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We study the effects of a nearby surface on the spectral weight of a Holstein polaron, using the
inhomogeneous momentum average approximation which is accurate over the entire range of electron-
phonon (e-ph) coupling strengths. The broken translational symmetry is taken into account exactly. We
find that the e-ph coupling gives rise to a large additional surface potential, with strong retardation effects,
which may bind surface states even when they are not normally expected. The surface, therefore, has a
significant effect and bulk properties are recovered only very far away from it. These results demonstrate
that interpretation in terms of bulk quantities of spectroscopic data sensitive only to a few surface layers is

not always appropriate.
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Understanding the behavior of a particle coupled to
bosons from its environment (phonons, magnons, etc.), is
a problem relevant for many interesting materials: man-
ganites, cuprates, most other oxides, organic materials,
cold atoms, etc. A well-known result is the formation of
a polaron—the particle is dressed by a phonon cloud. Al-
though this is an old problem [1], there is still considerable
analytical and numerical effort being made towards under-
standing simple Hamiltonians, like the Holstein model
[2,3]. Most of this work has been focused on calculating
bulk properties. However, many materials are being inves-
tigated nowadays using surface-sensitive spectroscopies,
such as scanning tunneling microscopy (STM) [4] and
angle-resolved photoemission spectroscopy (ARPES) [5].
Although the former probes only the surface layer while
the latter probes the first few layers, they are usually
interpreted in terms of bulk densities of states or spectral
weights.

In this Letter we show that the properties of polarons
near surfaces are significantly different from bulk behavior.
Our results demonstrate that interpretation of data from
surface spectroscopies in terms of bulk quantities is gen-
erally not warranted. These results are also relevant for the
very active area of oxide-based nanostructures, where re-
markable behavior, e.g., superconductivity, is seen at the
interface between two insulators [6]. While strong corre-
lations (not addressed at this single-polaron level) are
obviously important, in most oxides the charge carriers
also couple strongly to phonons, magnons and/or orbitons.
Our demonstration that such coupling gives rise to signifi-
cant additional potentials near the interface is clearly im-
portant for properly understanding these systems.

Here we introduce a method that allows for efficient yet
accurate investigation of such problems, and which we
expect to become a basic tool for interpretation of experi-
mental data of systems where polaronic effects are impor-
tant. This method—the inhomogeneous momentum aver-
age (IMA) approximation —is based on the momentum
average (MA) approximations used to study bulk proper-
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ties of Holstein [7] and more complex polaron models [8].
MA was shown to be highly accurate over all parameter
space, in all dimension and at all energies, for all of these
models. Here we use the Holstein model to illustrate the
new phenomenology; the quantitative changes expected
for the more general models can be studied similarly.

The IMA method was recently developed to investigate
the effects of disorder on polaron properties [9]. Compari-
son with exact but expensive diagrammatic Monte Carlo
simulations [10] proved that the high accuracy is main-
tained for problems with broken translational symmetry.
This is expected since IMA makes no further approxima-
tions to MA, so it is based on the same physical arguments
as MA and satisfies the same number of spectral weight
sum rules, exact asymptotic limits, etc. [7].

Here we extend IMA to study systems with surfaces. For
simplicity, we consider crystal-vacuum interfaces and for-
bid the wave functions from spilling into the vacuum. This
approximation, which implies an infinite work function,
can be easily relaxed. In fact, with this method we can also
study interfaces between two materials with different band
structures, boson frequencies and particle-boson cou-
plings. To show the versatility of the method we add a
surface potential, whose value controls the tendency to
bind surface states. We take this potential to be uniform
on the surface, so as to not break in-plane translational
invariance. However, localized impurity potentials can also
be added and treated as discussed in Ref. [9], allowing,
e.g., for realistic modeling of STM spectra in the vicinity of
various impurities. Since we treat these terms exactly, we
expect the accuracy to remain as high as for all other MA-
based results. To our knowledge, these are the first avail-
able results for such problems [11].

We calculate the polaron Green’s functions G(i, j, w) =
©Ole;G(w)c!0y = 3, 0lc;laXalcl|0)/(w — E, + in),
where G(w) = [w — H + in]~', H is the Hamiltonian
and c; the electron annihilation operator at site i. The spin
of the electron is irrelevant, and we set i = 1. As usual, the
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poles mark the single-polaron spectrum H |a) = E,|a).
The spectral weight (measured by ARPES) and local den-
sity of states (measured by STM) are obtained from the
Green’s function in the usual way [4,5].

We first review the exact Green’s function of the system
with a surface, in the absence of e-ph coupling [12]. We
solve the problem for a semi-infinite one-dimensional (1D)
chain and then generalize. For an infinite chain with peri-
odic boundary conditions and nearest-neighbor (nn) hop-

ping 5-[0 —tzl(c c;+1 + H.c.), we have
1 (= oik(Ri=R))
Gy, j, w) = — dk————, 1
oli. j @) 277[777 w—¢g,tTin 1
where &, = —2tcosk since we take the lattice constant to

be a = 1. Other dispersions can be treated similarly.
To calculate the Green’s function G_.(i, j, w) for a semi-
infinite chain that starts at site 0, we ‘‘cut” the infinite

chain by adding V., = +t(cilco + cgc_l), so that .’7:[C =
H, + V. has no hopping to the left from site 0. Applying
Dyson’s identity G (o) = Gy(w) + Go(@)V G (w) we
find that for any i, j =0, G.(i j, ) = Gy(i, j, w) +

tGo(i, — 1, @)G.(0, j, w), which is solved to give
.. .. Goli, — 1, w)Gy(0, j, w)
G.(i,j,w)=Gyli, ], w)+ 1 . 2
), 0) = Goli ) + 1= OBED

If the energy of site 0 is also modulated by a surface
potentlal U 0= -U c0 ¢y, the total Hamiltonian of the chain

is .7-[ 5—[ + U, and its Green’s function is calculated

by applying Dyson’s identity again, leading to:

G.(i,0, w)G.(0, j, w)
1+UG.(0,0, w)

G(i, j,w) = G.(i, j w) = U 3)

G, (i, j, w) can be calculated similarly for any other surface
potential, including modulated hopping terms.

To generalize, we consider a d-dimensional simple cubic
crystal with nn hopping and a (100) surface (any other
surface can be treated similarly [12,13]). Because of the
symmetry to in-plane translations, we partially Fourier
transform and use operators ¢, x which annihilate a particle
with in-plane momentum k from the layer i = 0. Then
<O|c,»,kr(A}s(w)c;ryk|O) = S wG,(K, i, j, w) because k is a
good quantum number. Moreover, the Hamiltonian factor-
izes into a sum of 1D problems, one for each k, so that
G,(k, i, j, w) = Gy(i, j, » — &) wWhere G (i J, w) is the
1D solution of Eq. (3) and g = —2¢ cosk is the
kinetic energy for the in-plane motion. leen the distinc-
tion between where the in-plane hopping #| appears (in
g k) and where the interlayer hopping ¢, appears [in
Egs. (1) and (2), defining the 1D functions G, and G_], it
is trivial to generalize to anisotropic hopping. A full analy-
sis for t; # 1) will appear elsewhere [13], but we note that
for intermediate values of the e-ph coupling, the surface
effects discussed here are significant if 7, /7, = 0.1.

Finally, note that (100) surfaces do not bind surface
states if U = 0, when G, = G, of Eq. (2) has no poles
outside the continuum. Such poles appear for a large
enough surface attraction U = ¢, when Tamm surface
states form [14]. This is true in all dimensions.

Now we add the e-ph coupling to our d-dimensional

system with the (100) surface, described by H = 5—[ +

.’J’-[ph + Ve_ph, where .’J'-[S has been discussed, 3—[

1.
QZiZO,qbi,q
phonons of energy (), where b}tq creates a boson with in-
plane momentum q in the layer i, and

iq describes a branch of Einstein optical

5 8
Viepn = ﬁz Z Ckain,k(qu + bi,—q)

i=0 k,q

is the Holstein coupling. N — oo is the number of unit
cells in the surface edge (if d = 2), or the surface layer (if
d = 3), and the k, q sums are over the in-plane Brillouin
zone (BZ). For a chain (d = 1), they do not appear.

Using the exact Green’s function G,(K, i, j, ) for the
noninteracting part of JH, we can map this problem onto
that discussed in Ref. [9], with G, replacing the disorder
Green’s function G, appearing there. Then the IMA ap-
proximations are obtained quite similarly; we summarize
here the main results. Since J{ is invariant to in-plane
translations, it only has finite matrix elements between
states with the same in-plane momentum:

<o|ci,ké(w)c;k,|o> = bk G(K, i, j, w).

Both n = 0 and 1 IMA®™ approximations lead to implicit
solutions for G(K, i, j, w) with the same formal structure:

G,(k, i, j,@,) + D Gppam (K, i, j, @)

/=0

Xv,(J, )Gk, [, j, &,) “4)

GIMA(H) (k, i, j, w) =

where @, = w — 2, (w) is the energy renormalized by
the bulk polaron self-energy 2, () (see below), and:

Un(j, w) = EIMA(”) (], w) - EMA(”)(w) (5)

where 2,0 (), @) are layer-dependent ““self-energies”.
In particular, 3,0 (j, @) = gA;(j, @) where

ngG,(j, j, @ — nQ)
1 - gés(.]) j’ w — nQ)An+1(.jr w)

A, (), ©) = (6)

are continued fractions defined in terms of in-plane mo-
mentum averages of the noninteracting Green’s functions
in that layer: G,(j, j, w) = Ni”Zqu(q, j, j, w). For j — oo,
G,(q, j, j, ) — Gy(q, j, j, ®) as bulk behavior is recov-
ered far from the surface. From Eq. (1) it then follows that
lim;_.G,(j, j, w) are the fully momentum-averaged free
propagators, and thus 3,0 (j = 0, @) = 3;,0(w), the
expected bulk MA© self-energy [8].
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FIG. 1 (color online). A(k = 0, i, ) vs w/t in various layers,
for Q = 0.51, g = /21, U = 0, i = 0.004¢.

At the IMAW level, we find S0 (), w) = ¢2%;(w)
[1 - &% (0fA(j, ®) — A1 (j, @ — Q7 with %j(w) =

Ni“ZqGIMAm) (q, j, j, ® — Q) the in-plane momentum aver-

age of the IMA(©) solution at a reduced energy [9,13]. This
is a more complicated but more accurate expression, since
the accuracy of IMA®™ improves with increasing n [9]. It is
straightforward to verify that X,,0(j— o, w) =
Syan (@), the MAW bulk self-energy [8]. Thus, from
Eq. (5) it follows that v,(j, @)|;— — 0 for both n =0,
1, so this is a surface-related energy.

The first term in Eq. (4) would be the expected solution
if the only effect of the e-ph coupling is the formation of
the polaron. Then, we could start with the bulk polaron
Green’s function instead of G, in Eq. (1). For MA with
n = 0, 1, this means renormalizing the energy w — o —
Zuam (@) = @,. Using the same steps to “cut” the surface
leads to the first term in Eq. (4). The second term shows
that there is more. Its form suggests a Dyson identity
coming from adding an extra surface potential
2ixvali, w)c}r’kc ;k to the Hamiltonian. Since this poten-
tial depends on energy, it encodes the retardation effects
due to the surface. In other words, not only the electron, but
also the surface potential that it experiences, are renormal-
ized due to the e-ph coupling. As we show now, this addi-
tional retarded surface potential is considerable and has
very important consequences.

Equation (4) is easy to solve since v, (j, ) vanishes
rapidly away from the surface (j/ =5 cutoffs suffice),
and we find any G(k, i, j, ) by solving a few coupled
equations. Figure 1 shows A(K, i, w) = — %ImG(k, ii, w)
at k = 0, i.e., the spectral weight measured by inverse
ARPES if an electron with in-plane momentum Kk is in-
jected in layer i. Because of particle-hole symmetry, the
ARPES signal for removing an electron from a full band is
obtained by inverting @ — —w. These results are for d =
2 (the in-plane momentum is a scalar k). We note that we
get similar results in any dimension. The top four panels
are for i = 0, 1, 2, 3, while the fifth shows the convergence
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FIG. 2 (color online). Left: Comparison between full MAW
solution (solid line) and solution if v,(j, @) = 0 (dashed line).
Right: Real part of the surface potential v,(i = 0, ) in units of ¢
vs energy. The upper panels are for U/t = 0 and the lower are
U/t = 0.5, while Q = 0.5¢, g = +/2t, 7 = 0.0041.

towards bulk. The bulk result (dash-dotted line) consists of
the polaron band from about —4.7¢ to —4.55¢, with a finite
width due to integration over the out-of-plane momentum.
This is followed by the second bound state, present for this
intermediate coupling, then the polaron + one-phonon
continuum starting just above it, at around —4.2¢, and
higher energy features [7].

Both IMA® (dashed line) and IMA" (solid line) results
are plotted for the first 3 layers. They agree well, proving
that there is no need to go to higher IMA levels. However,
they are very different from the bulk. Especially for i = 0
there is very little weight in the polaron band. As i in-
creases this feature starts to recover towards its bulk value,
but full convergence is not reached even at i = 50. Higher
energy features converge much faster, being quite similar
to bulk even for i = 2. The weight missing from the
polaron band, for i = 0, appears as two sharp peaks near
w/t = —4 and —3.5, whose heights decrease exponen-
tially as i increases. These are surface states, located in
small gaps in the bulk spectrum. Their appearance is due to
the additional surface potential, as proved in the left panels
of Fig. 2, where we plot for i = 0, 1 the full IMA! solution
(solid line) and the solution if v,(j, @) = 0 (dashed line).
The latter has no such surface states.

The location of the surface states depends on the value of
U. The lower left panels of Fig. 2 show that for a small
U/t = 0.5, surface states appear below the polaron band
and in the first gap. Again, neither is seen if v,(j, w) = 0,
in agreement with the fact that a potential U <t alone
cannot bind a surface state. (In fact the relevant ratio is
U/r*, where r* is the effective polaron hopping. For values
used in Fig. 2, U <r*.) Apart from the surface states,
which are the most visible features, the spectral weights
for U =0 and U/r = 0.5 are fairly similar (the vertical
scale is the same in all panels). For i > 1 both converge to
the same bulk value, shown in Fig. 1.

To understand this behavior we now analyze v, (i, o).
We plot its real part for i = 0 as a thick solid line in the
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FIG. 3 (color online). 3D spectral weight A(k,, k, = 0, i, ®) vs
k. and w, for (a) i = 0, (b) i = 1, and (c) bulk. Note the very
different scales for these panels. (d) Cut at k, = 0.17.
Parameters are U = ¢, () = 0.5¢, g = J3t, n = 0.001z.

right panels of Fig. 2, for U/t = 0, 0.5. We also plot the
layer’s self-energy (thin line) and minus the bulk self-
energy (dashed line), since v,(i, w) equals their sum,
Eq. (5). Consider first the bulk self-energy: it diverges at
the top of the polaron band (smoothed by the finite 7)),
where it changes sign and then diverges again at the top of
the second bound state band, followed by more compli-
cated behavior in the continuum and at higher energies.
Now, ;40 (i, @) has a similar continued-fraction expres-
sion like 2,0 (@), see Eq. (6). For U = 0, G(0, 0, w) is
smaller than the bulk value, since a low-energy free elec-
tron is unlikely to be found near such a surface. This is
roughly as if we had the bulk value for G, but at a smaller g
in Eq. (6), and results in a shift towards higher energies
(like a bulk self-energy at a smaller g). This explains why
v, alternates between large positive and negative values.
For U = 0.5t, the free electron is more likely to be near the
surface, so we see a shift of the 3,0 (i, w) features to
lower values than for the bulk, and a v, with a different
pattern of large positive and negative values. Whenever v,
is strongly attractive, surface states may appear.

The physical meaning of this retarded surface potential
is now clear [9]. The bulk self-energy accounts for the
phonon cloud and its binding to the electron. Near the
surface, the motion of the electron and its cloud is modi-
fied, changing the energetics. This is described by the
additional surface potential v,(j, ) we uncovered here,
which has to depend nontrivially on w, since it matters
whether the electron’s dynamics are coherent or not, etc.

Because of this additional surface potential generated by
the e-ph coupling, surface states may appear (and be the
dominant spectral features for surface layers) where not
otherwise expected. If they are taken to be bulk features,
one will extract the wrong parameters from data fits. This is
illustrated in Figs. 3(a) and 3(b), where we show the
spectral weight in layers i = 0, 1 of a (100) surface of a
3D crystal, for in-plane momentum k, € (0, 7), k, = 0.
The bulk spectral weight, shown in Fig. 3(c), has a narrow

polaron band, and the second bound state band above it
(partially shown). Near the surface, the spectral weight in
these bands is significantly depleted. The dominant feature
is a surface state that lies just under these bands [also see
Fig. 3(d)], except where it flattens out, above the gap
between the two bulk bands [15]. Given how strong it is,
if one tries to fit it to bulk behavior, one may take it to be
the signature of a large polaron, with a large quasiparticle
weight and significant dispersion. The “break” in disper-
sion would be taken to signal the continuum expected at
“Q”. The flat, low weight surface state seen just above
w = —7t, which in reality indicates how strong the en-
hanced surface potential is, may be lost in the background
noise or attributed to impurities. Such analysis produces
wrong estimates for all parameters.

To conclude, we have shown that electron-boson inter-
actions give rise to an additional, strongly retarded surface
potential, which changes significantly the polaron behavior
near surfaces. Analysis in terms of bulk properties of STM
or ARPES data of materials with strong polaronic effects is
therefore generally inappropriate.
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