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Effects of large disorder on the Hofstadter butterfly
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Motivated by the recent experiments on periodically modulated, two-dimensional electron systems placed in
large transversal magnetic fielS. Melinteet al, Phys. Rev. Lett.92, 036802(2004], we investigate the
interplay between the effects of disorder and periodic potentials in the integer quantum Hall regime. In
particular, we study the case where disorder is larger than the periodic modulation, but both are small enough
that Landau level mixing is negligible. We carry extensive numerical calculations to understand the relevant
physics in the lowest Landau level, such as the spectrum and n@bgedized or extendedof the wave
functions. Based on our results, we propose a qualitative explanation of the new features uncovered recently in
these transport measurements.
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[. INTRODUCTION order, while the smaller gaps are closed. Such results suggest
Two-dimensional electron system@DES placed in a that if disorder becomes the larger term, the periodic modu-
uniform perpendicular magnetic field exhibit a rich variety of 1ation should have littie or no effect on the behavior of the
phenomena, such as the intdgand fractiond quantum  SYStém. This perception may explain why, as far as we know,
Hall effects? and, with the addition of a periodic modulation, thiS case has not been theoretically investigated previdtisly.
the Hofstadter butterflf.In the latter case, the theoretical _Our Study reveals a different scenario. We show that even

prediction of this remarkable fractal electronic structure wad the periodic modulation ismall compared to disorder, its
made in the absence of disorder. To interpret experiment ffects on transport may be considerable if the characteristic

however, one must account for the effects of disorder prese (%ngth scale of the disord_er 'potential' is muph Igrger than the
in any réal sample lattice constant of the periodic potential, which is the case for

In this paper, we investigate numerically the behavior of high-quality, large mobility samples such as those used in

; : e .~ “Ref. 5. Our work is different in several ways. First, as al-
2DES subject to a perpendicular magnetic field, a periodigeqy stated, we investigate the new regime of a large, long-
potential and a disorder potential, under conditions releva

: S I'\;\/avelength disorder and small, short-wavelength periodic
for a recent experimental setdhe magnetic fields are on  oqylation, realized in recent experiments. Second, we ac-

the order of 10 T; as a result, the cyclotron enefgy.  countexactlyfor the effects of both disorder and periodic
=eB/mc~200 K is the largest energy scale in the problempotential on the LLL, our only approximation being to ne-
(the effective electron mass in GaAs is 0.68Y. The Zee-  glect LL mixing (however, the techniques we develop can
man energy for such fields is roughly 3 K, but electron in-easily be extended to include.ifThis is very different from
teraction effects lead to a considerable enhancement of thsrevious work based on the SCBA, which is a perturbational
spin splitting between théspin polarizedl Landau levels, technique only applicable for small disorder. Third, the tech-
which has been measured to be 26 Khe periodic modu- niques we employ allow us to study individual disorder re-
lation, imposed through a patterned gate, corresponds to aizations; this is important since the signatures seen experi-
triangular lattice with a lattice constant of about 39 nm. Thementally in transport are sample dependefhis is also to
amplitude of the periodic potential’'s largest Fourier compo-be contrasted with SCBA, which provides only disorder-
nents is estimated to be of the order of ¥ Ry contrast, the averaged quantities. As a result, it is important that we use
scattering rate from the zero field mobility is estimated to bé‘realistic” disorder profiles. We investigate two simplified
fil 7~8 K,” showing that disorder itarge compared to the models of disorder, one which is a sum of random Coulomb
small periodic modulation, although both are small enoughpotentials and one which is a sum of random Gaussians.
that one can neglect Landau lev&élL) mixing and study Both show the same qualitative behavior, leading us to con-
their combined effects on the electronic structure of the low-clude that the results we uncover are generic for all long-
est Landau leve(LLL). range disorder models.

Previously, the effects asmall disorder on a Hofstadter The two-lead geometry we consider is sketched in Fig. 1:
butterfly have been perturbatively investigated using the selfthe finite 2DES is assumed to have periodic boundary con-
consistent Born approximatiaqi®CBA),2° and the combined ditions in they-direction, and is connected to metallic leads
effect of white-noise disorder and periodic modulation onat the x=-L,/2 andx=+L,/2 edges. In particular, in this
Hall resistance was studied following the scaling theory ofpaper we study the effects of the periodic potential on the
IQHE 2011 |f the disorder is small compared to the periodic extended states carrying longitudinal currents between the
potential amplitude, the subbands of the Hofstadter structurewvo leads, and identify a number of interesting properties, in
are “smeared” on a scafd 7. The larger gaps of the butterfly qualitative agreement with simple arguments provided by a
remain open at the positions predicted in the absence of disemiclassical picture and with the experimental results.
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In the absence of LL mixing, the Hofstadter spectrum for
both squaré,

21 21
Vi(X,y) = 2A<cos?x + cos?y) , (3

and triangulat3
FIG. 1. The two-lead geometry considered: the finite-size 2DES 9

has periodic boundary conditions in tigadirection, and is attached Aqr 2 =
to metallic leads at the=+L,/2 ends. Vi(x,y) == 2A COS_\“EaX + COSE(X b ALS)

Transport properties, such as the longitudinal conductivity,
are discussed elsewhéfe.

The paper is organized as follows: in Sec. Il we briefly . . .
review the computation of the Hofstadter structure for aPeriodic potentials, with nonzero Fourier components only
small-amplitude periodic potential. In Sec. Ill we describefor the shortest reciprocal lattice vectorsave been studied
the type of disorder potentials considered. Our results arxtensively in the literaturé®!314The parameter defining
presented in Sec. IV and Sec. V contains discussions andthe Spectrum is the ratio between the fldixB-(a; X a;) of
summary of our conclusions. The numerical methods used tée magnetic field through a unit cell and the elementary flux
analyze the spectrum and the nature of the electronic state@p- FOr ¢/ ¢o=a/p, wherep andq are mutually prime inte-

with both semiclassical and fully quantum-mechanical for-9ers, the original Landau level is split ingpsubbands.
malisms, are summarized in the Appendix. We would like to emphasize a qualitative difference

between the two types of potentials: the square potential
in Eqg. (3) is particle-hole symmetric, sinceVy(x,y)
Il. PERIODIC POTENTIAL =-V{x+(a/2),y+(a/2)]. As a result, the sign of its ampli-
tude is irrelevant. On the other hand, the triangular potential
does not have this symmetry. With the sign chosen in(&q.
andA>0, V, has deep local minima at the sites of the trian-
gular lattice, whereas the maxima are relatively flat and lo-
cated on adisplaced honeycomb lattice. Thus, the sign of
B 21 - V, is highly relevant. This choice of periodic potentials may
H= >m\PF EA T 59HB0 B seem restrictive because only the shortesectors are kept.
In fact, the methods we employ can be used for potentials
with more nonvanishing Fourier components, but their inclu-
sion leads to no new physics.

2 =
+cos—=(x+ y\S)) (4)
V3a

To define our notation, we review the free electron
(charge €) moving in the 2Dxy-plane in an area of size
LyXLy, in a transversal magnetic fieBl=Be,,

For Landau gaugeA=(0,Bx,0), the eigenstates of the
Schrédinger equatioﬁ{|n,ky,a}zEn’U|n,ky,a> are

X ) Ill. DISORDER POTENTIAL
==k
y

ety “Lroan - 1k ]an< I Real samples always have disorder. The current consensus

(rnky,o) = e €2 Y ot vl X (D) s that high-quality GaAs/AlGaAs samples exhibit a slowly
Y vensm varying, smooth disorder potential. In a semiclassical pic-
ture, the allowed electron trajectories in the presence of such
disorder follow its equipotential lines'® Closed trajectories
imply localized electron states, while extended trajectories
—_ ) . connecting opposite edges of the sample are essential for
Here |=y%c/eB is the magnetic lengthw,=eB/mc is the  cyrrent transport through the samtfer more details, see
cyclotron frequencyH,(x) are the Hermite polynomials, and the first section of the Appendix
Xo are the eigenspinors @, o,x,=0X,- In typical experimental setugsjopant Si impurities with

Cyclic boundary conditions along thg-axis imply  a concentration of-10' cmi 2 are introduced in a thin layer
k,=2mj/L,, wherej  Z. The wave functions are centered atof 6 nm in thickness, located 20 nm above the
x=1%,=127j /L, [see Eq.(1)] and must satisfy £,/2<X;  GaAs/AlGaAs interface. Typically, up to 10% of the Si at-
<L,/2. It follows that the degeneracy of each Landau leveloms are ionized. A small fraction of the ionized electrons
is N=L,L,B/ ¢, with ¢p=hc/e. migrate to the GaAs/AlGaAs interface where they form the

Consider now the addition of a periodic potential, with a2p electron gas. The electrostatic potential created by the
lattice defined by two noncollinear vectoas and a,, such jonized impurities left behind is the major source of disorder
that V(r)=V(r +na; +may) for any n, me Z. The periodic  in the 2DES layer. On the length scale we are interested in,
potential V(r)=24Vye" 9 has nonvanishing Fourier compo- there are 16to 1(° such ionized Si impurities pggm?. The
nents only at the reciprocal lattice vectogs=hg;+kg,,  resulting disorder potential must be viewed as a collective
whereg; -a;=278; andh, k are integers. Since(r) is real, it effect of the density fluctuation of the ionized impuritiés
follows thath:V*_g. rather than a simple summation of the Coulomb potential of

Eno= ﬁwc(n + %) - %g,u,BBO'. (2)
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a few impurities. The electrostatic potential from Si impuri-
ties is compensated and partially screened by other mobile 104 =~ Coulomb model
negative charges in the system such as, for example, the —— Gaussian model

surface screening effect by mirror charges considered by
Nixon and Davies® An exact treatment of this problem is
difficult, since one should consider the spatial correlation of
the ionized impurities’18 One model used to describe such
disorder consists of randomly placed Gaussian scatt¥ters.
This model captures the main feature of a smooth disorder
potential and supports classical trajectories on equipotential
contours, but it has no natural energy/length scales associ-
ated with it. As a result, here we choose to also investigate a
different model of the disorder, which incorporates the
smooth character of the Coulomb potential in real space.

We generate a realization of the disorder potential in FIG. 2. Averaged Fourier amplitudes of two types of disorder
the following way: positive and negative charges, corre-potential as a function of wave vectgr|q|. For both Coulomb and
sponding to a total concentration of*1am= are randomly ~ Gaussian model/(q)? is averaged over 116 disorder realizations.
distributed within a volume-L,/2,L,/2]x[-L,/2,L,/2]  The relation betweei(q) and V(r) and relevant parameters are
% [20 nm+d, 26 nm+d] above the electron gas which is lo- discussed in the text. The Sta“da;d dzeV'a“ml-y) <f;jr Vz(r)>
cated in thez=0 plane. Here, we choosk=4 nm as an extra for the Coulomb model is 321077 eV*, and 2.1x 107 eV* for

. . . the Gaussian model.

spacer since the electronic wave functions are centered about
3-5 nm below the GaAs/AlGaAs interface. Since we are not
simulating single impurities but density fluctuations, these V' (xy) __Vi(=LJ2)y) +Vi(LJ2)y) coshx/)

V@P>"ev)

20

qm™)

charges are not required to be elementary charges. Instead, 2 cosHL,/2\)
we use a unlform.dlstnl.aun.on in the ran@ee, ] for conve- . Vi(= LJ2.y) = Vi(L,/2,y) sinh(x/\)
nience (a Gaussian distribution would also be a valid +

choice, and sum up all Coulomb potentials from these z sinh(L/2M)

charges, using the static dielectric constant in GaAs where\ is taken to be 100 nm in our calculation.

=12.91?° The resulting disorder potential has energy and In Fig. 2, we plot the average of Fourier transform of the
length scales characteristic of the real samples. Typical comnagnitude of the random potentigk|V(q)|?) versusqg=|q|
tours for such potentials are shown in Sec. IV. for the Coulomb model and the Gaussian model. The Gauss-

In an infinite system, in the quantum Hall regime, theian model is generated by adding 100 randomly placed
existence of quantum Hall steps implies the existence of5aussian scatterers on an area qir8 X 3 um, each con-
critical energies at which the localization length diverges. tributing Ade"zfdz, whereA, is uniformly distributed between
This is the quantum analog of the two-dimensional percolaf-2,2] meV, andd is uniformly distributed in[0, 0.2] pm.
tion problem in a smooth random landscape, for which thera/(q) is related tov(r) by V(r):EqV(q)e‘q'f, where the sum-
exists a single critical enerdy.In the case of potentials with mation is over all the wave vectors involved in the fast Fou-
electron-hole symmetriV/(r))=0, the critical energy lies in rier transformationV(q) of both models are decreasing func-
the middle of the ban@E.=0), leading to percolating path at tions ofq, with exponential decay at largg At small g, the
half-filling. For a finite mesoscopic sample, however, nottwo models behave differently. Despite the difference, both
only does the percolating patleritical energy E. deviate models lead to the same qualitative results, although, as ex-
from this value, but in samples without a periodic boundaryPected, minor quantitative differences are present. This
condition one need not have a percolating path traversing th@hows that the physics we uncover is independent of the
system in the desired direction. This arises from the fluctuaParticular type of slowly varying disorder potential consid-
tions near the edge of a mesoscopic system with free boun@'ed, and thus should be relevant for real samples.
ary conditions.

We circumvent such a possibility by adding an extra
smooth potentiaV’(x,y) to the impurity-induced disorder
potential V,(x,y), such that the total potentid=V,;+V’ is In this section we present typical numerical results we
zero on the opposite edges £L,/2 of the sample where the obtain using the methods summarized in the Appendix. We
metallic leads are attached. The supplementary contributiohave analyzed over 20 different disorder realizations for
V’'(x,y) can be thought of as simulating the effect of thesamples of different sizes; all exhibit the same qualitative
leads on the disorder potential, since the metallic leads holghysics. The lattice constant is alwags 39 nm if the peri-
the potential on each edge constant by accumulating extradic potential is preseft.
charges near the interface. Therefore, physically we expect First, we consider a sample with,=3.11um and
that the extra potentiaV/’ decays exponentially over the L,=76a=2.964um for ¢/¢,=3/2(B=4.71T). The mag-
screening length inside the sample. This implies netic length isl=12.03 nm and each Landau level contains

IV. RESULTS
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sity of states calculated from corresponding filling factors in Fig. 4.
FIG. 3. Profile of the disorder potential obtained from our Cou- We show only the center of the disorder-broadened lowest Landau
level, where the density of states is large.

-1.5 -1 -0.5

lomb model on a 3.1umXx2.96 um sample with theV’(r) cor-
rection at thex=+L,/2 edges. The disorder potential varies be-
tween -3 meV and 3 meV, on a spatial length-scale much large
than1=12.03 nm. The critical region containing extended states i
in the vicinity of E=0.06 meV. The contours are shown f&r
=0.0575 meMdasheg, 0.17 meV(thick solid), and 0.31 me\(thin
solid). These energy values correspond to classical filling factor%]u
v=0.45, 0.56, 0.66.

lus a triangular periodic potential with amplitudas 0.05,

.5, and 5 meV, respectively. We show only a relatively small

%energy interval where the DOS s significant, and ignore the
asymptotic regions with long tails of localized states.

While the agreement between the semiclassical and
antum-mechanical treatment is excellent in the limit

A— 0, the two methods give more and more different results
as the periodic potential amplitude is increased. This is a
N=10 108 states. The disorder potential obtained with OUEOnsequence of the fact that the magnetic |emggrompa_

scheme described in Sec. lll, including the correc6(r),  rable to the lattice constart, leading to a failure of the
is shown in Fig. 3. An extended equipotential line appears, asemiclassical treatment when this new short length scale is
expected, av=0.5. introduced. In particular, in the case with the largest periodic

In Figs. 4 and 5 we plot, for the LLL, the filling factor potential[panel(d) of Figs. 4 and we can clearly see the
v(E) and the corresponding total density of stat€®S)  appearance of the three subbands expected for the Hofstadter
p(E) as a function ofE (for computational details see the putterfly at¢/ ¢,=3/2, although the disorder leads to broad-
Appendi¥. These quantities are obtained in the semiclassicaéned and smooth peaks, and partially fills-in the gap between
limit (dashed ling and with the full, quantum-mechanical the lower two subbands. This pictufpanel (d)] is quite
treatment(solid line). Results are shown for four different similar to the density of states calculated in Ref. 8 using the
cases:(a) only disorder potential andb), (c), (d) disorder  self-consistent Born approximation. This is expected since

the SCBA approach is valid in the limit of strong periodic

VE T T T vE T T T T potential with weak disorder. However, the SCBA approach

o[- (@ Disorder only 1 osp®A=005meV 1 is not appropriate in the limit of moderate or strong disorder.

- . For disorder varying on a much longer length scale than the
I ] periodic potential, one still expects thaically, on areas

where disorder is relatively flat, the system exhibits the

N W Hofstadter-type spectrum. However, these “local” spectra are

05 025 0 025 05 075 05 025 0 025 05 075 shifted with respect to one another by the different local

E (meV) E (meV) ) . ..
v(E) —T— 1 VB — T disorder values. If disorder variations are small, then the total

0.6 - 0.6

04 1 04

0.2 -1 0.2

ogp O A=0SmeV /7 04 ogf @ A=SmeV . spectrum shows somewhat shifted subbands with partially
os|- A //f filled-in gaps, but overall the Hofstadter structure is still rec-
04| -~ 1 o4l ] ognizable. On the other hand, for moderate and large disor-
L ] [o--" der, the detailed structure of the local density of states from
02 _~- -1 02F -1 . . . . .
- ] r various flat regions are hidden in the total density of states.
0051 rldy, L2 R T e 10 All one sees are some broadened, weak peaks and gaps su-
perimposed on a broad, continuous density of states.
FIG. 4. Semiclassicaldashed ling and quantum(solid line) We now analyze the nature of the electronic states for

filling factors for the disorder potential shown in Fig. 3, but differ- these configurations. We start with the case which has only
ent amplitudes of the triangular periodic potential A=0, (b) A disorder. In Fig. 6 we plot the matrix elements of the Green'’s
=0.05 meV, (c) A=0.5meV, and(d) A=5 meV. As expected, function between LL states on the opposite sides of the
agreement exists only in the limk— 0. sample,|GR(Kmin, kmax; E)|> @s a function of the energi.
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FIG. 6. Semilog plot of the amplitude of Green’s function ma- = -2 -lE(meV) 0 1 6 4 -ZE(rgeV) 2 4 6
trix element between the two edge states neatL,/2, as a func-
i —10-7 i —10°8 . - , »
tion of energy, for6=10" eV (black ling and 5=10° eV (grey FIG. 7. The effect of a triangular periodic potential on the criti-

line). &is the small imaginary part in the Green’s function, see theca| energy regime. The disorder potential used Hea shown
Appendix. Only the disorder potential of Fig. 3 is applied in this sypports a narrow interval of extended states centered at about
calculation. Inset, the same quantity f6=10°® eV, over a larger  _g.6 meV. As the amplitudé of the periodic potential increases,
energy range. the range of extended states increases dramatically. The left panel
shows results for disorder-only and two relatively weak periodic

) : . , 4 potentials, while the right panel shows two larger periodic poten-
and 10% eV in the denominator of the Green's function, Eq. tials where the three-subband structure expectedfab,=3/2 is

(A4) (for computation details see the Appendids dis- clearly seen
cussed in the Appendix, extended states are indicated by '

large values of this matrix element, as well as a strongases with pure disorder, and also cases with either a trian-
(roughly 1/8°) dependence on the value of the small paramgular or a square periodic potential. The magnetic field has
etero. Figure 6 reveals that asis reduced, resonant behav- been doubled, such that/ ¢,=3. Similar to results in Fig. 7,

ior appears in a narrow energy intena#0.02-0.36 meV, the periodic potential leads to a widening of the critical re-
where results for the twé values indeed differ by roughly 2 gime. For large periodic potentials, the expected Hofstadter
orders of magnitude, witi=10° eV showing sharper reso- three-subband structure emerges again. We conclude that
nance peaks. The value of the Green’s function decreas&oulomb and Gaussian disorder models show qualitatively
exponentially fast on both sides of the critical regi@®e  similar behavior.

inset of Fig. 6, indicating strongly localized states. We con-  We now analyze the projected local density of states

clude that the disorder potential has a critical energy regime,(,E) (for details, see the Appendixo understand the
of ~0.3 meV width, covering less than 5%» energy and

20% (in number of statesof the disorder-broadened band
with total width ~6 meV. The position of the critical energy
interval is in agreement with the semiclassical results which
suggest an extended state in the vicinitygef0.06 meV. By
comparison with Fig. 4, we can also see that this critical
regime indeed corresponds to a roughly half-filled band.

The effect of adding a triangular periodic potential is
shown in Fig. 7, where we plot the same quantity shown in
Fig. 6 for a fixedé=10" eV and different amplitudeA=0,
0.05, 0.5, and 5 meV, respectively. These results correspond
to a different Coulomb disorder potenti@ot shown, as can
be seen from the different location of its extended states. The
narrow critical region of extended states widens as the am-
plitude of the periodic potential increases. For the lardest
value, the three Hofstadter subbands of extended states, ex-
pected for ¢/ py=3/2, areclearly visible. The three sub-
bands can already be resolved for the moderate amplitude

A=0.5 meV, although they have significant overlap. FIG. 8. A disorder potential of Gaussian type on a roughly
Qualitatively similar behavior is obtained if we use the 3 umx 3 um square. The three lines are equipotential contours

Gaussian scatterers model for disorder. A typical realizatioftlose to the critical regime, with energies of —0.1 m@ksheg, 0

of this disorder is shown in Fig. 8. Results for the Green’smeV (thick solid), and 0.1 meMthin solid). Cyclic boundary con-

function’s values with such disorder are shown in Fig. 9, fordition are applied in thg direction.

The results shown are for a small imaginary enefgyl0’
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FIG. 9. Green's functions for a sample with Gaussian disorder
and various periodic potentials. The calculation included 20216
states withe/ ¢p=3. Similar to results shown in Fig. 9, we see that  F|G. 11. (Color onling The same as in Fig. 10, but for an energy
the periodic potentials widen the critical region. E=-0.124 meV close to the band center.

reason for this substantial widening of the critical region bytehr)’ reSﬁectiv?_Ily. Ef(;]h f(ijgure dcontains folur pantlalls. Péael
even small periodic potentials. We consider a smaller’ E[)W?_tlf_prmle_doblt € disorder po(;_entl? ?ﬁ we Ijﬁ: an equi-
sample, of about 1.m>x 1.6,um. We compute the pro- ERERAL BECRL AR SORESPENE B BE RS RAOT o
]ge ric(tjedfc?rerésol%/ g;j;itfssggf:ds'tf::?gny avgl?jego aan duagr statespp(r,E) for (b) pure disorderfc) disorder plus trian-
=108 eV. This é value is comparable or smaller than the gular periodic potential wittA=0.1 meV; (d) disorder plus

level . 't h f tﬁ uare periodic potential with=0.1 meV. In Fig. 10, the
Vel spacing, So we Expect 1o See sharp résonances from %uipotential line(which traces the semiclassical trajectory
contribution of individual eigenfunctions as we scan the en-

. of electrons with the same energy surrounds local minima
ergy spectrum. Each computation generates a large amoupf the disorder potential, suggesting localized electron states
of data (roughly 24M), for the 500 plots ofpp(F,E). We 4t such low energies. Indeed, this is what pagieis(c), and
select a couple of representative cases and some statistigg) show. The projected density of statps(f,E) is large
data to interpret the overall results. (bright colop at the positions where electrons of eneify

Figures 10 and 11 show some of our typical results. Theyre found with large probabilities. For pure disorder, we ob-
two figures are calculated for the same Coulomb-disordeserve only closed trajectorig¢bcalized states whose shape
potential, for values oE=-0.504 meV/(at the bottom of the is in excellent agreement with the semiclassical trajectory, as
band andE=-0.124 me\(close to, but below the band cen- expected. If a moderate periodic potential is added, the
wave-functions spread over a larger area, and nearby con-
tours sometimes merge together. Instead of sharp lines, as
seen in pane(b), the contours now show clear evidence of
interference effects of the wave functions on the periodic
potential decorating the electron reservoirs. Some periodic
modulations can also be observed in the background of pan-
els(c) and(d), especially for the square potential. These are
notthe direct oscillations of the periodic potentials, since the
grid we use to compute these figures has a linear size equal
to 7/10 of the perioda=39 nm of the periodic potential.
Capturing detailed behavior inside each unit cell would re-
quire a much smaller grid, which is not only time consum-
ing, but also violates the requirement that the grid size be of
orderl or larger.

Figure 11 for an energy close to the band center shows the
same characteristics. For pure disorder, the electrons at this
energy trace a sharp contour very similar to the correspond-

FIG. 10. (Color onling Projected local density of states(r;E)  INd €quipotential line shown in pan@). Electrons are still
for E=—0.504 meV. Panela) shows the profile of the disorder NOt delocalized, since this contour does not connect either
potential, and the equipotential contoinlack line corresponding ~Pair of opposite edges. However, addition of the periodic
to E=-0.504 eV. The other three panels shpwir ;E) for (b) dis-  Ppotential now leads to an extended state for both types of
order only; (c) disorder plus triangular periodic potential with  periodic potential$(c) and(d)], demonstrating the widening
=0.1 meV; (d) disorder plus square periodic potential with  Of the critical region with the addition of a periodic potential.
=0.1 meV. The width and length of the sample are bothuingand Physically, one can understand this spread of the wave
¢! po=3/2. Increased brightness corresponds to larger values.  function in the presence of the periodic potential using the
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semiclassical picturelf only a smooth disorder potential is 90 " [— Disorder Only
present, the equipotential at any enekgyust be a smooth, 800k 4 . o8y | « TriangularA=0.Imev |
continuous line. However, if a periodic potential with 4%?,& * Tr A=-0.1meV
minima -V, and maximaV,, is superimposed over disorder, $7°° ;.:;4 ‘«:‘.;

the new equipotential line now breaks into a series of small Se0o & f‘a

“bubbles” surrounding the disorder-only contour. These ap- 2 e Yo e

pear throughout the area defined by the equipotentals 5> 1€ y

-Vy andE+V,, of the disorder potential, since the addition Em-

of the periodic potential leads new regions in this area to 5300_ <

have a total energf. Quantum mechanically, we expect Z.

some tunneling inside this wider area and this is indeed what 200f

we observe in Figs. 10 and 11. This mechanism suggests L0l

enhanced delocalizatioan both sides of the critical region

as localized wave functions spread out over larger areas, as 5
well as a widening of the critical region itself, in agreement E (meV)
with our numerical results.

This spreading of the wave functions in the presence of %0
the periodic potential can also be characterized by counting, 800f . 4 i
at a given energ¥, the number of grid points which have 2001 b X o SD;Iﬁe;\O:ng,]meV ]
a valuepp(r ; E) > p., wherep, is some threshold value. For @ ':.’.' i
sufficiently largep, this procedure counts grid points where 5600' e A
electrons with energ¥ are found with large probabilities, 00} 2
thus, in effect it characterizes the “spatial extent” of the wave ° A
functions. The results of such counting are shown in Fig. 12 .84® re
for 500 energy values corresponding to the disorder potential §3oo-
analyzed in Figs. 10 and 11. There are a total o@D ZZOO_
=3600 grid points on the sample. For the case of pure disor-
der (black line we see that the largest values are found at 1o0¢ :

energies just below 0, where the extended stétescritical
region are found for this particular realization of disorder.
Because it is a smooth, sharp line, even the most extended
trajectory has significant probabilities at only about 10% of FIG. 12. (Color onling Number of grid points for which
the grid sites. For both higher and lower energies, this numep(r;E)>100 as a function of. This quantity characterizes the
ber decreases very fast, indicating wave functions localizedspatial extent” of the wave function. The upper panel compares
more and more about maxima or minima in the disorderesults for disorder onlyA=0) and disorder plus triangular poten-
potential, as expected. Addition of a small periodic potential_“"’“s with A+0.01 meV. The difference observed for the_ two signs
increases this number substantially, clearly showing thdS @ consequence of particle-hole asymmetry of the triangular po-
supplementary spreading of the wave functions in the prest_entlal. The lower panel shows results for disorder only and disorder
ence of the periodic potential. plus a square potential.

Figure 12 shows this effect for three types of periodicpgtential value are shaded. We see that instead of the con-
potential: triangular lattices wittA>0 and A<O (upper  tinuous, smooth trajectory expected for disorder-only cases,
pane), and square lattice in the lower panel. All three caseshere are also periodic “bubbles” regions connecting the ar-
show significant enhancement, as compared to the pure digas between such contours. Since the chéiced leads to
order case. In addition, we see that while the square potentigleep minima at ¥,,=—6A with triangular arrangement and
gives a fairly symmetrical enhancement, the triangular porelatively flat maxima at ¥,,=3A with honeycomb arrange-
tential does not, with curves forAtnot overlapping. This is ment[see Eq(4)], it follows that the triangulathoneycomip
a consequence of the asymmetric shape of the periodic pdbubbles” region appear roughly in the area bounded by the
tential, which has different values for its minima and maximaequipotentialsE and E+V,, (respectivelyE-V,, andE) of
[Vl # |[Vul, as well as different arrangements for the pointsthe pure disorder potential. At low filling factors, the pure
where minima/maxima appedtriangular lattice vs honey- disorderE equipotential is a collection of closed contours
comb latticg. Figure 12 clearly shows th&>0 favors in-  surrounding local minimdsee paneld) of Fig. 10 for an
creased delocalization below the critical energy regimejllustration]. It follows that for the choice&/,,,>V),, the more
while A<0 favors increased delocalization above it. extended region with triangular “bubbles” will be found out-

The reason for this different response to the two signs oside these “islands” and will lead to a spread of the wave
the triangular potential can be nicely explained within thefunction over considerably larger areas, as indeed seen in the
semiclassical framework. In Fig. 13 we show the equipotenupper panel of Fig. 13. On the other hand, at large filling
tial lines corresponding to filling factors=0.3 (well below  factors the triangular “bubbles” betwedh and E+V,, are
critical region and»=0.7 (well above the critical regiorfor  inside the disordeE contour, and do not help to enhance
a realization of Coulomb disordénot shown plus a trian-  percolation. The smaller aredsince Vy,<V,, of honey-
gular potential withA>0. Areas with energy below the equi- comb “bubbles” do this, but much less effectively.

E (meV)
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absent for a particle-hole symmetric square potential. This
has clear effects on the transport properties of the system.

V. SUMMARY AND CONCLUSIONS

We have investigated the effects of moderate-to-large,
long-range disorder on the Hofstadter butterfly expected for
2DES in a perpendicular magnetic field and a pure periodic
modulation. The parameters of our study are chosen so as to
be suitable for the interpretation of a recent experiment on a
modulated 2DES.The experiment shows théb the longi-
tudinal resistanc&,, is still peaked approximately at half-
filling; (ii) there are many reproducible oscillations Ry,
indicating nontrivial electronic structures in the patterned
sample;(iii) the distribution of these oscillatory features is
asymmetric, with most of them appearing on the high mag-
netic fields(i.e., low filling factorsy<<0.5) side of the peak
of R,; and(iv) the temperature dependenceRyf indicates
that the asymmetric off-peak resistance is thermally acti-
vated, whereas the centid}, peak(close to half-filling has
metallic behavior.

These observations cannot be explained on the basis of
the Hofstadter structureThis is not surprising, since one
expects that large disorder will modify the butterfly consid-
erably. Effects of small disorder on the Hofstadter butterfly
had been investigated previously using SCBByt this ba-
sically perturbational approach is not appropriate for the case
of moderate-to-large disorder. Instead, we identify and use a
number of techniques which give the exact solutioh
electron-electron interactions, as well as inelastic scattering
are neglectedwhile avoiding brute force numerical diago-
nalizations.

Our results demonstrate that while the Hofstadter butterfly
is destroyed by large disorder, the effects of the periodic
potential are nontrivial for states near the critical regime.
First, they lead to a significant increase in localization
x (um) lengths of the localized states at mesoscdpin) length
scale and induce an effective widening of the critical regime.
pane} and »=0.7 (lower panel for a 3 umx 3 um sample with This _is achieved through a spreading of the e_Iectr(_)n wave
disorder plus a small triangular periodic potential wih-0. The  function on the flat regions of the slowly varying disorder

shaded regions correspond to energies below the respective equigdtential, where their behavior is dominated by the periodic
tential. In the semiclassical approximation, the shaded areas afgodulation.
filled with electrons, with the maximum density of 1#, whereas This regime shows an interesting transition between the
the white areas are completely devoid of electrons. Quantumpure disorder and the pure periodic potential cases. In the
mechanically, one expects interference in the regions with smaltase of pure disorder, the semiclassical approach predicts
periodic “bubbles,” induced by the periodic potentiste Figs. 10 that at finite filling factors, areas of the sample where
and 12. V4(r) <Eg are filled with electrons with the maximum den-
sity of 1/(2m7l%) whereas areas wheM,(r)>Eg have no

In the guantum-mechanical case one expects interferenadectrons. Moreover, the boundary between such regions is
(due to tunneling within the “bubbles” regions, and there- very sharp. On the other hand, for a pure periodic modula-
fore a wave function which is extended over their entire areation all wave functions have translational invariance with the
as indeed we observe to be the case in Figs. 10 and 11. proper symmetry, and therefore electron densities are uni-
other words, one expects that a triangular potential with form over the entire sampl@up to small periodic modula-
>0 will lead to considerable increase of the localizationtions inside each unit cgllWhen both types of potential are
length, and, respectively, widening of the critical energy re{present, with disorder being dominant, our results stioee
gion, at filling factors below one-half, whereds<0 will types of areas. There are regions which are fully occupied
favor delocalization at filling factors above one-half, as seerand regions which are completely devoid of electrons, as in
in Fig. 12. This asymmetry is therefore clearly a consethe case of pure disorder. However, the periodic potential
guence of the asymmetry of the triangular potential, and ideads to a widening of the boundary between the two, where

FIG. 13. Equipotential contours at filling facter=0.3 (upper
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the wave functions interact with several oscillations of the Limited computer resources restrict our calculations to
periodic modulation and therefore have some partial locakamples no larger than 3mx 3 um, while the sample used
filling. Such regions have a Hofstadter-type local electronidn the experiment has a size of 20nX20 um. From a
structure. If the partial filling factor in such a region is inside theoretical point of view, it is interesting to ask what is the
the gap of the local Hofstadter butterfly, one expects nghermodynamic limit. For pure disorder, it is believed that in
transport through this local area, leading to a decrease in th@js [imit the typical size of wave function diverges at a
total longitudinal conductivity. By contrast, if the local filling gingle critical energy. As we cannot pursue size-dependent
factor in such a region is inside a subband of a local HOfS'anaIysis, we do not know whether the small periodic poten-
tadter structure, the resulting wave function will increase thg;5 will lead to a finite size critical regime, although this

{)hercol?]tltt)r?, Iead|r|19 %9 an er:han;:hgment_ of thﬁ tlrgnskf’orgeems likely. Our results for these mesoscopic samples are
roug € sampie. ransport in this regime should ShOW.,gistent with previous work on the different effects of at-

strong thermal activated behavior, in contrast to metalli . : . :
transport in the critical regime where extended wave funcc—g]aec?r\]/grr?q';% rﬁgumlisc“ﬁmsﬁtﬁeergf ;egﬁivif?ggegft ttr?:ttrlir;n-
tions connect opposite edges of the sample. y ' y

As a result, one expects a series of local minima ancjgular potential will lead to shifts iR, similar to those found
maxima in the longitudinal resistivity on either side of the " Ref. 29, because the triangular potential is predominantly
central peak induced by the extended stéteisical regime. attractive or repulsive depending on the sign of its amplitude.
Furthermore, for an asymmetric triangular potential, this re-On the other hand, the order of potential minitnaaxima,
sponse should be strongly asymmetric, with the effect mos@lt_her alocal or a g_IobaI order, which is absent in th_e calcu-
visible on one side of the central pedlone must keep in lation of Ref. 29, will enhance the non-Born scattering, be-
mind that since tunneling leads to exponential dependencieli€ved to cause the shift ip,, minima in Ref. 29. From an
even small differences in the extent of the wave functiongXpPerimental point of view, the interesting question is
can have rather large effects gr,.) Such an asymmetry whether the Hofstadter structure can be observed at all. Our
should also be present in longitudinal conductance at finit§tudies suggest that this may be possible for small mesos-
but low temperature, e.g., in the hopping regime which isCOPIC samples,. where the sIowa. varying disorder has less
sensitively dependent on the nature of the localized wavéffect. Alternatively, one must find a way to boost the

To summarize, our qualitative explanation for the various
experimental features are as follows: ACKNOWLEDGMENTS

(i) The R, peak is roughly at the center of the band be-
cause the weak periodic potential cannot establish a The authors thank S. Melinte, M. Shayegan, P. Chaikin,
Hofstadter-type structure over the whole band. Instead, lovand M. Wu for valuable discussions. The authors also thank
and highv states remain strongly localized. Professor Li Kai's group in the Computer Science Depart-

(i) New extended states induced by the periodic potentiament of Princeton University for sharing their computer clus-
are responsible for the reproducible peaks and valleys ager with us. This research was supported by NSF Grant No.
pearing inRy. DMR-213706(C.Z. and R.N.B. and by NSERQM.B.).

(i) The periodic potential also leads to the expansion of
localized wave functions, which contribute to the thermally
activated conduction at lower filling factors. The detailed
structure of the wave functions gives rise to the oscillations In this appendix we summarize the numerical methods we
of the off-peakR,,, similar to conductance fluctuatiof’. used, including derivations of some relevant formulas.

(iv) The asymmetry ifR,, is a manifestation of the asym-
metry of the triangular potential, which has a stronger effect
at low filling factors than at high filling factors fok> 0. We
predict that this asymmetry should be absent for a symmetric The semiclassical approach is vafidor the integer quan-
square periodic potential. tum Hall effect in the presence of a slowly varying, smooth

The weak point in our calculation is that we are unable todisorder potential and large magnetic fieldach as we con-
accurately model the potential in the real samples, becaus#den, so that the magnetic lengths much smaller than the
various screening effects have not been properly taken inttength scale of variation of the smooth disorder potential,
account. Also, we have no quantitative information about théV V(r)| <fiw./l. Then, semiclassically the electron moves
magnitude of the periodic potential in the 2DES layer, be-along the equipotential contours of the disorder potential
cause of the additional str&thcontribution induced by the V(r), in the direction parallel t&V(r) X B. Since the kinetic
periodic decoration. As a result, we only claim qualitative energy is quenched in the lowest Landau level, the total en-
agreement with the experiment, although our investigationgrgy of the electron simply equals the value of the disorder
show the same type of behavior for various types of disordepotential on the equipotential line on which its trajectory is
potentials and variougsmall-to-moderatestrengths of the located. As a result, the density of states in the semiclassical
periodic potential. The most direct check of this work would approach is directly given by the probability distribution for
be an experimental demonstration that thermally activatethe disorder potential, which can be calculated by randomly
conduction appears symmetrically on both sides of e  sampling the potential energy and plotting a histogram of the
peak for a periodic potential with square symmetry. obtained value$>2*

APPENDIX: NUMERICAL METHODS

Semiclassical treatment
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In Sec. IV we compared the results obtained within thismust choose the length, of the sample to be a multiple
semiclassical approach with fully quantum mechanical reinteger ofa, the lattice constant.
sults. As expected, the agreement is good when only the The matrix elements of the disorder potential are com-
slowly varying disorder is present. However, if the periodic puted in a similar way. We use a grid of dimensgx N, to
modulation is also included, the lattice constargrovides a  cover the sample and generate the values of the disorder
new length-scale which is comparable to the magnetic lengtpotential on this grid. Then, fast Fourier transfof#T)2 is
[, and the semiclassical picture breaks down. Quantum massed to find the long wavelength components of the disorder
chanical calculations are absolutely necessary to quantitotential corresponding to the allowed valueg,,
tively treat this case. =0,+(27/Lyy), ..., £(Ny,/2)(27/Ly,) (proper care is taken
to define Fourier components so tha;:viq). The matrix
elements of this discretized disorder potential are then com-
puted using Eq(Al). In principle, finer gridgincreased val-

As shown in Sec. Il, the degeneracy of each LLNs ues forN, and N,) will improve accuracy. However, they
:LXLyB/gﬁO:LXLy/(ZwIZ). Since the disorder varies very also result in longer computation times, since they add extra
slowly, we need to consider systems witly L,>1 to prop- ~ matrix elements in the sparse matrix, corresponding to large
erly account for its effects. As a result, the number of statesvave vectors. We have verified that a grid size of dimension
in a LL can be as large as 4 our calculations. Storage of N,=N,=72 is already large enough to accurately capture the
the Hamiltonian as a dense matrix requires considerablindscape of a a&mXx3 um sample and the computed
amount of computer memory and its direct diagonalization igjuantities have already converged, with larger grids leading
prohibitively time consuming. Sparse matrix diagonalizationto hardly noticeable changes. This procedure is also justified
techniques could be employed, but they are less efficiendn a physical basis. First, the neglected large wave-vector
when all eigenvectors are needed, and may have stabilitgomponents describe very short-range spatial features, which
issues. are not accurately captured by our disorder models to begin

Here we describe the numerical methods we used to conwith, and which are not believed to influence the basic phys-
pute densities of states and infer the nat{loealized or ex- ics. Second, this procedure insures that the actual disorder
tended as well as the spatial distribution of the wave func- potential we use is periodic in thg-direction, since each
tions, while avoiding direct diagonalization. Fourier component retained has this property. This is consis-
tent with our use of a basis of wave functions which are
periodic alongy.

The matrix elements of the Hamiltonian within a

Since int_erlevel r_nixing is ignored,_the Hilbert subspacesgiven Landau level(n,o) are then (n,ky,a|H|n,k;,o>
corresponding to different spin-polarized Landau levels dO:Env(,+<n,ky|V|n,k{/>, whereE, , are given by Eq(2) and

not_bhy(lj:)rgdizEe. 1Each HiI_b(_arthuberJaCB,a) lhas a ba_lSidS de(—j the matrix elements of both the periodic and the disorder part
scribed by Eq(1), containingN orthonormal vectors indexed ¢ yhe potential) are computed as already discussed. This

by ldlffe:jentky values. o el f th | Hamil produces a sparse matrix, which is stored efficiently in a
n order to compute matrix elements of the total Hamil- ., -\ compressed format.

tonian in such a basis, we use the following identity derived
in Ref. 9 (Notice their different sign convention fdc,. If Densities of states and filling factors
o# d’, the overlap is zeno

Quantum mechanical treatment

Matrix elements

A quantity that can be computed without direct diagonal-
. P , e -~ L
(', K€YK ) = S 1 —q Lo (@)1 72K (AT) ization is the filling factor. In the absence of LL mixing, we
ky' Inky Klyaymn define the filling factor for thén,o) LL as
where

1

1 E H n-n’ Vn,U'(EF) = NE G)(EF - En,a,a')l (AZ)

L — m 2in’ )| Ox* 19y a
n’,n(Q) M! I 2. 2
: VOx + 0y where ©(x) is the Heaviside function anll is the degen-
% e‘%QQ%W‘“‘L('”"”‘)(Q) eracy of the LL. The. filling factpr is the fraction of occupied
m ’ states aff =0, for a given Fermi energle. It corresponds to

with Q:%lz(q§+q§), m and M are the minimum and the the average filling factor measured in experiment and is pro-

; / : (In"-nl) portional to the integrated totéhs opposed to locatensity
maximum ofn’ andn, respectively, and.| " (Q) the as-

: ; P of states.
sociated Laguerre ponnorqlaI. When band-mixing is ne- The filling factor is straightforward to compute if the
glectedn=n" and £, ,(q) =€"2°L,(Q). For the first Landau eigenenergie&, , , are known. However, we want to avoid
level, Lo(x)=1. the time-consuming task of numerical brute force diagonal-

Equation(Al) gives us the matrix elements for the squareization. The strategy we follow is a generalization to Hermit-
[Eq. (3)] or triangular[Eq. (4)] periodic potentials. In either jan matrices of the method used in Ref. 26. We restate the
case, there are Fourier components correspondingj,to problem in the following way: assume we have a Hermitian
=+2m/a andq,=0. Since only basis vectors for which the matrix of size NXN, given by the matrix elements of
differenceky—k§=qy give nonvanishing matrix elements, we M=H-Eg1 in the basis|n,ky,(r) (1 is the unit matrix.
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Then, Vno(EF) is propo.rtional to the number of negati\{e Gﬁ'é(ky,k}’,;w)=<n,ky,0'|éR’A(w)|n,k}',,0'>
eigenvalues of the matridl. We now generate the quadratic ’ .

form M=X{_,5M;;, and transform it into its standard -3 Cn,a(Ky)Ch o(KY) (A6)
form M=3Ndj|xi|? using the Jacobian method described be- w hw—Epaetid

low. Here,d;’s are all real numbers, and thg's are linear

combinations of the’s. This is a similarity transformation Equation(A3) can be rewritten in the basjs ko) as
which retains the signature of the matrix. As a result, even

though the numbers; are not eigenvalues &, the number A T°F: i5)5ky,|</r—<n,ky, alHIn,k;,UﬂGE’f;\(K},k;;w)
of negative eigenvalues equals the number of negatjve K
values. It follows that, ,(Er) is obtained by simply count- —5 . (A7)
ing the number of negative, values for the giverkg. BRL%Y

The Jacobian method is iterative in nature. First, all terms \we yse the popular numerical library SupertUpased
containing{; and {; are collected and the needed corznple-on LU decomposition and Gaussian reduction algorithm for
mentary terms are added to form the first total squabe,|”.  sparse matrices, to solve these linear equations. Consider
The_ procedure is t_hen repeated for glland ¢, terms(pr_o- now the matrix emmer@ﬁ’ﬁ(kmm,kmax: ) corresponding to
ducingd,), etc., until allN valuesd; are found. Computation- o smallestk, =k, and the largesk,=kpa, values. If all

ally, this can be done by scanning the lower or upper trianglgaye functions with energies closeta are localized in the
of the Hermitian matrixM only once. The total number of x-direction, it follows thaﬂGﬁ'ﬁ(kmm,kmax; )| is a very small

operations is proportional to the number of nonzero 9|ementﬁumber of the ordee™ €« where&(w) is the localization

of the matrix, meaning that for a dense matrix it scales WithIerlgth at the given energy. On the other hand, we expect to
> i ) i g ,

N (spar;e matrices require much fewer operadioAs a see a sharp peak in the Va|Ue|@ﬁ',/;\(kmm,kmax; o) if hois

result, this procedure is much faster than brute force dlagoIn the vicinity of an extended state eigenvalue. si

nalization which scales with® (for us, N~ 10%. The filling y 9 . Sifsee

factor v, ,(E) is a sum of steplike functions, with steps lo- Eqgs.(A5) and(A6)] bothc, (Kmin) andcy ,(Knay) are nonva-

. . o nishing for an extended wave function with significant
cated at the eigenvalues. By scanniB@nd identifying the weight near both the /2 and thel,/2 edges. Moreover,

position of these steps we can also find the true eigenvalu . ; : X
E, ... With the desired accuracy. Finally, the total density oﬁﬁe he|g_ht of this peak sca!es like 4,/s0 by varyingd we
@ can easily locate the energies of the extended states.

states is given by,,,(E)=dv, ,(E)/dE.

Green'’s functions: extended vs localized states Green's functions: local densities of states
The advanced/retarded Green’s functions are the solutions We can also use Green’s functions techniques to image
of the operator equation the local density of states at a given eneEyyBy definition
R (and neglecting LL mixing the local density of states in the
(ho-H+iH)G N (w) =1, (A3)  level(n,o)is

where §—0*. (In practice we use a set of small positive 1 .
numbers, as discussed latef the exact eigenstates and ei- pno(1;E) = 2 [(r|n, e, 0)[?8(E - Ey 0,0) = = IM(r|Gh (E)]r),
genvalues of the total Hamiltoniarf{ are known, @ m
HIn,a,0)=E, 4N, a,0) (no LL mixing), it follows: (A8)

2 naoinas < - here th d equality follows from H is func-

RA( \ — GO GT RA where the second equality follows from Eé4). This func
@)= 2 fhw—Epaetid p) Crirl@). (A4) tion traces the contours of probabiliifr |n, «, o)|? for elec-
trons with the given energg. Its direct computation, how-
¥er, is very time-consuming.

For the rest of this section, the discussion is restricted to
the LLL with n=0; the value ofr is irrelevant. We know that
in the LLL, electronic wave functions cannot be localized in
any direction over a length-scale shorter than the magnetic
Since the statef,ky, o) are localized neax=kl* [see Eq. lengthl. As a result, it suffices to compute a projected local
(1], the coefficients, ,(k,) describe the probability ampli- density of states on a grid withx | (or large) spacings. The
tude for an electron in the stafie, , o) to be located within  projection is made on maximally localized wave function,
a distancel from x:kylz. Knowledge of these coefficients defined as follows. Lety=(X,,Yo) be a point on the grid. We
allows us to infer whether such states are extended or locakssociate it with a vector
ized in thex-direction, i.e., whether they can carry currents
between the leads. =

However, we wish to avoid direct diagonalization. We can oY) % k) koxoryo. (A9)
still infer whether the Hamiltonian has extended or localized
wave functions near a given enerfjy in the following way. ~ where we use the simplified notatidk,)=|n=0 ko) for
We introduce the matrix elements, the basis states of the LL]see Eq.(1)] and we take

na,o n,o

The exact eigenstates can be expanded in terms of the ba:
statesn,k,, o) as

In,a,0) = X ¢, 4(k))|n,ky, ). (A5)
ky
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It lk,» basis[see Eq.(A9)], and letH be the matrix of the
(k,|X0,Yo) = T2 o 0g2°-0%2+k (xotvo  (A10) ~ Hamiltonian{ in the k) basis. We generate the series of

Ly orthonormal vectorslg, Uy, ... USINg
It is then straightforward to show that B ) vy
1 Vi=Hug, agugvy, Up= NV
(X, Yo = ==L~ X0 141Z1-{(y = Yo 412 g(12%) (xx0) (y=¥o) WiV1— &g
V2 and forn=2, v,=Hu,_, a,1=u_v,, byp=ul_v,, and
(A11)
. . Vh~ @p-1Up-1~ bn—2u n-2
In other words|xo, Yo) is an eigenstate of the lowest Landau Un=""3 > =— -
level strongly peaked at=r. (The phase factor is due to the WiV~ an1 ~brp
proper magnetic translatlane then define the projected T numbers, andb, can be shown to be real. We do not
density of statescompare with Eq(A8)], have a “terminatoP® to end this recursive series. Instead,

1 . our procedure ends when the orthonormal set of vectors

pp(X0,Yo; E) = =1m(Xo, Yol GME) X0, Yo) » (A12)  ug, uy, ... exhausts a subspace of the LLL containing all
™ states coupled through the disorder and/or periodic potential

and use it to study the spatial distribution of the electronto the statgxy,Yo), i.e., all states that contribute to the pro-

wave functions at different energies. Strictly speaking, thdgected DOS at this point. In the presence of disorder, this

local density of states defined in EGA8) cannot be pro- usually includes the entire LLL.

jected exactly on the LLL, because the LLL does not support Then, the projected density of states is given by Eq.

a S-function (<r|n,ky'o'>750, (0n). However, the coherent (A12), vvhere the matrix element of the Green’s function is

statesx,,yo) We select are the maximally spatially localized the continued fraction

wave functions in the LLL, and have the added advantage

A
that they can be easily stored as sparse vectors, because of (%0, Yol GXE)Ix0.yo)
their Gaussian profilefsee Eq.(A10)]. Moreover, in the ={E-id-ag-bJE—-i6—a;—bi(--) L
limit | — 0(B— ) where [{r |Xo,Yo)| — 8(X—Xg) 8(y—Yo), the (A13)

projected density of statess(Xg,Yo; E) — po (1 ; E). There-
fore, for the largeB values that we consider herg, should  Because the Hamiltonian is a sparse matrix, the generation of
provide a faithful copy of the local density of states. these orthonormal sets and computatiorpgE) for all the
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