Hamiltonian is also fairly simple.

In principle one could test additional terms that could be 
included in one-band models by using methods like ours, to 
figure out which ones insure that the resulting behavior mirrors 
that of the three-band model. Even if this enterprise was suc-
cessful and the ‘fix’ is relatively simple, i.e. only a few additional 
terms and corresponding parameters are necessary, it is impor-
tant to emphasize that this improved one-band model would still 
not describe correctly cuprates at finite doping. Additional terms 
must be included to correctly account for the effective interac-
tions between quasiparticles in one-band models [89, 90].

From a technical point of view, their origin is simple to 
understand. Even for the simplified three-band model, the 
presence of additional holes leads to additional terms in the 
Hamiltonian [91], because the intermediary states are different 
and this affects the projection onto states with no-double occu-
pancy on Cu. This is going to become even more of an issue if a 
subsequent projection onto ZRS-like states has to be performed, 
and may well result in an unmanageably complex Hamiltonian.

This is why we believe that the (simplified) three-band 
model is a safer option to pursue. Its computational com-
plexity is not that much worse than for one-band models, 
whereas the Hamiltonian is certainly simpler in the insu-
lating limit. In fact, our demonstration here that there is no 
need to accurately capture the spin fluctuations of the AFM 
background in order to gain a reasonable understanding of the 
quasi particle behavior, makes its study significantly simpler. 
In particular, it allowed us to study one hole on an infinite 
layer very simply and efficiently. Generalizations to few holes 
[88] and to finite concentrations could also turn out to be 
easier to carry out than the effort of finding the correct form 
for a one-band Hamiltonian. Care is needed in making such 
generalizations, however, because the spin fluctuations may 
play an important role in the effective interactions between 
quasiparticles, e.g. by propagating a magnon emitted by one 
hole to another one, where it is absorbed. If this was the case, 
then spin fluctuations would have to be treated carefully even 
if they do not influence the quasiparticles’ dynamics, to get an 
accurate description at finite hole concentrations.

Of course, there is also no guarantee that the (simplified) 
three-band model captures all physics needed to explain 
cuprates, either. It is possible that important aspects of the 
Emery model were lost through the projection onto spin 
degrees of freedom at the Cu sites (this, however, would affect 
the one-band models just as much). Even the Emery model 
itself may not be general enough; for instance, a generalization 
to a 5-band model including non-ligand O 2p orbitals might 
be needed, as suggested recently in [92]. We note that such a 
generalization can be easily handled by our method (provided 
that one can still project onto spin degrees of freedom at the 
Cu sites), as showed in [41] where we found that these states 
do not change the quasiparticle dispersion much, although 
they do have an effect on its wavefunction.

While careful investigation of such scenarios is left as future 
work, one clear lesson from this study is that obtaining the 
correct dispersion for the quasiparticle of an effective model 
is not sufficient to validate that model. The dispersion can have 
the correct shape for the wrong reasons, as we showed to be 
the case for the t- ′t - ″t -J model in the insulating limit, whose 
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quasiparticle’s dynamics is due to the interplay between the 
effects of the longer-range hopping and spin-fluctuations. 
The same dispersion is obtained for the simplified three-band 
model, however in this case the spin-fluctuations play essen-
tially no role, so the underlying physics is very different. This 
difference is very likely to manifest itself in other properties, 
therefore these models are not equivalent in the insulating 
limit, despite the similar dispersion of their quasiparticles.
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