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We study the effects of the Rashba spin-orbit coupling on polaron formation, using a suitable

generalization of the momentum average approximation. While previous work on a parabolic band

model found that spin-orbit coupling increases the effective mass, we show that the opposite holds for a

tight-binding model, unless both the spin-orbit and the electron-phonon couplings are weak. It is thus

possible to lower the effective mass of the polaron by increasing the spin-orbit coupling. We also show

that when the spin-orbit coupling is large as compared to the phonon energy, the polaron retains only one

of the spin-polarized bands in its coherent spectrum. This has major implications for the propagation of

spin-polarized currents in such materials, and thus for spintronic applications.
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Spintronics is focused on finding ways to efficiently
manipulate the spin of electrons [1]. Awidely investigated
approach is to lift the spin degeneracy using spin-orbit
coupling (SO), such as the Rashba SO coupling of a con-
fined system whose quantum well lacks inversion symme-
try [2]. Experimentally, the Rashba effect is seen in many
systems, e.g., semiconductor heterostructures like GaAs
and InAs, surface states of metals like Au(111) [3], and
surface alloys like Bi=Ag [4] or Pb=Ag [5].

Confined two-dimensional systems may also couple
strongly to optical phonons of the substrate. Tuning of
these electron-phonon (e-ph) interactions was shown to
be experimentally viable in organic single-crystal transis-
tors [6]. Strong e-ph coupling is interesting because it leads
to polaron creation, whereas the coherent quasiparticle is
an electron surrounded by a phonon cloud. The polaron
dispersion and effective mass can be significantly renor-
malized from those of the bare band electron [7].

An interesting question is whether the e-ph and the SO
coupling can be used in conjunction to tailor differently the
properties of the two bands with different spin. The inter-
play between Rashba SO and e-ph couplings has been
studied for systems with parabolic bands and weak e-ph
coupling, using the self-consistent Born approximation [8].
The main conclusion was that SO enhances the effective

e-ph coupling due to an effectively reduced dimensionality
of the low-energy density of states. (Such mass enhance-
ments also appear for correlated electrons [9,10].) In this
Letter, we investigate this problem using a suitable gen-
eralization of the momentum average (MA) approximation
[11], which allows us to study tight-binding (nonparabolic)
models for any e-ph coupling strength. This is because this
method is accurate for all coupling strengths, and becomes
exact for both very weak and very strong couplings. We
find that except at weak couplings, the conclusions of
Ref. [8] do not apply for a tight-binding dispersion. To
the contrary, the effective e-ph coupling is suppressed by
SO coupling. We also calculate spin-dependent spectral
functions and show that in a certain regime, the coherent
polaron band is dominated by contributions from only one
SO electronic band (the ‘‘�’’ band). This has major im-
plications for spin-dependent transport, allowing for the
possibility to manipulate the effective mass and the spin
polarization of quasiparticles by tuning the e-ph and SO
couplings.
Consider a single electron on a two-dimensional square

lattice with SO coupling, which also interacts with optical
phonons of energy � (@ ¼ 1) via Holstein e-ph coupling
[12]. Its Hamiltonian is written in terms of k-space spinors
as
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where �k ¼ �2t½cosðkxaÞ þ cosðkyaÞ� is the two-
dimensional nearest-neighbor hopping free-electron dis-
persion and the Rashba SO coupling is �k ¼
2Vs½i sinðkxaÞ þ sinðkyaÞ�. Different dispersions and/or
SO couplings can be studied similarly. As usual, cyk;� is
the creation operator for an electron with momentum k and
spin �, while byq creates a phonon of momentum q. Both
electron spin channels interact with the phonons through
the local lattice displacement, with an e-ph coupling con-
stant g. The lattice has a total of N sites, where N ! 1,

and periodic boundary conditions. Momentum sums are
over the Brillouin zone.
The 2� 2 Green’s functions for the noninteracting sys-

tem (with no e-ph coupling) are defined as
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where the symmetric and antisymmetric Green’s functions
are given by

G0�ðk; !Þ ¼ 1

2
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;

Ĝ0ð!Þ ¼ ½!�H 0 þ i���1 is the resolvent correspond-
ing to H 0 ¼ H jg¼0, and the phase factor is �k ¼
�k=j�kj. To avoid confusion with scalars, all 2� 2 ma-
trices will be identified by a bar, such as in the �G0ðk; !Þ
notation.

The full Green’s function, defined as usually

�Gðk; !Þ ¼ h0j ck"
ck#

� �
Ĝð!Þð cyk"cyk# Þj0i; (2)

can in principle be calculated exactly by applying the
equation of motion method. The full Green’s function
can be related to the noninteracting one by using the

Dyson equation, Ĝð!Þ ¼ Ĝ0ð!Þ þ Ĝð!ÞVĜ0ð!Þ—here
V ¼ H �H 0 is the e-ph interaction. As shown previ-
ously for the Holstein Hamiltonian [11,13,14], the repeated
use of the Dyson identity generates a system of equations
involving generalized Green’s functions with various num-
bers of phonons. In the presence of SO interactions, the
equations of motion are similar, except they are in terms of
2� 2Green’s functions. As a result, we can implement the
MA approximations in the same way, and all conclusions
regarding accuracy for all e-ph coupling strengths, sum
rules obeyed exactly by the spectral weight, etc., remain
true. A somewhat analogous procedure was used to com-
pute the 2� 2 Green’s function describing rippled gra-
phene [15]; however, there the matrices are related to
different sublattices, not to different spin projections.

For all levels of the MA approximation, the Green’s
function can be written in the standard form:

�Gðk; !Þ ¼ ½ �G0ðk; !Þ�1 � ��ðk; !Þ��1; (3)

where the self-energy ��ðk; !Þ has different expressions
depending on the level of MA approximation used. For the

simplest, least accurateMAð0Þ level [11,13], the self-energy
has no k dependence and is given by an infinite continued

fraction ��MAð0Þ ð!Þ ¼ g2 �A1ð!Þ, defined by

�A nð!Þ ¼ n �g0ð!� n�Þ½1� g2 �g0ð!� n�Þ �Anþ1ð!Þ��1;
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is the momentum average of the noninteracting Green’s
function over the Brillouin zone. Note that because the off-
diagonal part is antisymmetric, its average over the
Brillouin zone vanishes; i.e., �g0ð!Þ and all �Anð!Þ matrices
are diagonal.

As discussed extensively in Refs. [13,14], MAð0Þ is
accurate for ground state properties, but it fails to properly
predict the polaronþ one phonon continuum. As a result,
it overestimates the polaron bandwidth. This problem is

fixed at the MAð1Þ level, where a phonon is allowed to
appear away from the polaron cloud. For the Holstein
model (and by extension, in the presence of SO coupling)
both these approximations predict k-independent self-
energies. Here, they are diagonal as well; i.e., phonon
emission or absorption is not allowed to scatter the electron
between the spin-polarized bands. Of course these are
approximations, although it is worth noting that all non-
crossed diagrams are diagonal and k-independent. This is
why the self-consistent Born approximation predicts a self-
energy that is also k-independent and diagonal [8].
In MA, however, the effect of noncrossed diagrams is

included for MAð2Þ and higher levels (in variational terms,
these allow two or more phonons to appear far from the
polaron cloud, and the order of their emissions and absorp-

tions is relevant). We therefore report MAð2Þ results here.
Following a similar procedure to that described in detail in

Ref. [14], the MAð2Þ self-energy is found as

��MAð2Þ ðk; !Þ ¼ �xð0Þ; (6)

given by the solution of the system of coupled equations
for the unknown 2� 2 matrices �xðiÞ:

X

j

�Mi;jðk; !Þ �xðjÞ ¼ eikRig2 �G0ð�i; ~~!Þ: (7)

The sum is over lattice sites i ¼ ðix; iyÞ located at Ri ¼
ixax̂þ iyaŷ. The 2� 2 matrices �Mi;jðk; !Þ are

�M 00 ¼ 1� g2 �g0ð ~!Þ �g0ð~~!Þð2 �a�1
31 � �a�1

21 Þ; (8)

�M i0 ¼ �g2 �g0ð ~!Þeik�Ri �G0ð�i; ~~!Þð2 �a�1
31 � �a�1

21 Þ (9)

for i � 0, and for both i, j � 0:

�M ij ¼ �a21�i;j1� g2eik�Ri �G0ðj; ~!Þ½ð �A2 � �A1Þ�i;�j

þ �G0ð�i� j; ~~!Þ �a�1
21 �: (10)

Here we defined �aij ¼ 1� g2 �g0ð ~!Þð �Ai � �AjÞ, where �A1 �
�A1ð!� 2�Þ, �A2 � �A2ð!��Þ, �A3 � �A3ð!Þ are continu-
ous fractions defined by Eq. (4), and ~! ¼ !� 2��
g2 �A1jð1;1Þ, ~~! ¼ !� g2 �g0ð ~!Þjð1;1Þð �a�1

21 Þjð1;1Þ [since the �A,
�a, �g0 matrices are proportional to 1, the (2,2) diagonal
matrix element can be used just as well in the definitions of
~!, ~~!]. Finally, the real space Green’s functions appearing
in the inhomogeneous terms are given, as usual, by

�G 0ði; !Þ ¼ 1

N

X

k

eikRi �G0ðk; !Þ: (11)

It is important to note that for i � 0, �G0ði; !Þ acquires off-
diagonal components, which lead to off-diagonal contri-

butions in ��MAð2Þ ðk; !Þ. Since below the free-electron con-
tinuum �G0ði; !Þ decreases exponentially as jRij increases,
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the system in Eq. (7) can be truncated at a small jij. We
truncate at jRij ’ 10a, such that the relative error of the
spectral function is less than 10�3.

Once the self-energy is known, the full Green’s function
is calculated and in turn provides accurate estimates for
spectral weights, ground state energy, effective mass, etc.
In the noninteracting case (g ¼ 0) the ground state with

energy E0 ¼ �4t cosðkminÞ � Vs

ffiffiffi
8

p j sinðkminÞj consists of
four degenerate points in k space ð�kmin;�kminÞ, where
kmin ¼ arctan½Vs=ð

ffiffiffi
2

p
tÞ�. On the other hand, in the absence

of SO coupling (Vs ¼ 0), as the effective e-ph coupling
� ¼ g2=ð4t�Þ is turned on, there is a crossover from a
light, large-polaron to a very heavy, small polaron at �� 1.
In Fig. 1 we show the ground state energy measured from
E0 for weak, medium, and strong effective e-ph couplings,
as a function of the Rashba SO coupling. For large SO
coupling, the renormalization of the energy and effective
mass (shown in the inset) is strongly suppressed, indicating
light polarons even when � ¼ 2. This is in contrast with
reported results for a parabolic band [8], which are based
on the fact that their density of states at the band edge have
a square root singularity, because in a continuummodel the
locus of momenta defining the ground state is a circle of
radius kmin. This is not true for a tight-binding dispersion,
where the van Hove singularity is shifted from the 4-point
degenerate ground state to higher energies. Actually, as
expected, the results for the parabolic band agree with our
tight-binding results if both � and Vs=t are very small.
Indeed, for � ¼ 0:75, the effective mass increases slightly
with Vs at small Vs, before decreasing at larger Vs values.
Such behavior is more apparent as � ! 0 [16].

Our results can be understood by noting that the free-
electron bandwidth increases with increasing Vs. This
results in an effective e-ph coupling, which compares the
polaron binding energy to this renormalized bandwidth,
that effectively decreases. As a result, away from the limit
where both � and Vs=t are very small, an increase in the SO
coupling leads to a drop in the effective mass, making it

possible to tune the mass of the polaron between heavy and
light. Light polarons are thus found either for small �
irrespective of Vs=t or at large � and large enough Vs=t.
As we show next, however, their nature and spin character
may be very different.

The MAð2Þ approximation is quantitatively accurate not
only for low but also for high energy states, as it satisfies
exactly the first 10 spectral weight sum rules and with good
accuracy all other ones [14]. It is thus possible to have an
accurate depiction of the high energy states by calculating
a spin-dependent spectral function:

~Aðk; !Þ ¼ � 1

�
ImðTr½ ~� �Gðk; !Þ�Þ; (12)

where ~� are the Pauli matrices. The direction of ~Aðk; !Þ
gives the direction of the expectation value of the spin,
while its magnitude gives the density of states with mo-
mentum k. We know that in the noninteracting case as we
go around the � point, eigenstates have spin perpendicular
to their momentum direction and rotate clockwise for one
band and anticlockwise for the other. For the coupled
system we observe similar spin eigenstates and thus choose
to plot the following quantity:

~Aðk; !Þ ¼ ½ ~uk � ~Aðk; !Þ� � ~uz; (13)

where ~uk and ~uz are unit vectors parallel to k, respectively
z axis. The two spin-polarized bands will now correspond

to the opposite signs of ~Aðk; !Þ.
Since the polaron bandwidth cannot exceed �, we ex-

pect the character of the polaron band to depend on the
relation between � and the energy difference between the
spin-split electron bands. In order to exemplify this we plot
~Aðk; !Þ in Fig. 2 for � ¼ 1,� ¼ 0:8t, and Vs ¼ 0:4t. The
spectral function is shown along the (0, 0)-(�, �) line in
order to intersect the ground state at (kmin, kmin). In this
case �=ðE0 � 4tÞ> 1, and we see two coherent polaron
bands corresponding to the two spin polarizations, with
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FIG. 1 (color online). The ground state energy as a function of
Rashba SO coupling for three values of the e-ph coupling. The
inset shows the effective mass on a logarithmic scale as a
function of Rashba SO coupling.

FIG. 2 (color online). Spin-dependent spectral function
~Aðk; !Þ, for � ¼ 1, � ¼ 0:8t, and Vs ¼ 0:4t. The right panel
shows only the ‘‘þ’’ band for clarity.
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similar quasiparticle weights. We conclude that when � is
larger than the SO splitting, the polaronic quasiparticles are
rather similar to the noninteracting electrons, except for the
renormalized mass and suppressed quasiparticle weight.
Of course, the spectrum above EGS þ� becomes incoher-
ent due to e-ph scattering.

In Fig. 3 we plot ~Aðk; !Þ for � ¼ 1:0, � ¼ 0:2t, and
Vs ¼ 0:8t. Now�=ðE0 � 4tÞ< 1, and because the polaron
bandwidth cannot exceed �, it is dominated by the low-
energy ‘‘�’’ band. There is a large difference between the
quasiparticle weights of the two coherent polaron bands
(note the different positive and negative scales for the
contour plot), and the effective mass of the dominant
‘‘�’’ band is much smaller than that of the low-weight
‘‘þ’’ band. Higher energy states have small weights and
are highly incoherent, i.e., short-lived.

Consider now injection of a current in such a system.
Whereas in a regime like that of Fig. 2 we expect the spin
to precess between the two coherent polaronic bands, as it
does for noninteracting electrons [17,18], in a regime like
in Fig. 3 only the spin component parallel to the ‘‘�’’ band
can be efficiently transmitted through the system, which
therefore acts as an intrinsic spin polarizer.

This becomes more and more apparent as one moves
further into the asymptotic limit where both the SO and the
e-ph couplings are large compared to �, i.e., ðE0 � 4tÞ 	
� and � 	 1. In this limit the ‘‘�’’ band in the coherent
polaron spectrum becomes lighter and has a higher quasi-
particle weight, whereas the ‘‘þ’’ band essentially van-
ishes from the coherent spectrum (its quasiparticle weight
is extremely low and its effective mass is extremely large).
The resulting light polaron is thus very different from the
one we find in the small � regime, which has both bands in
the coherent spectrum with roughly equal quasiparticle
weights and effective mass.

This demonstrates that an interplay between SO and
e-ph couplings allows indeed for different tailoring of the
properties of the two spin-polarized bands, such that one is
well described by a long-lived, light quasiparticle while the
other is highly incoherent. This will naturally lead to very
different conductivities for the two spin polarizations,
making such a material ideal as a source and/or detector
of spin-polarized currents—these are important compo-
nents needed for many spintronics applications. These
conclusions are based on the use of the MA approximation,
which is known to be highly accurate for all e-ph cou-

plings. Moreover, at the MAð2Þ level we use here, it results
in a nondiagonal, k-dependent self-energy; therefore, our
results properly include phonon-mediated scattering be-
tween the two electronic bands. While our results are for
the single electron limit, we expect them to hold for low
carrier concentrations where the Fermi energy is the small-
est energy scale and many-polaron effects (renormalization
of the effective coupling due to overlap of polaron wave
functions) are not yet significant [19].
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