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Impact of spin-orbit coupling on the Holstein polaron
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We utilize an exact variational numerical procedure to calculate the ground state properties of a polaron in
the presence of a Rashba-like spin-orbit interaction. Our results corroborate previous work performed with the
momentum average approximation and with weak-coupling perturbation theory. We find that spin-orbit coupling
increases the effective mass in the regime with weak electron-phonon coupling, and decreases the effective mass
in the regimes of intermediate and strong electron-phonon coupling. Analytical strong-coupling perturbation
theory results confirm our numerical results in the small-polaron regime. A large amount of spin-orbit coupling
can lead to a significant lowering of the polaron effective mass.
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I. INTRODUCTION

In much of condensed matter (magnetism excepted), the
spin and orbital components of an electron are treated as
independent degrees of freedom. Nonetheless, the nonrela-
tivistic approximation to the Dirac equation leads directly
to the so-called Thomas term in the effective Hamiltonian,
which can be written as a spin-orbit coupling term.1 This
coupling can play a significant role in the electronic structure
of semiconductors and metals, as documented, for example,
in Ref. 2. More recently, interest has grown because of the
burgeoning possibilities in the field of spintronics, where the
spin degree of freedom is specifically exploited for potential
applications.3 Control of spin will require coupling to the
orbital motion, and hence spin-orbit coupling may play a
critical role in understanding and exploiting various properties
of such systems.

Spin-orbit coupling, as described by Rashba,4 is expected to
be prominent in two-dimensional systems that lack inversion
symmetry, including surface states. Many such systems have
now been identified, among which are, for example, surface
alloys, Li/W(110),5 Pb/Ag(111),6,7 and Bi/Ag(111).8 In all of
these systems the possibility of other interactions remains; in
particular, recent work9 has focused on the electron-phonon
interaction, in the presence of Rashba spin-orbit interactions.
In the first reference of Ref. 9, for example, the effective mass
due to the electron-phonon interaction was shown, in weak
coupling, to be enhanced by the spin-orbit interaction.

More recently, attention has focused on the properties of a
single electron interacting with oscillator degrees of freedom in
the presence of Rashba spin-orbit coupling.10–12 References 10
and 11 investigated the behavior of an electron (described by
a parabolic band) interacting with phonons through a Fröhlich
coupling. Reference 12 utilized the so-called momentum
average (MA) approximation13 to examine the properties of
a single polaron also in the presence of spin-orbit coupling,
but for a tight-binding model; in this case the electron-phonon
interaction was described by the Holstein model.14 It is difficult
to say at this point whether the Holstein model provides a
particularly realistic description of real materials. However,
we investigate its properties here, partly to illustrate qualitative
features of the model, with the hope that they can eventually be

seen in experiments, and partly because this is the model that
has been utilized most in studies of polarons in general.15,16

Moreover, and this is connected to the second reason, some
of the exact methods employed here and in the references
mentioned only work for the Holstein model; other models
with more structure in the interaction are not so readily solvable
by exact methods.

Returning to Ref. 12, its authors found that the effective
mass generally decreases as a function of spin-orbit coupling
VS; however, in the limit of weak electron-phonon coupling,
there is initially an increase in effective mass, in agreement
with Cappelluti et al.9 The primary purpose of this work is
to present exact solutions to this problem, using Trugman’s
method,17,18 along with some modified algorithms,19 so that
we can span the entire parameter regime. It turns out that the
MA method is fairly accurate over the entire parameter range,
except for low phonon frequencies.

As mentioned earlier, at this point only the Holstein
model is amenable to an exact solution. For this reason
we would like to make a comparison to results obtained
with the MA approximation. The MA approximation can
be applied to other models, and can also be investigated
at higher energy scales. To aid in our understanding of the
results we also develop a strong-coupling expansion, based
on the Lang-Firsov transformation,21 following Ref. 22. As in
the straightforward Holstein model, strong coupling describes
fairly well the small-polaron regime. Finally, the adiabatic
limit of the Holstein model with Rashba spin-orbit coupling
has been described recently in Ref. 23, following Refs. 24 and
25 for the simple Holstein model. In the strict adiabatic limit
Grimaldi finds an intermediate state (large polaron) with the
lowest energy, for coupling strengths just below that required
for small polaron formation, in the presence of spin-orbit
coupling (see Figs. 1 and 2 in Ref. 23). Our investigation
of this state will also be described in the present work.

The paper is organized as follows. We first introduce the
model of study; following Ref. 12 it is the Holstein model
with additional Rashba spin-orbit coupling, written for a
tight-binding formulation. We note some of the features of
the noninteracting (with respect to phonons) model. Unlike
the situation in the continuum limit,9 there is not a singularity
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at the bottom of the band; however, for weak spin-orbit
coupling, a singularity remains very close by in energy, and
causes a significant enhancement in the density of states at
the bottom of the band. In Sec. III we present our numerical
results, along with those from the strong-coupling expansion
and from the MA approximation. As mentioned above,
the exact numerical results confirm the conclusions from
Ref. 12. Finally, we examine the low-phonon frequency and
intermediate electron-phonon and spin-orbit coupling regimes,
where both perturbative and MA approaches are suspect.
We are unable to rule out the presence of an intermediate
phase completely, but find that its occurrence is unlikely, once
quantum fluctuations are included. We close with a summary.

II. MODEL

The standard formulation for spin-orbit interaction uses
two different types of electronic band structure. The first is
free-electron-like, which results in parabolic bands,9 and the
second is tight binding, which results in a periodic momentum
dependence. While it is essentially always the case that the
latter tends to the former for low electron fillings, this is not
quite true when a Rashba-type spin-orbit interaction term is
present. As shown in Ref. 9, for example, the ground state
for a single electron consists of a degenerate ring around the
� point. This results in an electronic density of states with
a square-root singularity at the bottom of the band. For a
tight-binding model, however, Covaci and Berciu12 pointed
out that this is not the case. We will adopt a tight-binding
formulation here, and examine this difference more closely in
the next subsection.

To study the single polaron with spin-orbit interaction we
use a tight-binding Hamiltonian with Rashba-type spin-orbit
interaction4 and a Holstein-type14 electron-phonon interaction.
In real space the Hamiltonian is

H = −t
∑

〈i,j〉,α=↑↓
(c†i,αcj,α + c

†
j,αci,α)

+VS

∑
i,α,β

(
ic

†
i,ασ αβ

x ci+ŷ,β − ic
†
i,ασ αβ

y ci+x̂,β + H.c.
)

− gωE

∑
i,s=↑↓

c
†
i,sci,s(ai + a

†
i ) + ωE

∑
i

a
†
i ai, (1)

where c
†
i,s (ci,s) is the creation (annihilation) operator for an

electron at site i with spin index s, a†
i (ai) is the creation (anni-

hilation) operator for a phonon at site i, and σ
αβ
x ,σ

αβ
y designate

the (α,β) component of the usual Pauli matrices. The sum over
i is over all sites in the lattice, whereas 〈i,j 〉 means that only
nearest-neighbor hopping is included. Here, as the notation
already suggests, we confine ourselves to nearest-neighbor
hopping only. The energy scales are the hopping integral t , the
strength of the Rashba spin-orbit interaction VS , the coupling
of the electron to the oscillator degrees of freedom gωE , and
the Einstein phonon frequency ωE . In what follows we write
all energy scales in terms of the hopping integral t , which
hereafter is set to unity. The ground state properties of the
Holstein model in one and two dimensions near the adiabatic
limit have recently been studied in Refs. 19 and 20. Normally
spin is not considered, since this ground state is degenerate

with respect to spin. As the Rashba spin-orbit interaction is
turned on, however, the twofold degeneracy will be lifted.

A. Noninteracting model: Ground state and effective mass

To examine this model in detail, we use a 2 × 2 matrix to
describe the spin sector, and begin by excluding the phonon
part of the Hamiltonian. The remaining Hamiltonian is diago-
nalized through Bloch states in momentum space, written as

H0 =
∑
k,α

εkc
†
k,αck,α +

∑
k,α,β

�k·σαβc
†
k,αck,β , (2)

where εk = −2t[cos(kx) + cos(ky)] and �k·σ =
2VS[sin(ky)σx − sin(kx)σy] (we set the lattice spacing a

equal to unity). Diagonalizing this 2 × 2 matrix, we get two
bands, which we name the upper and lower Rashba bands.
The eigenvalues and eigenstates are given by

H0	± = εk,±	±, (3)

with eigenvalues

εk,± =−2t[cos(kx)+cos(ky)] ± 2VS

√
sin2(ky)+sin2(kx) (4)

and eigenvectors

	± = 1√
2

[
c
†
k↑ ± sin(ky) − i sin(kx)√

sin2(ky) + sin2(kx)
c
†
k↓

]
|0〉. (5)

In contrast to the model with parabolic bands, this model
has a fourfold-degenerate ground state located at kx = ky =
± arctan( VS√

2t
),12 which can be seen clearly from a contour plot

of the lower Rashba band in Fig. 1. There are also four saddle
points near the energy minimum points, which are located at
kx = 0,ky = ± arctan(VS

t
) and ky = 0,kx = ± arctan(VS

t
). As

VS increases, the separation between minimum points and
saddle points is enhanced [see below, in Fig. 2(b)].

The ground state energy for H0 is given by E0 =
−4t

√
1 + V 2

S /(2t2). Similarly, the effective mass along the
diagonal is

mSO

m0
= 1√

1 + V 2
S

/
(2t2)

, (6)

where m0 ≡ 1/(4t) is the bare mass in the absence of
spin-orbit interaction, and mSO is the effective mass due
solely to spin-orbit interaction. Note that the effective mass
decreases due to spin-orbit interaction. Below we will turn
on the electron-phonon interaction, and the ground state
energy (effective mass) will be further lowered (raised) due
to polaronic processes.

B. Noninteracting model: Electron density of states

The noninteracting electron density of states (DOS) is
defined for each band as

Ds(E) =
∑

k

δ(E − εks) (7)

with s = ±1. In the main frame of Fig. 2(a) we show the
low-energy DOS for various values of the spin-orbit interaction
VS ; note that this involves only D−(E) as the upper Rashba
band exists only at higher energies. Furthermore, information
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FIG. 1. (Color online) Contour plots for lower Rashba band with
VS/t = 0,0.5,1.0,5.0. For VS = 0, there is only one energy minimum
point at kx = ky = 0. For VS > 0, there are four energy minimum
points located at kx = ky = ± arctan( VS

t
√

2
). For nonzero VS , there are

also four saddle points near the energy minimum points, which are
located at kx = 0,ky = ± arctan( VS

t
) and ky = 0,kx = ± arctan( VS

t
).

As VS increases, the separation between minimum points and saddle
points is increased [see Fig. 2(b)].

concerning the upper Rashba band can always be obtained
through the symmetry

D+(E) = D−(−E). (8)

Figure 2(a) shows that a divergence introduced by the spin-
orbit interaction exists at higher energy,12 and not at the bottom
of the band, as occurs for a parabolic dispersion.9 This shift
is due to the separation of the energy minima from the saddle
points in k space, as shown in Fig. 2(b). The saddle point
energy is given by Esad = −2t[1 +

√
1 + (VS/t)2], which is

very close to the minimum energy E0 even for sizable VS/t ,
as is evident from the figure. This proximity of the divergence

FIG. 2. (a) Noninteracting density of states D−(E) near the
bottom of the band for VS/t = 0,0.5,1.0. In the inset the density
of states in the whole band is shown for the same parameters. Note
that the divergence at the bottom of the band has been shifted to
higher value (Ref. 12). (b) The separation between energy minimum
points and saddle points as a function of spin-orbit interaction VS/t .

serves to elevate the value of the DOS at the bottom of
the band. With no spin-orbit coupling this value is D±(E =
E0 = −4t) = 1/(4πt) (VS = 0). With spin-orbit coupling,
however, an expansion around the minimum energy E0 =
−4t

√
1 + V 2

S /2t2 yields a DOS value

D−(E = E0) =
√

2

π

1

VS

, VS �= 0. (9)

Thus a discontinuity occurs as the spin-orbit coupling is
changed from zero—the DOS immediately has a divergence
at the bottom of the band which, for any nonzero value of
VS , shifts to slightly higher energy. The inset shows D−(E)
over a wider energy range. Further details are provided in
Appendix A.

III. GROUND STATE ENERGY AND EFFECTIVE MASS

When the electron-phonon interaction is turned on, the
ground state energy (effective mass) will be lowered (in-
creased) due to polaron effects. To study the polaron problem
numerically, we adopt a variational method outlined by
Trugman and co-workers,17,18 which could determine polaron
properties in the thermodynamic limit accurately. This method
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was recently developed by Alvermann et al.20 and Li et al.19 to
study the polaron problem near the adiabatic limit. In this paper
we will adopt the numerical techniques described in Ref. 19.

A. Strong-coupling theory

To investigate the strong-coupling regime of the Rashba-
Holstein model for a single polaron, we use the Lang-
Firsov21,22 unitary transformation H = eSHe−S , where S =
g

∑
i,σ ni,σ (ai − a

†
i ), and obtain

H = H 0 + T (10)

with

H 0 = ωE

∑
i

a
†
i ai − g2ωE

∑
i,σ

c
†
i,σ ci,σ (11)

and

T = −t
∑
i,σ

(c†i,σ ci+x̂,σ X
†
i Xi+x̂ + c

†
i,σ ci+ŷ,σX

†
i Xi+ŷ + H.c.)

+ iVS

∑
i

(
c
†
i,ασ αβ

x ci+ŷ,βX
†
i Xi+ŷ

− c
†
i,ασ αβ

y ci+x̂,βX
†
i Xi+x̂ − H.c.

)
, (12)

where X
†
i = exp{g(ai − a

†
i )}. Using eA+B = eAeBe−1/2[A,B],

the hopping part of the Hamiltonian becomes

T = −te−g2
∑
i,σ,δ

[c†i,σ ci+δ,σ (P −
i )†(P +

i+δ)†P +
i P −

i+δ + H.c.]

+ iVSe
−g2

∑
i

[
c
†
i,ασ αβ

x ci+ŷ,β (P −
i )†(P +

i+ŷ)†P +
i P −

i+ŷ

− c
†
i,ασ αβ

y ci+x̂,β(P −
i )†(P +

i+x̂)†P +
i P −

i+x̂ − H.c.
]
, (13)

where P ±
i ≡ exp (±gai). The unperturbed bare Hamiltonian

H 0 provides the zeroth-order energy for the polaron, and is
already diagonal for the single-electron sector. The eigenvalues
are given by En = nωE − g2ωE, where n is the total number
of phonons. Clearly the ground state has n = 0, but remains
2N-fold degenerate, since the electron can occupy any one
of the N sites and it can have either spin up or spin down.
If we consider the hopping term T as a perturbation and
apply degenerate perturbation theory to the 2N-fold degenerate
ground state, we need to diagonalize a 2N × 2N matrix. A
simpler approach is to recognize that the momentum k is
a good quantum number, and if we transform the original
problem into k space, we need only solve a 2 × 2 matrix which
mixes the spin sectors; this results in essentially Eq. (2), but
with an extra band narrowing factor e−g2

. Thus we obtain the
first-order perturbation correction to the energy as

Ek± = e−g2
εk± − g2ωE, (14)

and the result is the familiar band narrowing factor that occurs
when VS = 0.

The eigenstates from degenerate perturbation theory are
now simply Bloch-like states 	±, as found in the noninter-
acting theory, Eq. (5). Thus the degeneracy is broken, and a
comparatively narrower band is formed with a minimum at a
nonzero wave vector in the lower Rashba band, as found in the

noninteracting case. To find the second-order correction to the
ground state energy, we proceed as in Ref. 22, and find

E
(2)
k− =

∑
ntot �=0,n1,n2,...=0,1,...,∞

N∑
=1
σ

× |〈n1,n2, . . . ,nN |ph ⊗ 〈cσ |elT |	k,−〉el ⊗ |0〉ph|2
−ntotωE

(15)

where ntot is the total number of phonons and 	k,− is given in
Eq. (5). With details shown in Appendix B, we obtain

E
(2)
k− = −4e−2g2 t2 + V 2

S

ωE

[f (2g2) − f (g2)] − e−2g2
f (g2)

ε2
k−

ωE

(16)

where f (x) ≡ ∑∞
n=1

1
n

xn

n! ≈ ex/x[1 + 1/x + 2/x2 + · · ·] (see
Appendix B). In some of the ensuing discussion, we will use
the constant λ, familiar as the effective mass enhancement from
weak-coupling perturbation theory for the interacting-electron
gas. Here we use the definition19 λ ≡ 2g2ωE

1
4πt

, since 1/(4πt)
is the value of the noninteracting electron density of states for
VS = 0 at the bottom of the band. Note that our definition of λ

differs from that in Refs. 12 or 22; both use the more conven-
tional average density of states, 1/(8t). Thus the ground state
energy, excluding exponentially suppressed corrections, is

EGS = −2πtλ

(
1 + 2

t2 + V 2
S

(2πtλ)2

)
, (17)

and there is a correction of order 1/λ2 compared to the
zeroth-order result. Corrections in the dispersion enter in
strong coupling only with an exponential suppression.

B. Weak-coupling theory

In the regime of weak electron-phonon coupling, does
spin-orbit coupling suppress or enhance the “polaron effect”
due to the electron-ion coupling? Weak-coupling calculations
with a parabolic electron dispersion9 showed an increase in the
effective mass, for example, as the spin-orbit coupling was in-
creased. Here we perform weak-coupling perturbation theory,
as described in Ref. 9, with the same definitions, except that the
tight-binding dispersion is used to describe the noninteracting
electrons, as outlined in the previous section. A straightforward
calculation yields the self-energy to first order in λ as

�weak(ω + iδ) = πλtωE

∑
k,s=±

1

ω + iδ − ωE − εk,s

. (18)

The effective mass can be obtained by the derivative of the
self-energy,

m∗
weak

mSO
= 1 − ∂

∂ω
�weak(ω + iδ)|ω=E0 . (19)

Near the adiabatic limit (ωE → 0), by expanding εk,−
around E0, as shown in Appendix A for the calculation of
the DOS, we obtain

m∗
weak

mSO
= 1 +

√
2λt

VS

, (20)
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which shows a diverging effective mass as the spin-orbit
coupling decreases. In fact, there is a discontinuity for VS = 0,
as the result is simply m∗

weak
mSO

= 1 + λ/2, and mSO → m0 =
1/2t , as given by Eq. (6). Equation (20) will have a limited
domain of validity, however, as we will see below.

C. Numerical results

In Fig. 3, we show the ground state energy and the effective
mass correction as functions of electron-phonon coupling λ,
with nonzero values of the spin-orbit interaction, VS/t = 0.5
and 1.0; these are compared with the results from the Holstein
model with VS/t = 0. Here the phonon frequency is set to be
ωE/t = 1.0, which is the typical value used in Ref. 12, and
for each value of VS , the ground state energy is compared
to the corresponding result for λ = 0. The numerical results
are compared with results from weak-coupling perturbation
theory and from Lang-Firsov strong-coupling theory.

FIG. 3. (Color online) (a) Ground state energy difference EGS −
E0 vs λ for VS/t = 0,0.5,1.0 and ωE/t = 1.0. Exact numerical
results are compared with those from weak-coupling perturbation
theory (labeled “Pert.” in the figure) and from Lang-Firsov strong-
coupling theory. Agreement of both perturbative approaches with the
exact numerical result is excellent. The MA result (not shown) is
also in excellent agreement with the numerical results. (b) Effective
mass m∗/mSO vs λ. Numerical results are compared with those from
weak-coupling perturbation theory, and agreement is excellent for
low values of λ. Both exact and perturbative approaches show an
enhanced effective mass with increasing spin-orbit coupling.

In Fig. 3(a), the ground state energy crosses over smoothly
(at around λ ≈ 0.8) from the delocalized-electron regime to the
small-polaron regime. Note that there is a slight dependence of
the ground state energy on the spin-orbit interaction. If we de-
fine �E = EGS − E0, then �E(VS/t = 0.5) < �E(VS/t =
0) < �E(VS/t = 1.0) in the delocalized-electron regime,
which is in agreement with the weak-coupling perturbation
theory, though this is barely visible in the figure. In the small-
polaron regime, the ground state energy is shifted up by the
spin-orbit interaction. This trend agrees with the results from
Lang-Firsov strong-coupling theory. For VS/t = 0, the Lang-
Firsov theory agrees very well with the numerical results, while
as the spin-orbit coupling VS increases, the Lang-Firsov theory
becomes less accurate for the same electron-phonon coupling
(e.g., if we look at λ = 1.0, for VS/t = 1.0, the difference
between the Lang-Firsov theory and exact numerical results
is larger than that for VS/t = 0). This is due to the fact
that the bandwidth is increased by spin-orbit interaction,12

so the effective electron-phonon coupling is decreased by
spin-orbit interaction. Better agreement with Lang-Firsov
theory is achieved for larger values of λ. In Fig. 3(b), the
effective mass is enhanced by the spin-orbit interaction in
the delocalized-electron regime, which is in agreement with
the prediction from weak-coupling perturbation theory. Here
we have only shown results in the region VS/t = 0–1.0; for
larger values of VS/t the effective mass will be decreased
by the spin-orbit interaction in the delocalized regime.12 In
the small-polaron regime, the effective mass will always be
decreased by the spin-orbit interaction.

In Fig. 4, we show the same results as Fig. 3 for a much
smaller phonon frequency ωE/t = 0.1, which is closer to the
adiabatic limit. In Fig. 4(a), the ground state energy crosses
over sharply (but still smoothly) from the delocalized-electron
to the small -polaron regime. If we use λc to describe the critical
value for this sharp crossover, λc will be enhanced significantly
by the spin-orbit interaction. For VS/t = 0.0,λc � 0.55, while
for VS/t = 5.0, λc � 1.55 from our numerical results. In
Fig. 4(b), in the delocalized-electron regime the ground state
energy is decreased by the spin-orbit interaction �E(VS/t =
1.0) < �E(VS/t = 0.5) < �E(VS/t = 0.0), which is also in
agreement with the weak-coupling perturbation theory. For
larger VS/t the ground state energy will be increased12 in
the delocalized-electron regime. In the small-polaron regime,
the ground state energy will be increased by the spin-orbit
interaction, in agreement with the Lang-Firsov theory. In
Fig. 4(c), the effective mass enhancement for different spin-
orbit interactions VS/t is shown vs electron-phonon coupling
strength, λ. For VS/t = 0 there is a rather sharp crossover from
the delocalized-electron to the small-polaron regime.19

Near the crossover point, the effective mass enhancement
for the delocalized electron is around 1.4. For nonzero VS/t <

1, near the crossover point, the effective mass enhancement
is higher, but still within the same order of magnitude as
VS/t = 0. Grimaldi23 recently studied the Holstein model with
spin-orbit coupling in the strict adiabatic limit (ωE = 0). He
found that for nonzero spin-orbit interaction VS , the ground
state will experience two phase transitions as the electron-
phonon coupling λ is increased. The first transition is from a
delocalized electron to a large polaron, while the second one
is from a large polaron to a small polaron. As is well known,
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FIG. 4. (Color online) (a) Ground state energy EGS − E0 vs
λ for VS/t = 0,0.5,1.0 and ωE/t = 0.1. Exact numerical results
are compared with those from weak-coupling perturbation theory
(labeled “Pert.” in the figure) and Lang-Firsov strong-coupling theory.
(b) Ground state energy EGS − E0 vs λ in the weak- and intermediate-
coupling regimes. (c) Effective mass m∗/mSO vs λ. Numerical results
are compared with those from weak-coupling perturbation theory.

inclusion of quantum effects in the phonons (nonzero ωE) re-
places the transitions with crossovers. As seen in Fig. 4(c), only
the crossover from a delocalized electron to a small polaron
remains sharp; the distinction between a delocalized electron
and a large polaron is not apparent in our calculations. Our
results did not exclude the possibility that a more well-defined
large-polaron regime might be found for ωE/t < 0.1, although
we find this possibility unlikely. A similar circumstance holds

FIG. 5. (Color online) Effective mass m∗/mSO vs ωE/t for weak
electron-phonon coupling λ = 0.064. In the inset the effective mass
in the phonon frequency region near the adiabatic limit is shown. It
is clear that the effective mass is enhanced as spin-orbit interaction
decreases near the adiabatic limit. This is in agreement with the result
inferred from the electron density of states shown in Fig. 2(a).

in the absence of spin-orbit coupling, where the adiabatic
approximation gives rise to a single transition, while the
quantum calculations results only in a crossover. Smaller
values of ωE can be explored, but quantum fluctuations become
stronger for ωE/t < 0.1 and the problem is numerically
expensive for intermediate electron-phonon coupling.

To obtain some insight into the polaron effective mass near
the adiabatic limit, we resort to weak-coupling perturbation
theory. In Fig. 5 we observe an anomalous increase of the
effective mass for small ωE for nonzero VS . However, the
effective mass stops increasing as it reaches some finite number
(around 1.2 and 1.1 for VS/t = 0.5 and 1.0, respectively), so
this does not indicate a breakdown of the perturbation theory.
This result is confirmed by the MA results, as illustrated. This
is also in agreement with results from the adiabatic limit. As
shown in Fig. 2 of Ref. 23, for VS/t = 0.5 and 1.0 (γ /t = 1.0
and 2.0 in Ref. 23), the electron is definitely in the delocalized-
electron regime for λ = 0.064 (λ = 0.1 in Ref. 23). Actually
this anomalous increase of effective mass is caused by an
increase in the value of the electron DOS at the bottom of the
band, as shown in Fig. 2 and Eq. (9). Thus, for even smaller
values of VS/t, the anomalous mass enhancement will increase
further and perturbation theory will eventually break down.
This is in agreement with the adiabatic limit results—as Fig. 2
of Ref. 23 shows, for VS/t � 0, the electron enters the large-
polaron regime for small λ. As mentioned earlier, our results
are consistent with crossovers rather than transitions. This can
also be seen in Fig. 6 where we plot for completeness a map of
the effective mass as a function of Vs/t and λ obtained by using
the MA approximation for ωE/t = 0.1. The exact results,
while different in the details, show the same qualitative trends.

In Fig. 7, we compare exact numerical results with both
the momentum average method12 and with weak-coupling
perturbation theory, for different values of ωE. In Fig. 7(a), the
ground state energy is shown as a function of VS/t , while in
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FIG. 6. (Color online) Effective mass m∗/mSO map as a function
of spin-orbit interaction VS/t and coupling constant λ for ωE/t = 0.1
obtained with the momentum average approximation.

Fig. 7(b), the effective mass is shown as a function of VS/t . The
MA method agrees well with the exact numerical results for

FIG. 7. (Color online) (a) Ground state energy EGS − E0 as a
function of spin-orbit interaction VS/t for ωE/t = 0.1,0.2,1.0 at λ =
0.32. (b) Effective mass m∗/mSO as a function of spin-orbit interaction
VS/t for the same parameters. Exact numerical results are compared
with those from momentum averaging methods and weak-coupling
perturbation theory. The momentum average approximation does not
do as well for low phonon frequencies.

ωE/t = 1.0. For smaller values of ωE (ωE/t = 0.1 and 0.2),
the momentum average approximation becomes less accurate
and agrees more closely with weak-coupling perturbation
theory. This is similar to what happens for the Holstein model.
Reasons for this quantitative failure of MA in the adiabatic
limit are explained in Ref. 13.

IV. SUMMARY

In this paper we have studied the problem of a single
electron coupled to oscillating ions, in the presence of a spin-
orbit interaction. This problem may be important for a variety
of spintronics applications, as even an alteration of the effective
mass can impact the coupling of spin and charge degrees
of freedom. Many previous treatments have addressed this
problem with a finite density of electrons, and have therefore
necessarily required approximate theoretical methods for
solution. The limit of only one electron, previously solved with
weak-coupling perturbation methods and with the momentum
average approximation, is amenable to exact solution as
described here, and serves as a benchmark to which other, ap-
proximate solutions must converge. Moreover, in many dilute
semiconductor applications, the single-electron result may be
the relevant regime required for understanding of the problem.

The exact method of solution utilizes the Trugman method
of solution,18 through Lanczos diagonalization. The procedure
for this is now well documented, and it converges very quickly
over a very wide parameter regime. The momentum average
approximation12 also works very well over the entire parameter
regime; there is a breakdown for very low phonon frequencies.
In this regime the adiabatic approximation23 provides a good
qualitative picture. Weak-coupling perturbation theory9 tends
to be fairly accurate only for very small coupling strengths.
Finally, strong-coupling perturbation theory22 is very accurate
in the small-polaron regime.

In weak coupling the presence of spin-orbit coupling
increases the effective mass of the electron coupled to Einstein
phonons.9 The effective mass is small to begin with, so in
this regime the impact of spin-orbit coupling is fairly minor.
As the electron-phonon coupling increases and one enters the
small-polaron regime, the presence of spin-orbit coupling has
the opposite effect, as first noted with the momentum average
approximation.12 Since in this regime the effective masses can
be quite large, spin-orbit coupling can have a profound effect
on the characteristics of the electron.
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APPENDIX A: DENSITY OF STATES AT THE BOTTOM OF
THE BAND

Expanding εk,− around the minimum energy E0, by
defining k′

x = kx ± arctan( VS√
2t

),k′
y = ky ± arctan( VS√

2t
), we
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have

εk,− − E0 = 0.5t√
1 + V 2

S

/
(2t2)

× [(
1 + V 2

S

/
t2)(k′2

x + k′2
y

) ± 2k′
xk

′
y

]
. (A1)

To calculate the density of states at the bottom of the band,
from the definition, we have

D−(E0 + E1) = 1

4π2

∫ π

−π

dkx

∫ π

−π

dkyδ(E0 + E1 − εk,−)

(A2)

where E1 is a small amount of energy above the bottom of the
band, E0. Around the four energy minimum points there are
four small regions which will contribute to this integral. We
choose one of them (and then multiply our results by a factor of
4) and use the definition of k′ above instead of k, introducing
a small cutoff kc which is the radius of a small circle around
kmin, and thus the integral reads

D−(E0 + E1) = 4 × 1

4π2

∫ kc

0
k′dk′

∫ π

−π

dθ

× δ

(
E1 − 0.5t√

1 + V 2
S

/
(2t2)

[(
1 + V 2

S

/
t2

) + sin 2θ
]
k′2

)

=
√

1 + V 2
S

/
(2t2)

π2t

∫ π

−π

dθ
1[(

1 + V 2
S

/
t2

) + sin 2θ
]

=
√

2

π

1

VS

. (A3)

The derivation of the effective mass in the weak-coupling
approximation [Eq. (20)] proceeds similarly. We begin with
Eq. (18) in the text for the self-energy. For very small phonon
frequencies we need only focus on the lower Rashba band, s =
−1. Furthermore, the noninteracting electron energy can be
expanded about a minimum, as in Eq. (A1). Noting that there
are four equal contributions coming from the four degenerate
minima, we obtain

�weak(ω + iδ) = −4
πλtωE

(2π )2

∫
dk′

x

∫
dk′

y

× 1

a2 + t

2

√
1+ V 2

S

2t2

{
[1 + (VS/t)2]

(
k′2
x + k′2

y

) + 2k′
xk

′
y

} ,

(A4)

where a2 = E0 + ωE − ω, and the integration is understood
to be around a small disk located at one of the energy minima.
Transformation to to polar coordinates allows both the radial
and angular integrations to be done analytically; for the radial
integral we keep only the dominant portion for small ωE , and,
after differentiation, we readily obtain the result quoted in the
text [Eq. (20)].

APPENDIX B: STRONG-COUPLING LIMIT

To investigate the strong-coupling limit using second-order
perturbation, we need to evaluate Eq. (15), repeated here for

convenience:

E
(2)
k− =

∑
ntot �=0,n1,n2,...=0,1,...,∞

N∑
=1
σ

× |〈n1,n2, . . . ,nN |ph ⊗ 〈cσ |elT |	k,−〉el ⊗ |0〉ph|2
−ntotωE

= −t2e−2g2

ωE

∞∑
n1,n2,...=0

ntot �=0

N∑
=1

|A↑|2 + |A↓|2
ntot

, (B1)

where Aσ is given a series of matrix elements (distinct for
σ =↑ and ↓). These turn out to give equal contributions, so
we illustrate in some detail the result for A↑ only. After some
algebra, we obtain

|A↑|2 = |u(−g)|2
∣∣∣∣∣

∑
δ=±x,±y

cδu+δ(g)

∣∣∣∣∣
2

, (B2)

where

u(±g) ≡ 〈n|e±ga
†
 |0〉 = (±g)n

√
n!

(B3)

and

c+x = e+ikxa

(
1 + VS

t
eiφk

)
, c−x = e−ikxa

(
1 − VS

t
eiφk

)
,

c+y = e+ikya

(
1 − i

VS

t
eiφk

)
, c−y = e−ikya

(
1 + i

VS

t
eiφk

)
,

(B4)

and

eiφk ≡ sin (kya) − i sin (kxa)√
sin2 (kxa) + sin2 (kya)

. (B5)

For each of the u(±g) in Eq. (B2) it is to be understood that
n �= 0, but all other n′ = 0 for ′ �= . Hence, in the 16 terms
in Eq. (B2), 12 will have all phonon numbers equal to zero
(other than n); the other 4 will have both n and n+x (or n and
n−x , etc.) not equal to zero in general. As already mentioned,
the contribution from |A↓|2 is identical to that from |A↑|2,
so this merely gives us a factor of 2 in Eq. (B1). Moreover,
translational invariance makes the contribution from each site
identical, so the sum over sites is trivially performed. This
equation then becomes

E
(2)
k− = −4t2e−2g2

ωE

{
f (g2)

(
εk−
2t

)2

+ [f (2g2) − f (g2)]

[
1 +

(
VS

t

)2]}
, (B6)

where

f (x) ≡
∞∑

n=1

1

n

xn

n!
= Ei(x) − γ − ln x

≈ ex/x[1 + 1/x + 2/x2 + · · ·], (B7)

and Ei(x) is the exponential integral and γ ≈ 0.5772 is Euler’s
constant. Equation (B6) leads directly to Eq. (16) in the
text.
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Falub, L. Moreschini, M. Papagno, M. Grioni, and K. Kern, Phys.
Rev. B 75, 201401(R) (2007).

8C. R. Ast, J. Henk, A. Ernst, L. Moreschini, M. C. Falub, D. Pacilé,
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