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We evaluate from first principles the self-consistent Hartree-Fock energies for multisoliton configurations in
a doped, spin}, antiferromagnetic Mott insulator on a two-dimensional square lattice. The microscopic Hamil-
tonian for this system involves a nearest-neighbor electron hopping matrix elépamton-site Coulomb
repulsionU, and a nearest-neighbor Coulomb repulsioriWe find that nearest-neighbor Coulomb repulsion
on the energy scale dfstabilizes a regime of charged meron-antimeron vortex soliton pairs over a region of
doping from§=0.05 to 0.4 holes per site for intermediate coupling\3/t<8. This stabilization is mediated
through the generation of “spin flux” in the mean-field antiferromagnéEM) background. Spin flux is a
form of spontaneous symmetry breaking in a strongly correlated electron system in which the Hamiltonian
acquires a term with the symmetry of spin-orbit coupling at the mean-field level. Spin flux modifies the single
guasiparticle dispersion relations from that of a conventional AFM. The modified dispersion is consistent with
angle-resolved photoemission studies and has a local minimum at wave kectoa(1,1), wherea is the
lattice constant. Holes cloaked by a meron vortex in the spin-flux AFM background are charged bosons. Our
static Hartree-Fock calculations provide an upper bound on the energy of a finite density of charged vortices.
This upper bound is lower than the energy of the corresponding charged spin-polaron configurations. A finite
density of charge carrying vortices is shown to produce a large number of unoccupied electronic levels in the
Mott-Hubbard charge transfer gap. These levels lead to significant band tailing and a broad midinfrared band
in the optical absorption spectrum as observed experimentally. In the presence of a finite density of charged
meron-antimeron pairs, the peak in the magnetic structuré%br/a(l,l), corresponding to the undoped
AFM, splits into four satellite peaks that evolve with charge carrier concentration as observed experimentally.
At very low doping ($<<0.05) the doping charges create extremely tightly bound meron-antimeron pairs or
even isolated conventional spin polarons, whereas for very high dopir@.4) the spin background itself
becomes unstable to formation of a conventional Fermi liquid and the spin-flux mean field is energetically
unfavorable. Our results point to the predominance of a quantum liquid of charged, bosonic, vortex solitons at
intermediate coupling and intermediate doping concentrat{@®163-18209)06923-4

I. INTRODUCTION based on the Fermi-liquid theory notion of screening of the

effective electron-electron interaction. However, it is this

A microscopic description of doped, spin- Mott ~ same Fermi-liquid picture that studies of the Hubbard model
insulatord? is a central issue in the understanding ofSeek to supplant. In some recent papefswe have shown

strongly correlated electrons and  high-temperaturdhat the nearest-neighbor Coulomb interaction is a highly

superconductivity. Of particular interest is the intermediate 'elevant perturbation that can lead to an entirely different

doping regime ofs=0.05-0.30 charge carriers per lattice YPe Of broken symmetry in the many-electron system. At

site on a two-dimensional square lattice. In this regime it hadh® mean-field level we showed that Coulomb effects may
been observed, in a variety of cuprate superconducting maliVe rise to a mean-fieldHartree-Fock state in which the

terials, that long-range antiferromagnetkFM) order is de- Hamiltonian acquires a term with the symmetry of a spin-

stroyed by the presence of charge carriers and that the bit interaction. In this state, which we refer to as a spin-

. . S Ux phase, the internal wave function of the electtwnspin
charge carriers lead to a variety of non-Fermi-liquid charac- . .
space¢ undergoes a 2 rotation as the electron encircles any

teristics in the transport and electromagnetic response. Th ementary plaguette of the two-dimensiof@D) square lat
. 4 . . . - =

electrical, magnedncz and Oﬁ_t'%al propertlé;jsof _the doped tice. It was shown that spin flux itself is a dynamical variable
parent compound, from which superconductivity emergesy,; annears in quantized units and is carried by neutral skyr-
are among the most glaring and profound mysteries in solighion textures even within the undoped AFM. It was shifwn
state physics todaj’ . _ _that in the presence of a mean field of such spin flux, the

In most theoretical studies of the doped Mott insulator, itmean-field ground-state energy is lower than in the absence
has been assumed that the Coulomb repulsion between ele§ the spin flux(i.e., in the conventional AFM phajséor a
trons can be described by a Hubbard model in which thisarge range of doping concentrations and on-site repulsion
interaction is replaced by a pointlike on-site interaction.strengthU.
Moreover, it has been assumed that the on-site Hubbard pa- These early comparisons of the spin-flux states with non-
rameterU is an order of magnitude larger than the nearestspin-flux state¥ assumed that the doping electraf®les
neighbor electron hopping energy scaleThis picture is formed extended states within the Mott-Hubbard bands lead-
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ing to a global twist of the AFM background into a single drive the transition from the AFM ordered state to a disor-
wave-vector, incommensurate spiral state. More recently weered “spin liquid.”

have shown that the added charge carriers find it energeti- In this article we treat th&=0 case and demonstrate that
cally favorable, in the majority of cases, to nucleate a poin@ transition from a dilute gas of charged spin polarons to a
defect in the AFM backgrounécharged magnetic solitopn liquid of charged meron-vortex solitons takes place for inter-
rather than occupy a band staté? The existence of these mediate doping and for intermediate valueslft in the
charged solitons provides a remarkable and clear microtartree-Fock picture. The meron vortices are bosonic charge
scopic mechanism for non-Fermi-liquid behavior in a dopedCamiers, with deep electronic gap IeV(_aIs localized mlthelr
Mott insulator. Starting from the microscopic many-electronCores. The bosonic character may provide an explanation for

Hamiltonian, we derived a simple continuum model for thetn® UQ‘JSUﬁ' non—Fer(;m—hqgld [properties OI]'Itheh mgtal ob-
description of the magnetic soliton textures, such as skyrmi—serve In the intermediate doping region, while t 1€ deep gap
lectronic structure may be related to the doping-induced

ons and merons, which are generate_d by d_oplng of the antEand-tailing effects and the observed broad midinfrared op-
ferromagnetic parent compound. This continuum model re:

L tical absorption band. At higher dopings, we show that the
captures the Mot-Hubbard gap structure by retaining th%onventional phase with fermionic charge carriers has a

exact electron dynamics arjd AFM spin co_rrelation; on th,efower Hartree-Fock energy. This is consistent with the ob-
scale of the elementary lattice plagquette. It is approximate iar,ed transition to a normal metal when the cuprates super-
the sense that it assumes that the local magnetic structug®qyctors are overdoped.

varies slowly from one plaquette to the next and that the cgonsider a strongly interacting quasi-two-dimensional

electron dispersion relations are linearized about the relevarliectron gas described by the tight-binding Hamiltonian
Fermi points. The existence of magnetic textures leads to the

appearance of bound levels deep inside the Mott-Hubbard
charge-transfer gap. A doping hole can considerably lower H=—> tij(aiTUajU-f‘ H.c)+ >, Vijniny, 1)
its energy by occupying such a bound level, with the effect (i) i

that the hole becomes trapped in the core of the magnetic

soliton, in turn stabilizing the soliton. This leads to a Strikingwhereafg creates an electron at sitavith spin o, t;; is the
analogy between the ZD AFM and the 1D polyacetyltiie. hopping amplitude from sitgto sitei on the square lattice,
both cases, the mean-field ground state of the undoped syﬁi-E i:largaim and V; is the Coulomb interaction. For
tem is degenerate as a result of broken symmetry. In bot

T . A earest-neighbor hoppind;(=ty) and purely on-site Cou-
cases, doping induces topological fluctuati¢ssiitons that |, repulsion Y, =U), thlijs re(zjuces 1o the one-band Hub-

tend to restore th?‘ broken symmetry. In particular, we havgy, 4 model. In order to describe the possibility of spin rota-
shown that skyrmiongmagnetic spin polaronsare the 2D dﬂ

o

: . ion during the process of electron hopping, we retain the
analogs of 1D polarons in polyacetylene, while charge_ earest-neighborCoulomb repulsion \(;; =V). Using the

meron vortices are the 2D analogs of the charged bosoni li spin-matrix identitvta” (o Y=g .8 -
domain-wall solitons in polyacetyle8.At the topological o l'bslpln matrix | En : 3(2 %B(Uti’ﬂ’) Oaa’Oppr» LIS
level a polaron in one dimension can be thought of as £0SSible to rewrlte_t e eectroi-fz egtrog Tteractlonﬂterms in
tightly bound pair of domain walls, whereas a skyrmion inthe exact formin;=(2+ &;)n; — z Afj(Afj) " HereAfj are
two dimensions is topologically equivalent to a boundbilinear combinations of elgc_tron operators defined Ay
meron-antimeron paf The analogy also holds at the level =&ia%apdjs: #=0,1,2,3.07 is the 2<2 identity matrix,

of the electronic structure. Both the 1D domain wall in poly- o=(c",0?,0°) are the usual Pauli spin matrices, and there
acetylene and the 2D charged meron vortex in the AFM leads implicit summation over the repeated indices. The quan-
to the occurrence of mid-gap electron states in their respedum expectation value of tha{; operators fori #j is asso-
tive one-electron band structures. It is well known that inciated with charge currentsu=0) and spin currents g
polyacetylene, the first charge carrier added to the undopesg 1,2,3). Likewise, the quantum expectation value\gf for
polymer creates a polaron around itself, while a second=j describes the on-site charge dens@y=A{ and the

charge carrier causes this polaron to split into two indepengn-site spin-densins?=A2, a=1,2,3. In the AFM spin-

. . i

dent domain walls, each carrying one dopant. Wefux modeP-12we adopt the ansatz that there are no charge
s_uggestejd'_E that a similar picture hol_ds |n.the 2D AFM: The density waves(CDW’s) or charge currents in the ground
first hole is cloaked by a magnetic spin polaron, while agiate A% =0, For positive on-site Hubbard interaction, any
second hole causes the polaron to split into a bound merofspyy would considerably increase the mean-field ground-
antimeron pair, each vortex carrying a doping charge.  giate energy. Circulating charge currents are accompanied by

Neutral vortex-antivortex bound pairs may appear withouly, o netic fields and have been considered in the context of
doping in the layered AFM parent compound as the tempergsynyentionaflux phased’ However, such states are not ob-
ture is increasedf At finite doping, similar charged pairs ¢gpeq experimentally in the cuprate superconductors. On the

appear even al =0 since the increase in energy due 10 thegiher hand, we incorporate the experimentally observed

distortion in the AFM background is compensated for by the . . >
energy gained through trapping the holes in midgap StateéstFe'\chepIg%ds?sl?;_tpr?(:k‘gsro'unn??r:rr]]tds ’vahg?sigﬂztirfzefgﬁh
near the vortex cores. If the doping reaches a critical valué irculating ~spin cu

these pairs may unbind even®t0, leading to the destruc- <A_ﬁ>:(2t0/V)Aijna’_ where|A;;|=A for all ij andn is a
tion of long-range AFM order. For dopings smaller than thisunit vector. In the spin-flux phase, these spin currents do not
critical doping, a finite temperature may also entropicallycause any rotation of the local magnetic momeg8s. In-
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stead, they correspond to rotations in the internal space dinct from the smaller, conventional spin-orbit effects that
Euler angles(phase changgsas the electrons circulate give rise to anisotropic corrections to superexchange interac-
around lattice plaquettes. tions between localized spins in the AF¥IWe emphasize,
Implementing this ansatz with the help of the mean-however, that this AFM mean field is a “false ground
field factorization Aﬁ(Aﬁ)+—>(Aﬁ>(Aﬁ)++Aﬁ<Aﬁ * state at finite doping, analogous to the “false vacuum” in
+<A{J+(Aillf *)—2<A{J-‘)(Aﬁ * for i#j and making the early models of quantum chromodynanﬁ&tn the presence

Hartree-Fock factorization for the on-site:j terms, we ob-  Of charge carriers this mean field is unstable to the prolifera-

tain the mean-field Hamiltonian tion of topological fluctuationgmagnetic solitonsthat even-
tually destroy AFM long-range order. In this sense, the
H="Hei+ Hconsts analysis that we present below goes beyond simple mean-
field theory.
where

The article is organized as follows. In Sec. Il we compare
the half-filled AFM mean-field ground states of the conven-
Ho=—t >, (ai’fa-rgﬁaj s+H.Cc) tional phase and the spin-flux phase. We show that the spin-

(i)ap ' flux phase mean-field ground state always has a lower energy
U and that it has a single quasiparticle dispersion relation that
-u> a (S, pai g+ = (Qi-1Dal ,a, is consistent with angle-resolved photoemission studies
hapB P 27% o (ARPES. This suggests that the spin-flux phase is a suitable
2) starting point for studying the behavior of the parent com-
pounds upon doping. In Sec. Il we consider the problem of

and adding just one hole to the AFM background. We study in
detail two possible soliton excitations, the fermionic,

H :Uz <§2_ }Q-2+ EQ) &) charged, spin bag and the bosonic, charged, meron vortex,

gonst= = 4 4=t for both the conventional and the spin-flux phase. Using a

- . simple energetical argument, we propose a phase diagram for

Here T));=(8,5tiAijn-0,5)/J1+A% are spin-dependent each of these excitations showing which is the relevant ex-
SU(2) hopping matrix elements defined by the mean-fieldcitation for variousU/t values and various dopings. In the
theory andt=tq\1+AZ. conventional phase we find that the spin bag is the relevant

In deriving Eq.(2) we have dropped constant terms asexcitation at all dopings and all values 0f't. In the spin-
well as terms proportional t&;n; obtained from the mean- flux phase, we find that for intermediatd't values and low
field factorization of the nearest-neighbor Coulomb interac-dopings, the meron vortices are the relevant excitations.
tion. However, we have kept all terms obtained from theSince the spin-flux phase has the lower energy, this means
Hartree-Fock factorization of the on-site Coulomb repulsionthat a liquid of meron vortices appears on the lattice upon
Thus the entire effect of the nearest-neighbor Coulomb intereloping. This suggests a plausible explanation for various un-
action is the renormalization dfand the appearance of the usual (non-Fermi-liquid properties of the underdoped and
T'O{ﬁ phase factors in the hopping Hamiltonian. slightly overdoped cuprate compounds. In Sec. IV we study

It was shown previousi° that the ground-state energy multisoliton configurations by doping more holes into the
of the Hamiltonian of Eq(2) depends on the S@) matrices lattice. The results obtained are in good agreement with
T' only through the plaquette matrix produEt’T2°T34T4!  those predicted from the simple phase diagrams inferred in

=exp(n-o®). Here ® is the spin flux that passes through Sec. lll. We also show that at higher dopirigverdoped
each plaquette andd? is the angle through which the inter- Samplesthe conventional phase has a lower energy than the
nal coordinate system of the electron rotates as it encircle3Pin-flux phase and therefore a transition to a conventional
the plaquette. Since the electron spinor wave function is twdermi liquid takes place in this regime. Using very simple
valued, there are only two possible choices dor If ®=0 assumptions, we calculate the optlcalland static magnetic re-
we can Seﬂ'gﬁz 8; and the Hamiltoniar{2) describes con- SPonse of underdoped cuprate containing a frozen liquid of

ventional ordered magnetic states of the Hubbard model. ThHEI€ron vortices and show that it is consistent with the experi-
other possibility is that a spin flu® == penetrates each mental measurements. _Flnally, Sec. V contains discussion of
plaquette, leading t§12T23T34T41= — 1. This means that the the results and conclusions.

one-electron wave functions are antisymmetric around each

of the plaquettes, i.e., that as an electron encircles a Il. THE UNDOPED MOTT INSULATOR

plaquette, its wave function in the internal spin space of Eu- ) )
ler angles rotates by in response to strong interactions !N order to carry out Hartree-Fock calculations for multi-
with the other electrons. We call this the spin-flux phaseSoliton configurations in the antiferromagnet we consider a
This uniform spin-flux phase is accompanied by an A,:Mfmlt_e NX N lattice. In_th|s case.the_e|genvalues and eigenen-
local moment backgroundwith reduced magnitudeand  €rgies of the mean-field Hamiltonian can be found numeri-
may be regarded as an alternative mean-field ground state 6@lly and the convergence algorithm is a straightforward it-
the conventional AFM phase of the Hubbard model. In thegration procedure. Starting from an initial spin and charge
spin-flux phase, the kinetic energy term in Ef) exhibits  distribution S(i) and Q(i) for i=(iy,iy) with i,=1N and
broken symmetry of a spin-orbit type. This form of sponta-i,=1,N, the mean-field Hamiltonian is numerically diago-
neous symmetry breaking occurs over and above that assoalized. This in turn leads to new expectation values for the
ciated with conventional antiferromagnetism. It is also dis-spin and charge distributions given by
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I 1.
Si=2 X ¢z<i,a>(§«r) ali o)
a=1 g5/ =+1 oo’

Ne
Q=2 2 ¢i(i,0)duli,0).

Herea is an index for the eigenstates,, is the correspond-
ing eigenfunction, andll, is the total number of electrons on
the lattice. This is related to the doping concentrafiorea-
sured with respect to half fillingby 6=1—Ng/N2. If the
new spin and charge distribution are different from the initial
ones, we repeat the diagonalization until self-consistency is
reached. In this article, self-consistency is defined by the
criterion that the largest variation of any of the charge or spin
components on any of the sites is less than lBetween FIG. 1. Choice of the gauge for describing the mean-field spin-
successive iterations. We assume for simplicity that theux background. Physical observables depend on the rotation ma-
mean-field spin-flux parametefs are fixed. In a more gen- trices T’ only through the plaquette matrix produBt2T23T34T4L,
eral theory, these may also be treated as dynamical variableShown above is the simple&spin-independeintgauge choice de-

It is experimentally observed that the ground state of thescribing a 27 rotation of the internal coordinate system of the elec-
undoped Mott insulator has long-range AFM order. Accord-tron (described by three Euler angless it encircles an elementary

ingly, we choose a spin distribution of the foré(i)= plaquette. This is a differept form of spontanequs sy_mmetry break-
ing for a strongly interacting electron system in which the mean-
field Hamiltonian acquires a term with the symmetry of a spin-orbit
interaction.

(—1)(x*iY)Sg wheree is the unit vector of some arbitrary
direction, while the charge distribution @(i)=1. The re-
sults for the conventional AFM are well known. In this case,
we choose the Brillouin zone to be a rotated square defined

by —m/ask,+k,<m/a and — rask,—k,</a. The dis- ESS= —4, Eg(K)+N2U| S2+ E , 8
persion relations are given by K 4

Vs . 5z > where the AFM local moment amplitude is determined by
where each level is twofold degenerate amaIZ) = 2 us
—2t[ cosk,a)+cosk,a)] is the one-electron dispersion rela- S=— E —. (9)
tion of the noninteracting conventional state. The mean-field N= 5 Eqi(k)

round-state energy is given pysee Eqs(2) and (3
J w9 by as( 3] In both the conventional and spin-flux phases, a Mott-

Hubbard gap of magnitudel2S opens between the valence
, (5 and the conduction bands. However, the Fermi surfaces are
very different. In the conventional phase, all the points of the
where the self-consistent value for the staggered Sgat-  Brillouin surface belong to the nested Fermi surface, while in
isfies the energy minimization condition the spin-flux phase the Fermi surface collapses to four points
(£ m/2a,*= w/2a). This means that the introduction of the

6 1
E9s=—22 E(k)+N2U| S*+ 7
k

spin flux leads to a lowering of the energies of all the other

1 us . . ;

S=37 E 5T (6) points of the conventional nested Fermi surface and thus for
N“ T E(k) a strongly interacting electron system the energy of the entire

system is lower in the spin-flux phase. It is interesting to note
In the spin-flux phase, it is more convenient to choose ahat the quasiparticle dispersion relation obtained in the pres-
square unit cell in order to simplify the description of fff¢  ence of the spin flux closely resembles the dispersion as mea-
phase factors. We make the simplest gauge choice compajyred through ARPES in a compound such asC86,Cl,
ible with the spin-flux condition for th& matrices, namely, (Ref. 21 (see Fig. 2 Namely, theres a a peak centered at
that T#=T»=T%=—-T%=1 (see Fig. 1 This leads to & (z/2,7/2) with an isotropic dispersion relation around it, ob-

reduced square Brillouin zone- w/2a<k,<m/2a and served on both the (0,0) tar( ) and (0) to (ar,0) lines.
—m/2a<k,=<m/2a. The dispersion relations for the AFM The spin-flux model at mean field exhibits another smaller
configuration are given by peak at (Oz/2) that is not resolvable in existing experimen-
R R _ tal data. This minor discrepancy may be due to next nearest-
Eoi(K)=*Egi(k) ==+ egf(k)+(US)2, (7) neighbor hopping or other aspects of the electron-electron
. interaction that we have not yet included in our madethe
where each level is fourfold degenerate awmgk(k)= quasiparticle dispersion relation of the conventional phase

— 2t[cosk.a)]*+[cosk,a)]* are the noninteracting electron has a large peak atr{2,7/2) on the (0,0) to ¢, ) line (see
dispersion relations in the presence of spin flux. The meanFig. 2), but it is perfectly flat on the (@;) to (#,0) line.
field ground-state energy is given by Also, it has a large crossing from the upper to the lower band
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FIG. 2. Comparison between the experimentally determined
E(IZ) quasiparticle dispersion relation, from angle resolved photo-
emission studieSARPES, for the insulating SICuO,Cl, (open
circles with error bagsand the mean-field AFM spin-flux phase
dispersion relatiortfull line) and the mean-field AFM conventional i
phase dispersion relatigash-dotted line While the peak on the
(0,0) to (7, ) is equally well described in both models, the mean-
field spin-flux model gives a much better agreement for th@) to 2 . . . .
(0,0) and ¢r,0) to (Og) directions. The fitting corresponds td 0 4 8 12 16 20
=2.01 eV andt=0.29 eV for the spin-flux phase antl (b) Unt
=1.98 eVand=0.21 eV for the conventional phase. The experi-
mental results are the ARPES results of Ref. 21. FIG. 3. (a) Dependence of the staggered s@irof the AFM

undoped compound witkl/t. The diamonds show the numerical
edge on the (0,0) to (@) line. This dispersion relation is results obtained in the presence of the spin flux, while circles show
very similar to that of thé-J model (see Ref. 22 numerical results for the conventional phase. The lines show the
The self-consistent solutions of Ed$), (6), (8), and(9) values predicted by Eq$6)_ and (9) for the_two phases. The spin-
are shown in Figs. @) and 3b) (continuous lines Figure  flux phase has a mean-field AFM solutio8#0) only for U/t
3(a) shows the magnitude of the staggered spin as a functiofr 3- As expectedS—1/2 in the largeU/t limit, where every elec-
of U/t. In the largeU/t limit Sgoes to 1/2, as expected. In tron becomes localized on individual sit¢b) Dependence of the
the smallU/t limit there is a solution witt5— 0 only for the ~ ground-state energy per site of the AFM parent compound with
conventional phase. The spin-flux phase admits an ABM ( U/t. The diamonds show the numerical results obtained in the pres-
+0) mean-field SO|L‘]ti0n only fou/t>3. The ground-state ence of the spin flux, while circles show numerical results for the
. . - ' . conventional phase. The lines show the values predicted by(Bqgs.
energies per site are shown in FigbBas a function ofJ/t. d4(8) for th h h field - flux phase h
The energy of the spin-flux phase is lower than the energy oin (8) for the two phases. The mean-1ie AFM SPIN-HLX prase nas
. . . . lower energy than the mean-field AFM conventional phase for all
the conventional phase, suggesting that spin flux provides &
. . ; . . lues ofU/t.
better mean-field starting point from which to describe fluc-
tuation effects on the system. when the electron concentration is at, or extremely near, half
In the largeU/t limit, the Hubbard model at half filling is  filling. The small differences are due to higher-order virtual
equivalent to the Heisenberg mod&IThis equivalence re- hopping corrections to the Heisenberg model. The most sig-
mains true in the presence of spin flux since the Heisenbergificant differences between the spin-flux AFM and the con-

exchange coupling involves only the product of phase factoryentional AFM occur at intermediatd/t values.
TiiTii=1, The analytical results described above provide a useful

check for our self-consistent numerical scheme. The circles
4t2 iolaa 1 and diamonds of Figs.(8 and 3b) show the numerical
H=1 GE) T SS -7 results obtained in the “bulk” limit, in good agreement with
. the analytic results. If we use cyclic boundary conditions
This equivalence between the conventional and spin-fluXCBC's), which require an even value fol, the bulk limit is
phases is indeed observed in all our numerical simulationseached foiN=10.
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IIl. SOLITONS IN THE DOPED MOTT INSULATOR — T T T T T T T T
When charge carriers are added to the system, the Hamil- 0 2 R N N R N I N
tonian depends directly on the doping charge through the o * v Pyt
Q(i) parametergsee Eq(2)]. As a result we have different X I S A A A
mean-field Hamiltonians for hole-doped and electron-doped
systems. However, the charge-conjugation symmetry is pre- "ty T vt
served in the sense that the self-consistent spin and charge 61 | * | 4= 4V + | 1
distributions, the one-electron spectrum, and total energy of J C2 Y S \|, " 4, S SR
the hole-doped and electron-doped system are very simply
related to one another. The correspondence is as follows. Let 2 1\4'1‘ U 2
H" be the Hamiltonian of a hole-doped system defined by cE I A A A
the parameter§"(i) andQ"(i)=1—p(i), wherep(i) is the 7% B SR S WA SN Y
charge distribution of the doping holes. If this Hamiltonian is
self-consistent, so is the Hamiltonigk® of the electron- oty bttt
doped system defined by the paramef&i@) = — S"(i) and A A A A A

Q%(i)=1+p(i)=2—Q"(i). This follows from the fact that
if ¢"(i) is a spinor such that"¢"(i)=E¢"(i), then
$%(i)=(—1)x"VN(i) satisfiesH p(i)=—E¢%(i). In FIG. 4. Self-consistent spin distribution of a>2Q0 lattice with
other words, the doping charges are distributed identically SPin bag centered at (5,5). The spin bag has a small ferromagnetic
(only with different signg and the final spin configurations Ccore and the magnetic order is only locally affected.
are identical, while the electronic spectrum of the hole-doped
system is obtained from that of the electron-doped system blfubbard gap closes. For intermediate and laJgg the dop-
reflection with respect t&=0. Also, if n is the number of Ing hole is almost completely localized on the five sites of
charge carrierémeasured with respect to the half-filled sys- the ferromagnetic core. The static spin configuration sur-
tem), the energies of the hole-doped and the electron-dope®@unding the hole makes charge transport very difficult since
configurations are related bEoe(N) = EejectroN) —UN. motion of the hole outside the ferromagnetic core will create
This difference in the energies of the equivalent hole-doped string of antiferromagnetic bond defects. The hole may
and electron-doped configurations is entirely an artifact ofircumvent this self-trapped configuration by further twisting
the absence of a charge term describing the interaction of tH&€ AFM background. However, the subgap electronic level
electrons with the neutralizing positive background of nucleiinduced by the spin bag ensures that it has a lower Hartree-
A hole-doped configuration always appears energetically lessock energy than a hole in the valence band of a spiral
expensive than the corresponding electron-doped configuratwisted magnetic background state.
tion since the latter has additional electron-electron repul- The spin bag is a charged fermion, as can be seen by
sions, with no compensating electron-nuclei attraction. Adirect inspection of its charge and spin distributiofsee
very simple way of compensating for this is to identify the Figs. 4 and & The electronic spectrum in the presence of the
average energyEqie(n) + EetectrodN) /2 With the energy —hole-doped spin bajgee Figs. @) and &b)] reveals that two
of the state wittn doping charges. levels are drawn deep into the Mott-Hubbard gap. These are
All the spin and charge distributions, as well as electronicthe first empty levels, suggesting that one of the discrete gap
spectra presented in the rest of this article, are the ones as-
sociated with the corresponding hole-doped systems. For the
energies of these configurations we give the average value 1.0
identified above, unless otherwise stated. However, we em-
phasize that the difference between the energies of the cor-
responding hole-doped and electron-doped systémss in- 0.9
dependent of the distribution of thecharges. Therefore, if
we compare different configurations corresponding to the .
same doping andl/t parameter, the hole-doped, electron- Q(@i,j) 0.8
doped, and averaged energies lead to the same optimum
Hartree-Fock soliton configuration. \ /
0.7 |

i

A. The spin bag 102

9 \

If we introduce just one hole in the plane, the self- 5 8765
consistent solution we get is a conventional polaron or spin J 432 W 10
bag(see Figs. 4 and)5The doping hole is localized around ™ 3 i
a particular site, leading to the appearance of a small ferro-
magnetic core around that site. The spin and charge distribu- F|G. 5. Self-consistent charge distribution of axiT0 lattice
tions at the other sites are only slightly affected. In fact, thewith a spin bag centered at (5,5). There is an average of one elec-
localization length of the charge depends Ot and be-  tron per site everywhere, except in the core of the spin bag, where
comes very large ablS—0 since in this limit the Mott- the doping hole is localized.
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0 50 100 150 200 FIG. 7. Excitation energy of a spin b&g i, pagas a function of
() o the lattice sizeN. Diamonds show results for a spin-flux AFM
phase, with CBC'qfull diamonds and FBC's(empty diamonds
s ' ' ' ] Circles show results for the conventional AFM state, with CBC'’s
41 2 e ) (full circles) and FBC’s(empty circleg. The Hubbard parameter is
° o= U/t=6. The bulk limit is reached foN>10. In this limit, the
3y 1 A excitation energy of the localized spin bag becomes independent of
oL ol i i the size of the lattice.
1 F 14 L o 4 B . . -
! an even(paired number of levels and therefore its contribu-
Ba of - : 1 tion to the total spin is zero. However, the excitation carries
90 95 100 105 110 . . . . .
L o N ] the spin localized on the occupied discrete levels. Since there
is an odd number of such levels, the spin of the excitation is
-2 r 1 a half-integer spin.
3 , We define the excitation energy of a spin bag as the dif-
R 1 . ' .
8 ference between the energy of a self-consistent configuration
-4 ;mw 1 with a spin bag and the energy of the undoped AFM back-
5t , . , ground. In Fig. 7 we show the variation of this excitation
0 50 100 150 200 energy with the sizeN of the lattice, forU/t=6, for both
(b) o

cyclic and free boundary conditions. As expected, the exci-
tation energy of the spin bag does not depend on the size of
for U/t=5 and spin flux. Eigenenergi&s, are plotted as a function the Iattlc_e forN??LO. The vana'uo_n Of the excitation energy

of a=12. ..., N2 (N=10). Only the firstN>—1=99 states are of the_ spin bgg witiJ/t is shown in F|g.. 8. In the very large
occupied. There are two empty bound discrete levels deep into the/t limit, this energy goes asymptotically from above to
Mott-Hubbard gap ¢=100,101), one of which comes from the

valence band of the undoped AFM compouséde inset There is 8.0
also an occupied discrete level below the valence bandX). The

valence band is spin paired since it has an even number of levels.

Thus the total spin of the spin bag comes from the discrete occupied 60+ 'y
level. The spin bag is a charged, séinfermion. (b) Electronic
spectrum of a spin bag on a %@0 lattice forU/t=5 in the con- N
ventional state. Eigenenergids, are plotted as a function of
a=1,2,..., N? (N=10).0nly the firstN>— 1=99 states are oc-
cupied. There are two empty bound discrete levels deep into the ¢
Mott-Hubbard gap ¢=99,100), one of which comes from the va- 20t ® ¢
lence band of the undoped AFM compou(ste inset There are ) hd
also three occupied discrete levels below the valence band (
=1,2,3). The valence band is spin paired since it has an even num- ‘ ‘
ber of levels. Thus the total spin of the spin bag comes from the o 5 10 15
discrete occupied levels. The spin bag is a charged, Sfémmion. Ukt

FIG. 6. (a) Electronic spectrum of a spin bag on aX.00 lattice

Esb/ t
N
)

levels emerged from the upper edge of the valence band, FiG. 8. Excitation energy of a spin b&g,in pagas a function of
while the other one emerged from the lower edge of they/t, in the presence of spin flufilled diamonds and in the con-
conduction band. There is also an odd number of occupiedentional statecircles. In the very largeU/t limit, the excitation
discrete levels that split from the lower edge of the valencenergy approaches asymptotically the vall®—2t. The excita-
band (one in the spin-flux case, three in the conventionalion energy of a spin bag is lower in the spin-flux phase than in the
phase. This means that the valence band continues to haveonventional phase.



15150 MONA BERCIU AND SAJEEV JOHN PRB 59

o NNNNDY ) AL
H NNNNYV Y ST
B NNNNNKN Y S
H ~<~NN )\ 71 ¥ 7 e 7
V6] S S A XN 4 T e e
‘]5— —P & P L A N S A S A
H = 7w 7 ¢y X N X =
H 727« 7 ¢4 F VNN X N\
H e 7¢ 7 v NN NN
A0 74P VN NR N %%x\
R U o
1 2 5 6 8 9 10 B2 3 4 0

i l
FIG. 10. Self-consistent charge distribution of axI1D lattice
é/vith a meron vortex in the spin-flux phase. Most of the doping
charge is localized in the center of the meron. Far from the core,

Hﬁere is an average of one electron per site.

FIG. 9. Self-consistent spin distribution of aXQ0 lattice with
a meron vortex in the spin-flux phase. The core of the meron i
localized in the center of a plaquette, in the spin-flux phas¢he
conventional phase, the core of the meron vortex is localized at

site). This excitation has a topological winding number 1 since the . . . -
spins on either sublattice rotate by-@n any curve surrounding the Successive iterations conserve this winding number, but ad-

core. The magnitude of the staggered magnetic moments is slightist the magnitude of the spins and distribution of charges
diminished near the vortex core, but is equal to that of the undope#intil self-consistency is reached. In this case, it is useful to
AFM background far from the core. use free boundary conditions since cyclic boundary condi-
) ) ~ tions would distort the spins near the edges of the sample
U/2—2t. This can be understood from the fact that in thisgych that they orient in the same direction with the spins on
limit, a hole-doped spin bag should cost no Coulomb energyhe opposite edge, affecting the excitation energy.
since we simply remove an electron from a site. An electron- From Figs. 9 and 10 we can see that the meron vortex is
doped spin bag, on the other hand, cddtsince we have a 5 charged boson since the total spin of such a configuration is
doubly occupied site. In both cases, the doping charge cagero, while it carries the doping charge. Its electronic spec-
move within the ferromagnetic core, lowering its energy bYtrum is shown in Figs. 1B) and 11b). In the presence of the
2t. The average energy, therefore,Us2—2t, as obtained nole-doped meron vortex we see a pair of levels drawn deep
numerically. into the gap. In the conventional AFM state these two levels
are degenerate, whereas in the spin-flux phase the degen-
eracy is lifted. This is a direct consequence of the fact that
In the previous discussion it was suggested that théhe self-consistent meron vortex of the spin-flux phase is
charged spin bag is relatively immobile in the AFM back- localized at the center of a plaquettas shown in Fig. P
ground whereas a twisted magnetic background would faciliwhile a self-consistent meron vortex in the conventional state
tate electrical conductivity. In this section we present anotheis localized at a site. If the charge-dependent terms are re-
self-consistent charged soliton, the meron vofsee Figs. 9 moved from the meron vortex Hamiltonian, this pair of lev-
and 10. This excitation has a topologicaVinding) number  els is exactly at the midgap of the Mott-Hubbard gap for any
1 (i.e., the spins on each sublattice rotate by 2n any value ofU/t, as predicted in Ref. 11. These two levels are
closed contour surrounding the center of the mgreks  the first unoccupied levels, suggesting that one of them
such, this excitation cannot appear alone in an infinitely exemerges from the valence band, while the other one emerges
tended AFM plane by the introduction of a single hole intofrom the conduction band. Moreover, they split from the
the plane. From a topological point of view, this is so be-(7/2,7w/2) peaks of the electron dispersion relatigine
cause the AFM background has a winding number 0 and thEermi points of the spin-flux phas&'?This process is con-
winding number must be conserved, unless topological excisistent with the opening of the hole pockets near2(w/2)
tations migrate over the boundary into the considered regiorin the underdoped cuprates.
Moreover, the excitation energy of the meron vortex di- The bosonic nature of the meron vortex can be inferred
verges logarithmically with the size of the lattice. This from its electronic spectrum as well. In this cdsee Figs.
means that an isolated hole introduced in the AFM plane id1(a) and 11b)] only the extended states of the valence band
initially dressed into a spin-bag excitation. Nevertheless, were occupied and therefore they are the only ones contribut-
study the characteristics of the isolated meron vortex sincég to the total spin. Since only one state is drawn from the
this provides a foundation for understanding multiple meronvalence band into the gap, becoming a discrete bound level,
antimeron configurations at higher dopings, which are ndt appears that an od@dinpaired number of states was left in
longer topologically or energetically forbidden. the valence band. However, one must remember that for to-
In order to get a self-consistent meron solution, we starpological reasons, merons must appear in vortex-antivortex
with a spin configuration with a winding number of unity. pairs. Thus the valence band has an even numbgyaifed

B. The meron vortex
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@) a FIG. 12. Excitation energyin units oft) of a single meron
vortex, as a function of the meron sikein the presence of the spin
5 i ; . flux (diamond$ and without spin fluxcircles. The lines show fits
] with a logarithmic dependence dN, EcrorlN) =@ In N+ €cgre-
4r 2 Jasess ym The excitation energy of a meron vortex is always lower in the
3Lt ] == | spin-flux phase than in the conventional phase. If the size of the
/ meron core is small enough, the excitation energy of the meron
2r o - 1 i vortex may become smaller than the excitation energy of a spin bag.
1F ] ¢ .
Ey ol - coo00e®” 1 tion energy was obtained by subtracting the energy of an
% 9 100105110 AFM undoped backgroundwith free boundary conditions
-1r ] from the energy of the meron-configuration. As in the case of
ol _ the spin-bag excitation, it is energetically more expensive to
excite a meron in the conventional phase than in a spin-flux
B i phase for all possible values bf/t. The dependence of the
-4 L . excitation energy orN may be fitted to the expected form
5 i . . . EmerodN)=a InN+ €. The dependences of and e,
0 O° 50 100 150 200 on U/t are shown in Figs. 13 and 14. Both vanishSs 0

(corresponding tdJ — 3t for the spin-flux phase and —0
FIG. 11. (a) Electronic spectrum of a meron vortex on a for the conventional phaseln the very largeU limit, «
10X 10 lattice, for U/t=5, in the presence of the spin flux. —0 ande.,—U/2, as expected. In this limit all possible
Eigenenergies E, are plotted as a function ofa  spin configurations become degeneréte., there is no dif-
=1,2,..., N? (N=10). Only the firstN*~1=099 states are oc- ference between the excitation energy of a meron and the

cupied(the valence bandThere are two discrete empty levels deep aycitation energy of a spin bagin the intermediatel/t
into the Mott-Hubbard gap, one of whiclx & 100) comes from the

valence band of the undoped AFM parent. Merons must be created 0.6
in vortex-antivortex pairgfor topological reasons Each pair re-
moves two levels from the undoped AFM valence band. Thus the
valence band remains spin paired and the total spin of this excita-
tion is zero. This meron is a spinless, charged, bosonic collective
excitation of the doped antiferromagnét) Electronic spectrum of

a meron vortex on a 010 lattice, forU/t=5, in the conventional
phase. Eigenenergie€, are plotted as a function ofa
=1,2,..., N? (N=10). Only the firstN>—1=99 states are oc-
cupied(the valence bandThere is a double degenerate unoccupied
bound discrete level deep into the Mott-Hubbard gap. One of these
bound levels &=100) comes from the valence band of the un-
doped AFM parent. Merons must be created in vortex-antivortex 0.2 , )
pairs (for topological reasonsEach pair removes two levels from o0 5 10 15
the undoped AFM valence band. Thus the valence band remains Unt

spin paired and the total spin of this excitation is zero.

o/t

0.4 1

FIG. 13. Dependence of the coefficien{in units oft) from the

L . fit Emeror{N)= @ In N+ €., On U/t. Diamonds show results for a
levels and the total spin is zero. This argument of the bosonigyin flux phase, while circles correspond to a conventional state.

character of the meron vortex is identical to that for theThe jine serves to guide the eye. In the lakg limit @— 0 since
charged domain wall in polyacetylef& . in this limit all spin configurations become degenerate and the ex-

The excitation energy of the meron as a function of thecitation energy of the meron vortex should equal the excitation
lattice size is shown in Fig. 12 for a fixdd/t. This excita-  energy of the spin bag.
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FIG. 14. Dependence Okqr (in units of t) from the fit FIG. 15. Critical doping concentratiod,, above which a

EmerordN) = @ In N+ €., ON U/t. Diamonds show results for a charged meron-antimeron liquid is energetically favorable com-
spin-flux phase, while circles correspond to a conventional state?ared to a gas of spin bags. Diamonds show results for a spin-flux
The line serves to guide the eye. In the largét limit eqoe phase, while circles correspond to a conventional state. The line
— Eqpin bagSince in this limit all spin configurations become degen- Serves _to guide the eye. In the convention_al phase the critical con-
erate and the excitation energy of the meron vortex should equal théentrations are very largé;>0.3. In the spin-flux phase the tran-
excitation energy of the spin bag. sition to the liquid of meron vortices takes place at dopings smaller
than 0.10 ford/t<8. In the conventional phase the critical doping

. . . is so large ¢.>0.30) that merons are unlikely to appear before the
region, the core energy of the meron vortex in the spin-fluXyioiHubbard gap itself closes.

phase is energetically less expensive than that of the meron

vortex of the conventional phase due to the spreading of it§f U/t there are two distinct types of Hartree-Fock ground

charged core over the four sites of a plaquette. states, as a function of doping. At very low dopings, the
Comparing the energy of a meron in a finite size Samp|esp!n—bag excitations are ene(getlcally more favorable. Since

with that of a spin bag, we can obtain a crude estimate of th&PIn Pags affect the magnetic order only locally, the long-

critical doping concentration at which a transition from the@nge AFM order is still preserved in their presence. How-

spin bags to a liquid of charged meron vortices may take L LCE LRI 2 e e meron or
place. Comparing Fig. 14 with Fig. 8, we see that,. y y

. . : antimeron vortex. In this case, the long-range AFM order can
<Espin pag_for small and intermediatel/t. .Th's means that e destroyed, leaving behind either power-law decaying
the excitation energy of a meron vortex is smaller than thaj

X X . \ . agnetic correlations or short-range AFM on the length
of a spin bag provided the effective sillg{; of the meronis  ¢-51e of the average distance between vortices.

smaller thanN, defined by Eneror(No) = a In(No) + écore In the above estimate of the critical concentrati§nwe
=Egpinbag The effective size is given by the sample site  assumed that the merons and antimerons are uniformly dis-
or the distance to the core of the nearest antimeron, whichriputed. However, the actual critical concentratién may
ever is smaller. This suggests that for an infinite lattice angye |owered when the tendency of merons and antimerons to
finite doping, meron-vortex excitations have lower energieSgorm tightly bound pairgof total winding number Pis con-
than spin-bag excitations provided each hole is dressed by fdered. In Figs. 16 and 17 we show the self-consistent spin
meron or antimeron vortex and that the average separatiofng charge distributions for the lowest energy configuration
between the vortex and the antivortex is less thé@  found when we put two holes on the AFM lattice in the spin
Clearly, this may occur if the doping concentratidhis  flux phase. It consists of a meron and an antimeron centered
larger than the critical valué,=1/N3. We plot this critical  on neighboring plaguettes. As a result of the interaction, the
concentration as a function &f/t in Fig. 15 for both con-  cores of the vortices are somewhat distorted and most of the
ventional and spin-flux phases. charge is missing from thé€l0,10 site that is common to

In the conventional phase we see that the purported critiboth cores. If the vortices were uncharged, a total collapse of
cal concentration for the dissociation of spin bags intothe vortex-antivortex pair would be plausible. However, for
charged meron-antimeron pairs is larger than 0.30. At sucBharged vortices, the fermionic nature of the underlying elec-
large doping concentrations the average size of the excitatiomons prevents two holes from being localized at the same
is Np<<2 and the distinction between merons and spin bags isite, in spite of the bosonic character of the collective exci-
blurred. We conclude, therefore, that there is no clear transiation.
tion from a state with spin-bag excitations to a state with A very interesting feature of this tightly bound meron-
meron excitations as the doping increases. In other wordsantimeron solution is that the attraction between the charged
the only relevant excitations for the conventional AFM phasevortices is of purely topological nature and appears even
are spin bags, within the Hartree-Fock approximation. though the electronic Hamiltoniafl) contains only repul-

In the spin-flux phase, the situation is very different. For asive electron interactions. Vortex-antivortex attraction varies
broad range of intermediate values Wft the critical con-  as the logarithm of the distance between the cores and there-
centrationd. is small and the distinction between spin bagsfore the pair of vortices should remain bound even if full
and merons remains clear. This suggests that for these valu€sulomb repulsion exists between the charged cores. Thus
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energy of the tightly bound meron-antimeron pair, we find
that it is higher by 0.16(for U/t=5). This would suggest
that spin bags are always unstable to the creation of charged
meron-antimeron pairs within the spin-flux phase and that
the critical doping concentratiod. should be set equal to
zero. A more realistic determination of the critical hole con-
centration for the nucleation of meron-antimeron pairs re-
quires the incorporation of the long-range Coulomb repul-
sion between charge carriers in the doped Mott insulator.
The situation in the higf-. copper-oxide materials is
probably more complex and depends on the nature of the
doping process. If the charge carrier concentration is low and
uniformly distributed, the average distance between holes is
large. At low temperatures, it is possible that these holes are
. trapped somewhere in the vicinity of their donors in the form
of spin bags. If two spin bags encounter each other, they
should indeed decay into a tightly bound meron-antimeron
pair. Since such a pair distorts the AFM background only in
FIG. 16. Self-consistent spin distribution for a tightly bound a very small region, magnetic long-range order is preserved.
meron-antimeron pair in the spin flux phase. The mg¢Mpand the At low temperatures and low dopings, these meron-
antimeron(A) are localized on neighboring plaquettes. The totalantimeron pairs may remain pinned to the donor atoms or
winding number of the pair is zero. The magnetic AFM order is other forms of disorder, giving rise to the appearance of a
disturbed only on the small region where the vortices are |Oca|izedspin—glass—type phase of the magnetic background. At higher
The attraction_ between holes is of topological nature and ona |°”Qlopings the pinning potential of the donor atoms is screened
length scale is stronger than unscreened Coulomb repulsion beyq the soliton-soliton interactions are stronger than pinning
tween charges. energies. For concentrations greater than some critical con-

i ) ) centration, it is possible that charged meron-antimeron pairs
the process of nucleation of meron-antimeron pairs UpoRye no longer tightly bound and AFM long-range order is

doping provides a very natural scenario for the existence °<f:ompletely destroyed.
preformed pairs in the underdoped regime. If this scenario is applicable to the high-copper oxide
There is another possible self-consistent state for the syspaterials, it is tempting to associate the charge carriers in the
tem with two holes, consisting of two spin bags far from yoning regime relevant to superconductivity with meron vor-
each other(such that their localized wave functions do not jices Besides the magnetic order, another extremely impor-
overlap. The excitation energy of such a pair of spin bags isiant issue is the dynamics of solitons. For instance, in the
simply twice the excitation energy of a single spin bag.iniermediate/t regime, a spin bag as depicted in this model
When this excitation energy is compared to the excnatlortsee Figs. 4 and)5s basically immobile since moving would
mean leaving behind a string of ferromagnetically aligned
spins. It is plausibi that the kinetic energy of localization
of the hole could be lowered if the spin bé&gpin polaron
has a ferromagnetically aligned core, within which the hole
is free to move. Another possibil#tyis that a spiral twist in
the AFM background accompanies the hole as it moves. The
meron vortex may be regarded as a self-consistent realization
of the twist-accompanied hole that is topologically stable
even when the charge carrier is stationary. The vortex in the
AFM background surrounding the hole facilitates mobility of
charge since hopping of the vortex core to a neighboring
plaguette leads to a less severe distortion of the AFM ex-
change coupling between neighboring spins. Since meron
vortices have a bosonic nature, the non-Fermi-liquid nature
of the metal from which superconductivity emerges is also

J o quite natural.
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IV. HIGHER DOPINGS:
FIG. 17. Self-consistent charge distribution for a tightly bound MULTISOLITON CONFIGURATIONS
meron-antimeron pair. The doping charge is mostly localized on the ) ) ) ) o
two plaguettes containing the meron and antimeron cores. Due to FOr higher carrier concentrations, there is some arbitrari-
interactions, the cores of the vortices are somewhat distorted, witR€SS in choosing the initial spin and charge configurations
most of the charge missing from the (10,10) site common to botfrom which to begin the iterative self-consistency scheme.
cores. The two holes localized in the cores are responsible for th&ince a variety of different self-consistent states may be re-
fact that the meron-antimeron pair does not collajhee to Fermi  alized starting from different initial configurations, we adopt
statistics, it is impossible to have two holes at the same. site a probabilistic approach. We give random numbers as the
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FIG. 18. Energy per sitéin units of t) as a function of the i

electron concentration=1— 6 for U/t=5. Circles correspond to
the lowest energies found in the random trial in the spin-flux phas?
(liquid of meron vorticey while squares correspond to the best 0
result of the random trial in the conventional phdstipes. The
dashed line shows the exact value tbr+=0 (noninteracting case

At low doping (high electron concentratiorthe liquid of meron
vortices of the spin-flux phase has a lower energy than the stripes
the conventional phases. However, at higher dopintys@.4) the
conventional phase becomes stable.

FIG. 19. Self-consistent spin distribution for the configuration of

west energy found af=0.08 (eight holeg, starting from an ini-

tial random distribution, fold/t=5 in the spin-flux phase. Four

meron-antimeron pairs appear. We have marked withthe

plaquettes on which merons are centered and Withe plaquettes

&n which antimerons are centered. A meron and an antimeron are
split” between the two opposing boundaridsie have imposed

cyclic boundary conditions

This crystallization is very likely an artifact of the zero-
initial components of the spin distribution and also chooseemperature, semiclassical, static Hartree-Fock approach. In-
randomly the sites where the holes are initially localized.corporation of dynamics and fluctuations in the model may
This iterative process is repeated many times and the selfead to the melting of this crystal into a quantum liquid of
consistent configuration of lowest energy is finally selectedmobile meron-antimeron pairs. However, as discussed in
As we mentioned before, the relation between the energy peSec. IV A, ordered arrays of merons and antimerons may
site of the hole-doped configuration and that of the equivaplay an important role at some special dopings.
lent electron-doped configuration is given b8qe(9) As the doping becomes larger than 0.20, the density of
=€electro 0) U, where § is the average number of vortices is so large that we obtain configurations that have a
charge carriers per site. For convenience, we plot the energyieron or antimeron vortex localized on almost each
of the hole-doped configurations as a function of doping. Theplaquette, leading to a state where long-range AFM correla-
results obtained in the random searches are summarized flons are completely lost. As a consequence, the doping
Fig. 18, where the energy per siii@ units oft) of the self-  charge is quite uniformly distributed over the whole lattice
consistent hole-doped configurations is plotted as a functioand the magnitude of the staggered spin decreases consider-
of the electron concentration. They correspondUti=5  ably. The apparent overlap of the charge carrier wave func-
and a 1(x 10 lattice with cyclic boundary conditions. Fér  tions here suggests that quantum corrections to the Hartree-
=0.01 and 0.0Zcorresponding to one and two holes, respec+ock approximation may be substantial in this doping range
tively) we recapture the results presented in Sec. lll. In theand that the charge carriers here form a different type of
spin-flux phase, a single isolated hole forms a spin bagguantum liquid. Finally, at very large dopingd¥0.4), the
whereas the lowest energy configuration found for two holegntire spin-flux phase is energetically unstable to the forma-
is the tightly bound meron-antimeron pair shown in Figs. 16tion of a conventional electron gas. This is expected since
and 17. For two holes we also find a number of self-[see Eqs(4) and(7)] the bottom of the valence band in the
consistent metastable states, containing widely separategpin-flux phase is higher than that of the valence band in the
spin bags. conventional phase. At very low electron concentrations, the

For a doping up to about 0.3@vhich corresponds to an energy per site approaches that of the noninteractldg (
electron densityc=0.70-1), the lowest energy configura- =0) electron mode(see Fig. 18 as expected.
tions always correspond to various arrangements of meron- In contrast to the above picture of a meron liquid in the
antimeron pairs in the spin-flux phase. As an example, wapin-flux phase, the lowest energy configurations at low dop-
show the spin configuration of lowest energy found for eightings in the conventional AFM phase always consists of
holes, c=0.08 (see Fig. 12 We can see four meron- charged stripe§?’ For example, in Fig. 20 we show the
antimeron pairs arranged such that each meron is surroundeélf-consistent spin configuration found foe=0.15, where
by antimerons and vice versa. This state appears to be all the spin bags assemble in a closed sttibe stripe must
crystal of meron-antimeron pairs, in the sense that the latticelose due to the cyclic boundary conditiopng¥/e have also
obtained through translations of the>1@0 lattice shown in  calculated the energies of ordered horizontal and diagonal
Fig. 19 has an ordered distribution of meron-antimeron pairsstripes. This necessitates bigger lattices, so that the cyclic
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FIG. 20. Self-consistent spin distribution for the configuration of  FIG. 21. Self-consistent spin distribution for the configuration of
lowest energy found af=0.15, starting from initial random distri- lowest energy found a$=1/8 for U/t=5 in the spin-flux phase.
butions, forU/t=5 in the conventional phase. A closed charged An ordered crystal of charged merons and antimerons is created.
stripe appeardcyclic boundary conditions were impogedrhe
AFM order is switched from one phase to the other ameto down  tum liquid phase of merons. In addition, a more careful treat-
and vice verspas the stripe is crossed. ment of the long-range part of the Coulomb repulsion

. - , . between charge carriers may be needed in the non-Fermi-
boundary conditions are satisfied. Raft=5 we find basi- |iqid phase where the conventional arguments of screening
cally no difference between the energies of such stripes angl.o inapplicabl@® Finally, a more realistic model must in-
that of the closed stripes obtained from the random initialdude the interactions of the doping charges with the impu-
conditions. The instability of the spin bags to stripe forma-jjt, charges located in nearby planes and the influence of
tion has also been proved in the three-band Hubbard modglyciyral distortions of the CuO planes. The last issue is

28 H
and thet-J model™ However, as seen from Fig. 18, such nertinent to the meron crystal phase at the special doging
states have higher energies than the liquid of meron= 1,3 \vhich we discuss below.

antimeron pairs of the spin-flux phase. We have also tried to
obtain horizontal and diagonal stripes in the spin-flux phase
by starting with an initial configuration containing such a
stripe. However, they converge to the liquid of meron- The §=1/8 doping is very special because in some
antimeron pairs rather than self-consistent stripe configurasompound%‘o superconductivity is completely suppressed at
tions. this doping. A very simple and natural explanation of this

At large dopings, the conventional phase becomes enesuppression is that the charge carriers become immobile.
getically more favorable and more and more discrete level¥Vithin our picture of a charged meron liquid, at a doping of
are drawn into the Mott-Hubbard gap. Due to overlap of thel/8, we find a self-consistent structure consisting of a crystal
charge carrier wave functions, these levels spread into af merons and antimeron@ee Figs. 21 and 22Neutron
broad impuritylike band. Also, the staggered magnetizafion scattering reveals that f@é= 1/8, the (r/a)(1,1) AFM mag-
at each site is strongly suppressed, leading to shifts of theetic peak splits into four peaks situated at/4)(1,1= 3)
band-edge energiésoughly given by+US). These two ef- and w/a(1*3,1)3'% For the calculated meron crystal
fects conspire to close the Mott-Hubbard gap and lead to thehown in Figs. 21 and 22, the magnetic structure factor ex-
formation of a conventional Fermi liquid with a partially hibits four peaks with the correct distances between the
filled band for dopingss>0.3. peaks. However, they are rotated by 4Hiey appear along

In summary, our picture is that of three distinct regimes.the diagonals, not along the horizonjatslative to the ob-
At very low dopings, we have a collection of tightly bound served neutron scattering peaks. This picture can be brought
meron-antimeron pairs and/or spin bags, which preserve thato agreement with experiments by introducing a small an-
long-range AFM order. When the doping exceeds some critiisotropy in the electron hopping within the copper-oxide
cal value §;, a transition to a quantum liquid of meron- plane. The addition of such a perturbation to our model is
antimeron pairs occurs and is accompanied by the destrugdstified by the experimentally observed distortion of the lat-
tion of the AFM long-range order. Since these chargedice from the usual low-temperature orthorhombic structure
merons are spinless bosons this metallic state will invariablyo the low-temperature tetragon@lTT) structure at this
exhibit non-Fermi-liquid properties. As the doping further doping® In the LTT structure the atomic displacements
increases, the spin-flux state itself is unstable, the Mottform a horizontalor vertica) structure and very likely favor
Hubbard gap closes, and the system reverts to a conventiontle pinning of horizontalvertica) stripes. The easiest way
Fermi liquid. Although our static Hartree-Fock analysisto mimic this structural distortion is to add a small anisot-
points to the above picture, it does not describe soliton dyropy in the magnitude of the hopping integral, with the same
namics and quantum fluctuation effects pertinent to the quarperiodicity. For a 3% anisotropy, the half-filled stripe struc-

A. Charge carrier concentration of 6=1/8
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FIG. 24. Optical absorptiotarbitrary unit$ as a function of the

FIG. 22. Self-consistent charge distribution for the configurationfrequency(in units oft) for various dopings. The Hubbard param-
of lowest energy found at=1/8 for U/t=5 in the spin-flux phase. eter isU/t=5 and the corresponding self-consistent lowest-energy
An ordered crystal of charged merons and antimerons is created.configurations of frozen liquids of merons and antimerons were

used. The damping coefficientis=0.1t. As the doping increases,

ture predicted by Tranquad al3 pecomes stablésee Fig. a broadband due to electronic excitations from the lower Mott-
23). The self-consistent stripe configuration obtained in theHubbard gap to the discrete, empty, meron-induced levels develops
presence of the small anisotropy is made up of merons angeep in the gap.
antimerons packed along horizontal lines. This example il- ] ) ) o
lustrates that a more realistic model including the effects ofeVels spread into a broad impurity band within the larger
such structural distortions and possibly the interaction witdVlott-Hubbard gap. Since these localized states are empty

the impurity charges is required for a quantitative compari-for the hole-doped systemelectrons can be optically ex-
son with experiments. cited to them from the valence band. Consequently, a broad

optical absorption band appears inside the Mott-Hubbard
gap. In Fig. 24 we show the evolution of the optical absorp-
tion with doping. The absorption was calculated through

As we mentioned before, in the presence of each meron @traightforward perturbation theory, after a term coupling the
antimeron vortex, two electronic levels, one from the valencedoping charge to an external vector fiélévas added to the
band and one from the conduction band, are drawn deep intmean-field Hamiltonian. This leads to the formula for the
the gap. In the presence of multisoliton interactions theselectric conductivity tensor

B. Optical absorption

T T T T T T T T T T T T T T T T 1 Ne N2 77' 77]
B/ Ba
164 - - - - - - - - - (T(w):_z E a .
AR RN RN AR EREE N o =1 p=Ng+1 |ho—(E,—Ep)+iT
TS I L T R U 2 A T U N A A O A P
By et vt st vt/ bttt Ngalep
S A L L ~ ho+(E,~Eg+il|’
v v 27 v v 2788 b 788 4 74 (Ea=Ep)
04 vty vt it vt ot vt 4t where
N AR IEE R AR R
J 81 - - - - - - - - E N |et N R . i )
AR RN ER RN E RN EREE %,327_2 [(ri—r) s (DT dai)
6 F 4N P LN D
LS I AN VAN SR A SN A B S i
44 - - -» - -> - - - . +(rl_rj)¢a(J)T ¢ﬂ(|)]
g: : : ; : : : : ; ;‘ : : : ;‘ ; : ;: is the matrix element between an occupieq statand an
Hy v 2o x v 2800288424 empty state3 of the density of current operatpr HereN, is
—TTTTTTT—TT— the number of occupied stateN? is the total number of
12345678 910111213141516 states, and” is a phenomenological damping coefficient.

1 The calculation is approximate, in the sense that we did not
FIG. 23. Self-consistent spin distribution for the configuration of include the variation of the spin and charge distributions due
lowest energy found after adding a 3% anisotropy in the hoppinéo the modification of the wave function in the external field.
integral, at6=1/8, for U/t=5 in the spin-flux phase. The merons A more detailed calculation involving a time-dependent gen-
and antimerons rearrange on horizontal lines, leading to a structur@ralization of the Hartree-Fock methdthe random-phase
similar to that suggested by Tranqueetaal. in Ref. 32. approximation will be presented elsewhere. In order to
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mimic the interaction with spin waves and other damping 1
effects on the excited electronic states we assumed that the l 1jH0
subgap levels are homogeneously broadened with a spectral ] ] Zgg
width of I'=0.1t. This leads to a smooth optical absorption ] 18767
even for a 1& 10 lattice. As the doping increases, two ef- ] 18657
fects are apparent. The first is the appearance of a broad ] » 1548
absorption band deep into the gap. This is due to the soliton ] | ‘3‘;3
gap states and significant weight is transferred into it from | 1719
the conduction band. The second effect is that the overall | {1110
charge-transfer gap itself decreases since doping decreases | 110
the average self-consistent valuepfeading to a shift in the  ——
mean-field position of the valence- and conduction-band ] 10324
edges. This second effect is less apparent in Fig. 24, because 1 1291
of the fairly large damping we chose. It is well known that %33
the optical absorption of the doped compounds contains a 1 18194
broad midinfrared band and a Drude-like tail starting from ] ’ 11162
very low frequencieS.It is reasonable to associate the broad 129
midinfrared band with electronic transitions from the valence 1 1P7
band to the vortex mediated impurity batgkbe Fig. 24 On 1 1 gg
the other hand, the Drude tail component is associated with 1 110
the translational motion of the bosonic meron-vortices. This 0 -
may be described in a time-dependent Hartree-Fock approxi- 1
mation. 1 130
117
104
91
C. The magnetic structure factor ] ." 1878
We can characterize the evolution of the magnetic long- ] ‘ ] g;
range order with the doping by looking at the magnetic struc- | 11139
ture factor. We have calculated the static magnetic structure ] 11126
factor | 1113
0
0 1

- 1 B
= Q=i E(j),
S(Q) N? Z, ()S(]) FIG. 25. Static magnetic structure factor as a function of
(kx,ky), measured in units of 2/a. The first picture corresponds to
assuming that the spins are frozen in the self-consistent cor=0.00 and has the large magnetic peak atg,m/a). As the
figuration. The results are shown in Fig. 25. The AFM parentdoping increases t@=0.05 (second pictureand 6=0.08 (third

compound has a large peak at/R,7/2), as expected. As the picture this magnetic peak splits into four incommensurate satel-
doping increases, this peak splits into four incommensuratit€s- The Hubbard parameterlift=5 and the corresponding self-
consistent lowest-energy configurations of frozen liquids of merons

peaks, whose positions shift with the doping. This is in d anti q
agreement with the observed behavior of some cuprat%n antimerons were used.
compoundst32

However, introduction of spin flux into the AFM leads to a
V. DISCUSSION AND CONCLUSIONS !ower mea}n—field energy state, in which the doping holes find
it energetically favorable to be cloaked by vortices of the
In this article we presented a numerical study of a meanmagnetic background. This cloaking stabilizes the magnetic
field approximation of the one-band extended Hubbardrortex and also facilitates the mobility of holes in the AFM
model. We have shown that at low dopings, the spin-fluxbackground. At extremely low doping the holes either are
phase provides a better starting point than the conventiongdaired in tightly bound meron-antimeron pairs or become
phase. FotJ/t in the intermediate range, the lowest energyspin baggwhich may be thought of as a collapsed charged-
configurations found in the doping regime relevant to supermeron—neutral-antimeron paifncreasing doping creates a
conductivity consist of a liquid of meron and antimeron vor-liquid of meron-antimeron pairs, completely destroying
tices. These meron vortices are mobile, charge carryindhFM order. This picture is consistent with angle-resolved
bosons that accommodate each of the doping holes in gohotoemission studies of the quasiparticle dispersion rela-
impurity band that occurs within the Mott-Hubbard chargetion, the appearance of a broad midinfrared optical absorp-
transfer gap. The key ingredient that distinguishes our modedion band with doping, and various aspects of the neutron
from previous studies of the Hubbard model is the concept ofcattering data. It also offers a microscopic mechanism for
spin flux. In its absence, our analysis reproduces the convetihe non-Fermi-liquid characteristic of the metallic state from
tional AFM, in which there is a tendency for stripe formation which superconductivity emerges.
at low doping, as predicted by many other autt8r® One of the great challenges in the understanding of charge
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carrier pairing is that an attractive force must emerge from aneron liquid. The long-range part of the Coulomb repulsion
purely repulsive many-electron Hamiltonian. This problem isbetween doping charges may play a more important role in
exacerbated by the fact that the standard arguments afie properties of this quantum liquid than it does in a con-
screening of the Coulomb repulsion are based on Fermiventional Fermi liquid where standard screening arguments
liquid theory and may be inapplicable to a doped Mott insu-apply. Also, additional interactions such as crystal field ef-
lator. Our model, based on charged vortex solitons, providegcts and the conventional spin-orbit interacti@nwhich

a very natural strong attractive force between charge carrierﬁe|p to stabilize uncharged meron vortices, may need to be
that is of topological origin and can lead to binding of chargeadded in the starting Hamiltonial). These considerations
carriers even in the absence of screening. Moreover, thﬁe]ay in turn shed light on the microscopic mechanism of
presence of vortices in the AFM background will lead to ahjgh-temperature superconductivity and the detailed charac-

large renormalization of the spin-wave spectrum. This mayeristics of the non-Fermi-liquid state from which it arises.
in turn be related to the observed pseudogap phenomenon in

the highT, cuprates® As the doping increases further, the
spin-flux phase is unstable to the formation of a conventional
Fermi liquid, in which the Mott-Hubbard gap is closed. ACKNOWLEDGMENTS
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