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We introduce a parameterization of the Hilbert space of a spin-1
2 Heisenberg antiferromagnet using an

octapartite description of the square lattice. This provides a systematic way to model the ground-state wave
function within a truncated basis. To prove its effectiveness we study systems with up to 64 spins using exact
diagonalization. At significantly reduced computational cost, we get ground-state energies within 1% of the
best published values. Its noniterative nature and lack of exploitation of spatial symmetries make this approach
suitable for generalization to doped systems and for integration into iterative procedures.
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I. INTRODUCTION

The discovery of the high-Tc cuprates has emphasized the
need to understand the physics of charged fermions moving
in a two-dimensional �2D� background of antiferromagneti-
cally �AFM� coupled spins, as represented by a doped Hub-
bard model.1 Since an analytical solution seems unattainable,
numerical modeling of large scale, strongly correlated doped
systems is of extreme importance and has been pursued in
many different ways, each with their own advantages and
disadvantages.

For example, the powerful Monte Carlo �MC� methods
give extremely accurate information for the undoped AFM,
providing the benchmark for the ground-state �GS� energies
and correlation functions of systems with up to thousands of
spins.2 However, they are limited by the sign problem if
additional fermions are present. This has led to the develop-
ment of alternative optimized ways for treating the undoped
AFM, with the latest development in MC sampling being the
use of variational RVB-type ansätze.3–5 In the same context,
density matrix renormalization group �DMRG� has also pro-
gressed over the years.6

Since the interactions with the fermions are often compa-
rable or bigger than the AFM’s energy scale, most such
AFM-specialized methods require very nontrivial modifica-
tions to adapt to doped systems, due to technicalities of the
RVB ansatz or the DMRG special boundary conditions. In
fact, recent studies of doped systems still perform exact di-
agonalization �ED� of the full Hilbert space rather than trying
to take advantage of either of these schemes.7–9 ED studies
have the huge advantage that they provide the GS wave func-
tion, from which any GS properties, including all correlation
functions, can be calculated. This would make ED the nu-
merical method of choice, were it not for the extreme restric-
tion on the sizes of doped systems that can be currently
treated.8,9

A very different way to approach the doped systems is to
start from a nonoptimal AFM background description, such
as the classical Néel state.10 However, the strong quantum
fluctuations leading to strong deviations from a Néel-like
background are believed to be an essential part of the low-
energy physics of the doped systems. It is therefore neces-
sary to find accurate yet efficient ways to describe the AFM
background, which can also be straightforwardly extended to
the doped problem.

Here we present a way to model the GS wave function for
the undoped AFM, with a high level of accuracy that can be
systematically improved. It is so effective that the N=64
wave function can be calculated as a numerical vector in a
systematic basis with a commodity computer. The method is
formulated in the real-space basis of the square lattice with
periodic boundary conditions, in which other interactions are
defined naturally. Neither translational nor point-group sym-
metries are exploited. Thus, it can be used as an excellent
starting point for studying doped models where these sym-
metries are broken, or as an efficient kernel for iterative
methods such as renormalization and quantum cluster
theory.11

We stress that the immediate goal is not to compete with
the MC powerhouses in dealing with large undoped systems.
Rather, our method provides a general insight in the essence
of the AFM background, which can be used to then reduce
the computational cost for larger doped systems with only
slight loss of accuracy. Availability of such efficient yet ac-
curate methods is invaluable in allowing extensive studies of
dependence on various parameters, to shed light on their im-
portance and effects.

In this paper, we discuss the physical insights behind our
method and apply it to the undoped AFM, where its accuracy
can be easily gauged. Application to doped models is in
progress and will be presented elsewhere.12 With the AFM
exchange taken as the energy unit, a N-site AFM Heisenberg
model on a square lattice reads

HAFM = �
�i,j�

S̄i · S̄j . �1�

The dimension of the Hilbert space is 2N, and that of the
commonly used Sz=0 basis for the GS is N ! / � N

2 !�2. It is the
sheer size of the Hilbert space that makes this problem so
difficult and stimulates new approaches.

II. METHOD

After Anderson pointed out the connection between RVB
states and the projected BCS-type wave function,3 the RVB
framework has been implemented for an AFM torus by two
approaches. The bottom-up route is the explicit optimization
of the bond amplitudes.4 The top-down approach is the opti-
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mization of projected wave functions,5 �this showed the co-
existence of superconducting and AFM order parameters for
underdoped cuprates�. So long as the AFM order parameter
is finite, there should be another way to describe the wave
function without the projecting ansatz or the micromanaging
of bond amplitudes.

One way to specify a singlet with finite AFM order is to
divide the bipartite lattice into sublattices A and B, and per-
form angular momentum addition between their states. If
these states are classified by their total and z-projection quan-
tum numbers, SA/B� �0, N

4 � , mA/B� �−SA/B ,SA/B�, we can
build S=0 singlet states

�0,0� = � �− 1�SA−mA

	2SA + 1
�SA,SB

�mA,−mB
�SA,mA,SB,mB� . �2�

The Hilbert space contains a huge number of such singlets.
Since the AFM ground state is also a singlet,13 if we label all
possible singlets of Eq. �2� with an index �, we can express
the GS wave function as their linear combination
�GS�=��c��0,0��. We seek such an orthonormal basis which
is also computationally efficient.

The staggered magnetization is a well-studied observable
of the ground-state wave function. For a bipartite lattice in a
staggered magnetic field, this quantity is formally defined as
the difference between �mA� and �mB� in the zero-field limit.
In the absence of a staggered field, this quantity has alterna-
tive definitions, such as

m̂2 =
1

N2
�
r

�− 1��r�Ŝr�2
=

�ŜA − ŜB�2

N2 , �3�

where ŜA/B are the total sublattice spin operators. In the AFM
GS, m= �m̂2�1/2 has been extrapolated to �0.3 as N→�, and
increases as 1 /	N to �0.45 for N=32.15 In terms of the total

spin Ŝ= ŜA+ ŜB, we have

m̂2 =
1

N2 �2ŜA
2 + 2ŜB

2 − Ŝ2� �4�

The ground state is a singlet, S=0. It follows that the wave
function must allocate significant weight to sectors with high
values of SA=SB in order to yield such large values of m. In
fact, for the right-hand side of Eq. �4� to be larger than the
expected value, the sublattice spins SA/B have to be within N

16
of their maximum values. Our computational basis takes ad-
vantage of this observation. There are many ways to add
spins quantum mechanically, but not all are viable because
the truncation error needs to be bounded systematically and
the computational effort must be small. There are two ex-
tremes: if the original single-site basis of Eq. �1� is used, no
basis transformation is needed but enforcing truncation based
on Eq. �4� is costly. However, if a random basis tabulated
according to values of SA is used, transforming Eq. �1� into
the new basis would be costly due to the many Clebsch-
Gordon series needed. We propose a parametrization which
is a good compromise between these two extremes.

Starting from the case where all N
2 sublattice spins add to

the maximum of N
4 , if we want to include states with spin

down to 3N
16 = N

4 − N
16 , the basis must allow many new configu-

rations, including ones where N
8 spins have a total spin of 0

while the other 3N
8 spins have a total spin of 3N

16 . This suggests
that groups of N

8 or fewer spins must be allowed to take all
possible spin quantum numbers. Since a larger group would
overshoot the sublattice spin below the 3N

16 “threshold,” while
a smaller group would introduce extra “enforcement” costs
as discussed above, we divide the full lattice into groups of
eight sites, see Fig. 1. The resulting octads repeat periodi-
cally with translational vectors 2a�1, �1�. Each spin is iden-
tified by the octad it belongs to, and by its position inside the
octad. A sublattice is composed from four groups of spins

indexed with the same label, e.g., ŜA= Ŝ0+ Ŝ1+ Ŝ2+ Ŝ3. With
this arrangement, each spin interacts with spins from all the 4
groups of the other sublattice, e.g., a group 0 spin is always
to the west/east/south/north of a spin in group 4/5/6/7. This
partition is the minimum division that permits such a de-
scription and is a fundamental building block for the wave
function in the model. Even though we arrived at it by look-
ing to optimize the computation, our partition has been used
in other contexts.14

We now straightforwardly generalize Eq. �2� and write
singlets of the total lattice as

�0,0, f�
Si��� = � c
Si,mi��
i=0

7

�Si,mi� , �5�

where Si , mi are the quantum numbers for Ŝi, i.e., the total
spin for group i=0,7. Here, c
Si,mi�

is the product of the ap-
propriate Clebsch-Gordon coefficients for the eight pairs of
quantum numbers �Si ,mi�. The f�
Si�� index on the left-hand
side keeps track of the many ways in which these spins can
be added to form a singlet.

If all these singlets are kept into the computational basis,
the GS calculation is exact. The total spin of each group
takes values Si� �0, N

16� and there is no reason to restrict
them. However, our previous discussion suggests that while
all possible Si values must be allowed, the singlets with high-
est GS weight are those whose total sublattice spin is within
N
16 of the maximum value.

FIG. 1. �Color online� Square lattice divided in octads �shaded
areas�. Sites positioned similarly inside octads have the same label.
Each is surrounded by neighbors with different labels.
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We therefore parameterize the singlet Hilbert space in
terms of a completeness parameter, Cs� �0,1�, and include
in the singlet basis only states for which SA/B�

N
4 �1−Cs�. For

Cs=1, the calculation is thus exact. For Cs= 1
4 , this means

that the maximum number of antialigned spins in the sublat-
tice is N

8 . Based on the discussion for the staggered magne-
tization, we expect this to already be a good variational basis
for the GS. For any Cs�1, this formulation allows
all possible values of Si for each i=0,7, but restricts the
ways in which they can combine to give the total sublattice
spin. The number of discarded states is combinatorially large
due to the large degeneracy of states with low sublattice
spins.

Equation �5� is invariant under spin rotations, thus the
antialignment is enforced here in terms of angular momen-
tum addition, very different from the classical Néel picture.
This approach also maintains the full translational symmetry
of the Hamiltonian. If the RVB bond-amplitude optimization
is a bottom-up way of adding AFM order to a singlet,4 our
method is a compatible top-down approach without the need
of projecting an ansatz.

The cost of this truncation scheme is the one-time com-
putation of matrix elements between these basis states. This
is acceptable because conventional diagonalization schemes
are limited by storage, not processor speed, and this data is
reusable for other computations that involve the AFM. The
octapartite division of Fig. 1 is valuable for greatly minimiz-
ing the number of finite matrix elements of the Hamiltonian
in the basis states of Eq. �5�. The two-body interaction can be
computed efficiently because only 2 out of 8 kets in Eq. �5�
are changed and the delta functions in the Clebsch-Gordan
coefficients of Eq. �5� allow data to be aligned in a compu-
tationally efficient way. The overall matrix can be con-
structed column-by-column and term-by-term and is ex-
tremely sparse. The practical implication is that the grand
problem is decomposed into many small independent com-
putations which can be massively parallelized. Table I com-
pares the Cs= 1

4 basis size to those of other bases commonly
used by noniterative methods. At Cs= 1

4 , the N=32 system
was solved within seconds using a generic Lanczos routine.
Even for the 9.8�108-size basis for N=64, the GS vector
can be calculated with a power method using less than 15
matrix-vector products, each taking less than 30 min with a
single CPU thread on a xeon workstation. Another advantage
is the absence of the gapless S=1 magnon excitations from
the variational space, which allows the matrix-vector prod-
ucts to converge rapidly. Since these excitations are Gold-
stone modes, the required S=1 basis to describe them has
roughly the same size as the S=0 basis required for the GS,

and can be generated by appropriately changing the Clebsch-
Gordon coefficients in Eq. �2�. The modeling of collective
magnon excitations in the presence of carriers is model-
dependent and will be discussed elsewhere.12

III. RESULTS

We have performed computations for the full basis for
N=16 as a benchmark for larger N values. For N=32 �64� we
computed up to Cs= 1

2 �Cs= 1
4 �. While the computations with

Cs�1 are variational, the goal here is to demonstrate that
Cs� 1

4 is a good rule-of-thumb value to capture well the
AFM ground state.

The stability of this formulation is demonstrated in Fig.
2�a� which shows the overlap between the GS wave func-
tions for consecutive values of Cs. The deviation decreases
exponentially with increasing Cs, and for Cs= 1

4 the overlap is
�95%. We conclude that the GS vector is already pointed in
the correct direction even for small Cs, and subsequent in-
crements of Cs merely result in minor improvements. This is
reinforced by the convergence of the GS energy demon-
strated in Fig. 2�b�, which supports the scaling law
dEGS

dCs
�e−�Cs. The error decays exponentially, with a rate that

increases with N. The N=32, 64 lines cross at Cs� 1
4 where

the fractional error is �10%. This exponential efficiency is
amplified by the fact that a linear decrease in Cs leads to a
combinatorial decrease in the basis size because of the nu-
merous low-spin combinations removed from the basis.

These GS energies are not as accurate as for established
iterative methods, however a single-pass computation at
Cs=1 /4 already has less than 2% error. Using a linear fit of
dy
dx �e−x, an estimate of EGS at Cs=1 is obtained by simple
integration �see Fig. 3�. From the Cs=1 estimates and the
N−3/2 scaling, we extrapolate limN→�

EGS

N =−0.6671, within
0.5% of the best published value of −0.6692,15 even though
it is achieved at a significantly reduced computational cost.

We have thus far demonstrated the exponential conver-
gence of the GS eigenvalue and eigenvector with increasing
Cs, which validates our proposed variational basis. Because
MC studies cannot produce an explicit wave function, they
often gauge accuracy via spin-spin correlation operators

TABLE I. Size of the Cs= 1
4 subspace as compared to that of the

commonly used basis.

N Cs= 1
4 S=0 Sz=0 Full

16 50 1430 12870 216

32 11041 35357670 601080390 232

64 9.8�108 5.55�1016 1.83�1018 264
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FIG. 2. �Color online� �a� Overlap ��GS ,Cs �GS ,Cs+ 2
N ��2 be-

tween ground-state wave functions corresponding to adjacent val-
ues of Cs for N=16, 32, and 64. Note that for N=64, the overlap is

already 95% for Cs= 1
4 ; �b� Fractional change 1

EGS

dEGS

dCs
in ground-

state energy corresponding to different Cs cutoffs. The lines are
linear fits to the data.
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which do not commute with the Hamiltonian. The insets of
Fig. 3 show expectation values of two such operators �the
staggered magnetization of Eq. �4� and the spin-spin corre-
lation at maximum distance� evaluated from our eigenvector
for a given value of Cs. Although these operators are non-
commuting, their matrix representation is diagonal in our
basis and therefore trivial to compute. The convergence of
these quantities is essentially linear for Cs�

1
4 . For greater

values of Cs,
d

dCs
�S̄r · S̄r+�L/2,L/2�� is suppressed faster than

�e−Cs so the post-threshold convergence is even better than
for the GS energy. On the other hand, because m is exploited
to discard low-spin parts of the Hilbert space, its approxi-
mated value is always higher than the true value; conver-
gence is only asymtotical for Cs�

1
4 . Thus, the computational

discount for the GS wave function at a small Cs is achieved
at the cost of lowered accuracy for one of many definitions
of staggered magnetization, which does not commute with
HAFM.

IV. CONCLUSIONS

We introduced an octapartition of the square lattice, and
used it to build an orthonormal singlet basis for calculating

the AFM GS. We used Cs to systematically parameterize the
resulting Hilbert space, and proposed a priori arguments to
postulate that Cs� 1

4 is the minimal value that captures the
GS accurately. The resulting basis is combinatorially smaller
than in any other schemes, a priori known, and computation-
ally very efficient. We demonstrated the stability of the for-
mulation in Fig. 2�a� and identified the sources of error. Us-
ing a single thread on a commodity computer, single-pass
matrix computations are feasible for systems with up to
N=64 spins, significantly exceeding the current full ED
record of N=40.9

While other established methods can yield smaller errors
for the GS for larger N values, they cannot be easily gener-
alized. Our formulation is noniterative and is defined in the
real space coordinate of a torus without exploiting spatial
symmetries. This allows for an economic generalization of
this approach into iterative procedures.

One concern about Hilbert space truncation is its applica-
bility to complicated models. Our formulation by itself does
not involve MC sampling and so it is not subject to the sign
problem. One outstanding issue in cuprates is the explanation
and measurement of the photoemission spectrum at low dop-
ing and low temperature.16 Information about the spectrum is
contained in the Krylov space of the model Hamiltonian
acted on the AFM GS;17 thus, a compact description of the
AFM GS in a systematic orthonormal space can indeed nar-
row the space spanned by calculations. Because the total spin
of the AFM plus carriers is conserved while AFM order is
expected to persist for low doping at low temperature, our
method can be generalized to reduce the Hilbert space of the
doped systems. The details are model-dependent and outside
the scope of this paper; this work is progress.
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