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Motivated by the recent experiments on periodically modulated, two-dimensional electron systems placed in
large transversal magnetic fieldsfS. Melinteet al., Phys. Rev. Lett.92, 036802s2004dg, we investigate the
interplay between the effects of disorder and periodic potentials in the integer quantum Hall regime. In
particular, we study the case where disorder is larger than the periodic modulation, but both are small enough
that Landau level mixing is negligible. We carry extensive numerical calculations to understand the relevant
physics in the lowest Landau level, such as the spectrum and natureslocalized or extendedd of the wave
functions. Based on our results, we propose a qualitative explanation of the new features uncovered recently in
these transport measurements.
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I. INTRODUCTION

Two-dimensional electron systemss2DESd placed in a
uniform perpendicular magnetic field exhibit a rich variety of
phenomena, such as the integer1 and fractional2 quantum
Hall effects,3 and, with the addition of a periodic modulation,
the Hofstadter butterfly.4 In the latter case, the theoretical
prediction of this remarkable fractal electronic structure was
made in the absence of disorder. To interpret experiments,
however, one must account for the effects of disorder present
in any real sample.

In this paper, we investigate numerically the behavior of a
2DES subject to a perpendicular magnetic field, a periodic
potential and a disorder potential, under conditions relevant
for a recent experimental setup.5 The magnetic fields are on
the order of 10 T; as a result, the cyclotron energy"vc
=eB/mc<200 K is the largest energy scale in the problem
sthe effective electron mass in GaAs is 0.067med. The Zee-
man energy for such fields is roughly 3 K, but electron in-
teraction effects lead to a considerable enhancement of the
spin splitting between thesspin polarizedd Landau levels,
which has been measured to be 20 K.6 The periodic modu-
lation, imposed through a patterned gate, corresponds to a
triangular lattice with a lattice constant of about 39 nm. The
amplitude of the periodic potential’s largest Fourier compo-
nents is estimated to be of the order of 1 K.7 By contrast, the
scattering rate from the zero field mobility is estimated to be
" /t,8 K,7 showing that disorder islarge compared to the
small periodic modulation, although both are small enough
that one can neglect Landau levelsLL d mixing and study
their combined effects on the electronic structure of the low-
est Landau levelsLLL d.

Previously, the effects ofsmall disorder on a Hofstadter
butterfly have been perturbatively investigated using the self-
consistent Born approximationsSCBAd,8,9 and the combined
effect of white-noise disorder and periodic modulation on
Hall resistance was studied following the scaling theory of
IQHE.10,11 If the disorder is small compared to the periodic
potential amplitude, the subbands of the Hofstadter structure
are “smeared” on a scale" /t. The larger gaps of the butterfly
remain open at the positions predicted in the absence of dis-

order, while the smaller gaps are closed. Such results suggest
that if disorder becomes the larger term, the periodic modu-
lation should have little or no effect on the behavior of the
system. This perception may explain why, as far as we know,
this case has not been theoretically investigated previously.11

Our study reveals a different scenario. We show that even
if the periodic modulation issmall compared to disorder, its
effects on transport may be considerable if the characteristic
length scale of the disorder potential is much larger than the
lattice constant of the periodic potential, which is the case for
high-quality, large mobility samples such as those used in
Ref. 5. Our work is different in several ways. First, as al-
ready stated, we investigate the new regime of a large, long-
wavelength disorder and small, short-wavelength periodic
modulation, realized in recent experiments. Second, we ac-
count exactly for the effects of both disorder and periodic
potential on the LLL, our only approximation being to ne-
glect LL mixing showever, the techniques we develop can
easily be extended to include itd. This is very different from
previous work based on the SCBA, which is a perturbational
technique only applicable for small disorder. Third, the tech-
niques we employ allow us to study individual disorder re-
alizations; this is important since the signatures seen experi-
mentally in transport are sample dependent.5 This is also to
be contrasted with SCBA, which provides only disorder-
averaged quantities. As a result, it is important that we use
“realistic” disorder profiles. We investigate two simplified
models of disorder, one which is a sum of random Coulomb
potentials and one which is a sum of random Gaussians.
Both show the same qualitative behavior, leading us to con-
clude that the results we uncover are generic for all long-
range disorder models.

The two-lead geometry we consider is sketched in Fig. 1:
the finite 2DES is assumed to have periodic boundary con-
ditions in they-direction, and is connected to metallic leads
at the x=−Lx/2 and x= +Lx/2 edges. In particular, in this
paper we study the effects of the periodic potential on the
extended states carrying longitudinal currents between the
two leads, and identify a number of interesting properties, in
qualitative agreement with simple arguments provided by a
semiclassical picture and with the experimental results.
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Transport properties, such as the longitudinal conductivity,
are discussed elsewhere.12

The paper is organized as follows: in Sec. II we briefly
review the computation of the Hofstadter structure for a
small-amplitude periodic potential. In Sec. III we describe
the type of disorder potentials considered. Our results are
presented in Sec. IV and Sec. V contains discussions and a
summary of our conclusions. The numerical methods used to
analyze the spectrum and the nature of the electronic states,
with both semiclassical and fully quantum-mechanical for-
malisms, are summarized in the Appendix.

II. PERIODIC POTENTIAL

To define our notation, we review the free electron
scharge −ed moving in the 2Dxy-plane in an area of size
Lx3Ly, in a transversal magnetic fieldB=Bez,

H =
1
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2
gmBsW ·B.

For Landau gaugeA =s0,Bx,0d, the eigenstates of the
Schrödinger equationHun,ky,sl=En,sun,ky,sl are
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Here l =Î"c/eB is the magnetic length,vc=eB/mc is the
cyclotron frequency,Hnsxd are the Hermite polynomials, and
xs are the eigenspinors ofsz, szxs=sxs.

Cyclic boundary conditions along they-axis imply
ky=2p j /Ly, wherej PZ. The wave functions are centered at
xj = l2ky= l22p j /Ly fsee Eq.s1dg and must satisfy −Lx/2,xj
øLx/2. It follows that the degeneracy of each Landau level
is N=LxLyB/f0, with f0=hc/e.

Consider now the addition of a periodic potential, with a
lattice defined by two noncollinear vectorsa1 and a2, such
that Vsr d=Vsr +na1+ma2d for any n, mPZ. The periodic
potential Vsr d=ogVge

ir ·g has nonvanishing Fourier compo-
nents only at the reciprocal lattice vectorsg=hg1+kg2,
wheregi ·aj =2pdi j andh, k are integers. SinceVsr d is real, it
follows thatVg=V−g

* .

In the absence of LL mixing, the Hofstadter spectrum for
both square,4
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periodic potentials, with nonzero Fourier components only
for the shortest reciprocal lattice vectors, have been studied
extensively in the literature.4,9,13,14 The parameter defining
the spectrum is the ratio between the fluxf=B ·sa13a2d of
the magnetic field through a unit cell and the elementary flux
f0. For f /f0=q/p, wherep andq are mutually prime inte-
gers, the original Landau level is split intoq subbands.

We would like to emphasize a qualitative difference
between the two types of potentials: the square potential
in Eq. s3d is particle-hole symmetric, sinceVssx,yd
=−Vsfx+sa/2d ,y+sa/2dg. As a result, the sign of its ampli-
tude is irrelevant. On the other hand, the triangular potential
does not have this symmetry. With the sign chosen in Eq.s4d
andA.0, Vt has deep local minima at the sites of the trian-
gular lattice, whereas the maxima are relatively flat and lo-
cated on asdisplacedd honeycomb lattice. Thus, the sign of
Vt is highly relevant. This choice of periodic potentials may
seem restrictive because only the shortestg vectors are kept.
In fact, the methods we employ can be used for potentials
with more nonvanishing Fourier components, but their inclu-
sion leads to no new physics.

III. DISORDER POTENTIAL

Real samples always have disorder. The current consensus
is that high-quality GaAs/AlGaAs samples exhibit a slowly
varying, smooth disorder potential. In a semiclassical pic-
ture, the allowed electron trajectories in the presence of such
disorder follow its equipotential lines.3,15 Closed trajectories
imply localized electron states, while extended trajectories
connecting opposite edges of the sample are essential for
current transport through the samplesfor more details, see
the first section of the Appendixd.

In typical experimental setups,5 dopant Si impurities with
a concentration of,1013 cm−2 are introduced in a thin layer
of 6 nm in thickness, located 20 nm above the
GaAs/AlGaAs interface. Typically, up to 10% of the Si at-
oms are ionized. A small fraction of the ionized electrons
migrate to the GaAs/AlGaAs interface where they form the
2D electron gas. The electrostatic potential created by the
ionized impurities left behind is the major source of disorder
in the 2DES layer. On the length scale we are interested in,
there are 104 to 105 such ionized Si impurities permm2. The
resulting disorder potential must be viewed as a collective
effect of the density fluctuation of the ionized impurities16

rather than a simple summation of the Coulomb potential of

FIG. 1. The two-lead geometry considered: the finite-size 2DES
has periodic boundary conditions in they-direction, and is attached
to metallic leads at thex= ±Lx/2 ends.
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a few impurities. The electrostatic potential from Si impuri-
ties is compensated and partially screened by other mobile
negative charges in the system such as, for example, the
surface screening effect by mirror charges considered by
Nixon and Davies.16 An exact treatment of this problem is
difficult, since one should consider the spatial correlation of
the ionized impurities.17,18 One model used to describe such
disorder consists of randomly placed Gaussian scatterers.19

This model captures the main feature of a smooth disorder
potential and supports classical trajectories on equipotential
contours, but it has no natural energy/length scales associ-
ated with it. As a result, here we choose to also investigate a
different model of the disorder, which incorporates the
smooth character of the Coulomb potential in real space.

We generate a realization of the disorder potential in
the following way: positive and negative charges, corre-
sponding to a total concentration of 103 mm−3 are randomly
distributed within a volumef−Lx/2 ,Lx/2g3 f−Ly/2 ,Ly/2g
3 f20 nm+d,26 nm+dg above the electron gas which is lo-
cated in thez=0 plane. Here, we choosed=4 nm as an extra
spacer since the electronic wave functions are centered about
3–5 nm below the GaAs/AlGaAs interface. Since we are not
simulating single impurities but density fluctuations, these
charges are not required to be elementary charges. Instead,
we use a uniform distribution in the rangef−e,eg for conve-
nience sa Gaussian distribution would also be a valid
choiced, and sum up all Coulomb potentials from these
charges, using the static dielectric constant in GaAse
=12.91.20 The resulting disorder potential has energy and
length scales characteristic of the real samples. Typical con-
tours for such potentials are shown in Sec. IV.

In an infinite system, in the quantum Hall regime, the
existence of quantum Hall steps implies the existence of
critical energies at which the localization length diverges.21

This is the quantum analog of the two-dimensional percola-
tion problem in a smooth random landscape, for which there
exists a single critical energy.15 In the case of potentials with
electron-hole symmetrykVsr dl=0, the critical energy lies in
the middle of the bandsEc=0d, leading to percolating path at
half-filling. For a finite mesoscopic sample, however, not
only does the percolating pathscritical energyd Ec deviate
from this value, but in samples without a periodic boundary
condition one need not have a percolating path traversing the
system in the desired direction. This arises from the fluctua-
tions near the edge of a mesoscopic system with free bound-
ary conditions.

We circumvent such a possibility by adding an extra
smooth potentialV8sx,yd to the impurity-induced disorder
potential Visx,yd, such that the total potentialV=Vi +V8 is
zero on the opposite edgesx= ±Lx/2 of the sample where the
metallic leads are attached. The supplementary contribution
V8sx,yd can be thought of as simulating the effect of the
leads on the disorder potential, since the metallic leads hold
the potential on each edge constant by accumulating extra
charges near the interface. Therefore, physically we expect
that the extra potentialV8 decays exponentially over the
screening lengthl inside the sample. This implies

V8sx,yd = −
Vis− Lx/2,yd + VisLx/2,yd

2

coshsx/ld
coshsLx/2ld

+
Vis− Lx/2,yd − VisLx/2,yd

2

sinhsx/ld
sinhsLx/2ld

,

wherel is taken to be 100 nm in our calculation.
In Fig. 2, we plot the average of Fourier transform of the

magnitude of the random potentialÎkuVsqdu2l versusq= uqu
for the Coulomb model and the Gaussian model. The Gauss-
ian model is generated by adding 100 randomly placed
Gaussian scatterers on an area of 3mm33 mm, each con-
tributing Ade

−r2/d2
, whereAd is uniformly distributed between

f−2,2g meV, andd is uniformly distributed inf0, 0.2g µm.
Vsqd is related toVsr d by Vsr d=oqVsqdeiq·r, where the sum-
mation is over all the wave vectors involved in the fast Fou-
rier transformation.Vsqd of both models are decreasing func-
tions of q, with exponential decay at largeq. At small q, the
two models behave differently. Despite the difference, both
models lead to the same qualitative results, although, as ex-
pected, minor quantitative differences are present. This
shows that the physics we uncover is independent of the
particular type of slowly varying disorder potential consid-
ered, and thus should be relevant for real samples.

IV. RESULTS

In this section we present typical numerical results we
obtain using the methods summarized in the Appendix. We
have analyzed over 20 different disorder realizations for
samples of different sizes; all exhibit the same qualitative
physics. The lattice constant is alwaysa=39 nm if the peri-
odic potential is present.5

First, we consider a sample withLx=3.11mm and
Ly=76a=2.964mm for f /f0=3/2sB=4.71 Td. The mag-
netic length isl =12.03 nm and each Landau level contains

FIG. 2. Averaged Fourier amplitudes of two types of disorder
potential as a function of wave vectorq= uqu. For both Coulomb and
Gaussian model,Vsqd2 is averaged over 116 disorder realizations.
The relation betweenVsqd and Vsr d and relevant parameters are
discussed in the text. The standard deviation,sLxLyd−1kedr V2sr dl
for the Coulomb model is 3.2310−7 eV2, and 2.1310−7 eV2 for
the Gaussian model.
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N=10 108 states. The disorder potential obtained with our
scheme described in Sec. III, including the correctionV8sr d,
is shown in Fig. 3. An extended equipotential line appears, as
expected, atn<0.5.

In Figs. 4 and 5 we plot, for the LLL, the filling factor
nsEd and the corresponding total density of statessDOSd
rsEd as a function ofE sfor computational details see the
Appendixd. These quantities are obtained in the semiclassical
limit sdashed lined and with the full, quantum-mechanical
treatmentssolid lined. Results are shown for four different
cases:sad only disorder potential andsbd, scd, sdd disorder

plus a triangular periodic potential with amplitudesA=0.05,
0.5, and 5 meV, respectively. We show only a relatively small
energy interval where the DOS is significant, and ignore the
asymptotic regions with long tails of localized states.

While the agreement between the semiclassical and
quantum-mechanical treatment is excellent in the limit
A→0, the two methods give more and more different results
as the periodic potential amplitude is increased. This is a
consequence of the fact that the magnetic lengthl is compa-
rable to the lattice constanta, leading to a failure of the
semiclassical treatment when this new short length scale is
introduced. In particular, in the case with the largest periodic
potentialfpanelsdd of Figs. 4 and 5g we can clearly see the
appearance of the three subbands expected for the Hofstadter
butterfly atf /f0=3/2,although the disorder leads to broad-
ened and smooth peaks, and partially fills-in the gap between
the lower two subbands. This picturefpanel sddg is quite
similar to the density of states calculated in Ref. 8 using the
self-consistent Born approximation. This is expected since
the SCBA approach is valid in the limit of strong periodic
potential with weak disorder. However, the SCBA approach
is not appropriate in the limit of moderate or strong disorder.
For disorder varying on a much longer length scale than the
periodic potential, one still expects thatlocally, on areas
where disorder is relatively flat, the system exhibits the
Hofstadter-type spectrum. However, these “local” spectra are
shifted with respect to one another by the different local
disorder values. If disorder variations are small, then the total
spectrum shows somewhat shifted subbands with partially
filled-in gaps, but overall the Hofstadter structure is still rec-
ognizable. On the other hand, for moderate and large disor-
der, the detailed structure of the local density of states from
various flat regions are hidden in the total density of states.
All one sees are some broadened, weak peaks and gaps su-
perimposed on a broad, continuous density of states.

We now analyze the nature of the electronic states for
these configurations. We start with the case which has only
disorder. In Fig. 6 we plot the matrix elements of the Green’s
function between LL states on the opposite sides of the
sample,uGRskmin,kmax;Edu2 as a function of the energyE.

FIG. 3. Profile of the disorder potential obtained from our Cou-
lomb model on a 3.11mm32.96mm sample with theV8sr d cor-
rection at thex= ±Lx/2 edges. The disorder potential varies be-
tween −3 meV and 3 meV, on a spatial length-scale much larger
than l =12.03 nm. The critical region containing extended states is
in the vicinity of E=0.06 meV. The contours are shown forE
=0.0575 meVsdashedd, 0.17 meVsthick solidd, and 0.31 meVsthin
solidd. These energy values correspond to classical filling factors
n=0.45, 0.56, 0.66.

FIG. 4. Semiclassicalsdashed lined and quantumssolid lined
filling factors for the disorder potential shown in Fig. 3, but differ-
ent amplitudes of the triangular periodic potentialsad A=0, sbd A
=0.05 meV, scd A=0.5 meV, andsdd A=5 meV. As expected,
agreement exists only in the limitA→0.

FIG. 5. Semiclassicalsdashed lined and quantumsfull lined den-
sity of states calculated from corresponding filling factors in Fig. 4.
We show only the center of the disorder-broadened lowest Landau
level, where the density of states is large.
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The results shown are for a small imaginary energyd=10−7

and 10−8 eV in the denominator of the Green’s function, Eq.
sA4d sfor computation details see the Appendixd. As dis-
cussed in the Appendix, extended states are indicated by
large values of this matrix element, as well as a strong
sroughly 1/d2d dependence on the value of the small param-
eterd. Figure 6 reveals that asd is reduced, resonant behav-
ior appears in a narrow energy intervalE=0.02–0.36 meV,
where results for the twod values indeed differ by roughly 2
orders of magnitude, withd=10−8 eV showing sharper reso-
nance peaks. The value of the Green’s function decreases
exponentially fast on both sides of the critical regionssee
inset of Fig. 6d, indicating strongly localized states. We con-
clude that the disorder potential has a critical energy regime
of ,0.3 meV width, covering less than 5%sin energyd and
20% sin number of statesd of the disorder-broadened band
with total width,6 meV. The position of the critical energy
interval is in agreement with the semiclassical results which
suggest an extended state in the vicinity ofE=0.06 meV. By
comparison with Fig. 4, we can also see that this critical
regime indeed corresponds to a roughly half-filled band.

The effect of adding a triangular periodic potential is
shown in Fig. 7, where we plot the same quantity shown in
Fig. 6 for a fixedd=10−7 eV and different amplitudesA=0,
0.05, 0.5, and 5 meV, respectively. These results correspond
to a different Coulomb disorder potentialsnot shownd, as can
be seen from the different location of its extended states. The
narrow critical region of extended states widens as the am-
plitude of the periodic potential increases. For the largestA
value, the three Hofstadter subbands of extended states, ex-
pected forf /f0=3/2, areclearly visible. The three sub-
bands can already be resolved for the moderate amplitude
A=0.5 meV, although they have significant overlap.

Qualitatively similar behavior is obtained if we use the
Gaussian scatterers model for disorder. A typical realization
of this disorder is shown in Fig. 8. Results for the Green’s
function’s values with such disorder are shown in Fig. 9, for

cases with pure disorder, and also cases with either a trian-
gular or a square periodic potential. The magnetic field has
been doubled, such thatf /f0=3. Similar to results in Fig. 7,
the periodic potential leads to a widening of the critical re-
gime. For large periodic potentials, the expected Hofstadter
three-subband structure emerges again. We conclude that
Coulomb and Gaussian disorder models show qualitatively
similar behavior.

We now analyze the projected local density of states
rPsrW ,Ed sfor details, see the Appendixd to understand the

FIG. 6. Semilog plot of the amplitude of Green’s function ma-
trix element between the two edge states nearx= ±Lx/2, as a func-
tion of energy, ford=10−7 eV sblack lined and d=10−8 eV sgrey
lined. d is the small imaginary part in the Green’s function, see the
Appendix. Only the disorder potential of Fig. 3 is applied in this
calculation. Inset, the same quantity ford=10−8 eV, over a larger
energy range.

FIG. 7. The effect of a triangular periodic potential on the criti-
cal energy regime. The disorder potential used heresnot shownd
supports a narrow interval of extended states centered at about
−0.6 meV. As the amplitudeA of the periodic potential increases,
the range of extended states increases dramatically. The left panel
shows results for disorder-only and two relatively weak periodic
potentials, while the right panel shows two larger periodic poten-
tials where the three-subband structure expected forf /f0=3/2 is
clearly seen.

FIG. 8. A disorder potential of Gaussian type on a roughly
3 mm33 mm square. The three lines are equipotential contours
close to the critical regime, with energies of −0.1 meVsdashedd, 0
meV sthick solidd, and 0.1 meVsthin solidd. Cyclic boundary con-
dition are applied in they direction.
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reason for this substantial widening of the critical region by
even small periodic potentials. We consider a smaller
sample, of about 1.6mm31.6 mm. We compute the pro-
jected density of states at positionsrW on a 60360 square
grid, for 500 equally spaced energy values and ford
=10−8 eV. This d value is comparable or smaller than the
level spacing, so we expect to see sharp resonances from the
contribution of individual eigenfunctions as we scan the en-
ergy spectrum. Each computation generates a large amount
of data sroughly 24Md, for the 500 plots ofrPsrW ,Ed. We
select a couple of representative cases and some statistical
data to interpret the overall results.

Figures 10 and 11 show some of our typical results. The
two figures are calculated for the same Coulomb-disorder
potential, for values ofE=−0.504 meVsat the bottom of the
bandd andE=−0.124 meVsclose to, but below the band cen-

terd, respectively. Each figure contains four panels. Panelsad
shows the profile of the disorder potential as well as an equi-
potential linessolid blackd corresponding to the valueE con-
sidered; the other three panels show the projected density of
statesrPsrW ,Ed for sbd pure disorder;scd disorder plus trian-
gular periodic potential withA=0.1 meV; sdd disorder plus
square periodic potential withA=0.1 meV. In Fig. 10, the
equipotential lineswhich traces the semiclassical trajectory
of electrons with the same energyEd surrounds local minima
of the disorder potential, suggesting localized electron states
at such low energies. Indeed, this is what panelssbd, scd, and
sdd show. The projected density of statesrPsrW ,Ed is large
sbright colord at the positions where electrons of energyE
are found with large probabilities. For pure disorder, we ob-
serve only closed trajectoriesslocalized statesd, whose shape
is in excellent agreement with the semiclassical trajectory, as
expected. If a moderate periodic potential is added, the
wave-functions spread over a larger area, and nearby con-
tours sometimes merge together. Instead of sharp lines, as
seen in panelsbd, the contours now show clear evidence of
interference effects of the wave functions on the periodic
potential decorating the electron reservoirs. Some periodic
modulations can also be observed in the background of pan-
els scd andsdd, especially for the square potential. These are
not the direct oscillations of the periodic potentials, since the
grid we use to compute these figures has a linear size equal
to 7/10 of the perioda=39 nm of the periodic potential.
Capturing detailed behavior inside each unit cell would re-
quire a much smaller grid, which is not only time consum-
ing, but also violates the requirement that the grid size be of
order l or larger.

Figure 11 for an energy close to the band center shows the
same characteristics. For pure disorder, the electrons at this
energy trace a sharp contour very similar to the correspond-
ing equipotential line shown in panelsad. Electrons are still
not delocalized, since this contour does not connect either
pair of opposite edges. However, addition of the periodic
potential now leads to an extended state for both types of
periodic potentialsfscd andsddg, demonstrating the widening
of the critical region with the addition of a periodic potential.

Physically, one can understand this spread of the wave
function in the presence of the periodic potential using the

FIG. 9. Green’s functions for a sample with Gaussian disorder
and various periodic potentials. The calculation included 20216
states withf /f0=3. Similar to results shown in Fig. 9, we see that
the periodic potentials widen the critical region.

FIG. 10. sColor onlined Projected local density of statesrPsr ;Ed
for E=−0.504 meV. Panelsad shows the profile of the disorder
potential, and the equipotential contoursblack lined corresponding
to E=−0.504 eV. The other three panels showrPsr ;Ed for sbd dis-
order only; scd disorder plus triangular periodic potential withA
=0.1 meV; sdd disorder plus square periodic potential withA
=0.1 meV. The width and length of the sample are both 1.6µm, and
f /f0=3/2. Increased brightness corresponds to larger values.

FIG. 11. sColor onlined The same as in Fig. 10, but for an energy
E=−0.124 meV close to the band center.
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semiclassical picture.5 If only a smooth disorder potential is
present, the equipotential at any energyE must be a smooth,
continuous line. However, if a periodic potential with
minima −Vm and maximaVM is superimposed over disorder,
the new equipotential line now breaks into a series of small
“bubbles” surrounding the disorder-only contour. These ap-
pear throughout the area defined by the equipotentialsE
−VM andE+Vm of the disorder potential, since the addition
of the periodic potential leads new regions in this area to
have a total energyE. Quantum mechanically, we expect
some tunneling inside this wider area and this is indeed what
we observe in Figs. 10 and 11. This mechanism suggests
enhanced delocalizationon both sides of the critical region
as localized wave functions spread out over larger areas, as
well as a widening of the critical region itself, in agreement
with our numerical results.

This spreading of the wave functions in the presence of
the periodic potential can also be characterized by counting,
at a given energyE, the number of grid pointsr which have
a valuerPsr ;Ed.rc, whererc is some threshold value. For
sufficiently largerc, this procedure counts grid points where
electrons with energyE are found with large probabilities,
thus, in effect it characterizes the “spatial extent” of the wave
functions. The results of such counting are shown in Fig. 12
for 500 energy values corresponding to the disorder potential
analyzed in Figs. 10 and 11. There are a total of 60360
=3600 grid points on the sample. For the case of pure disor-
der sblack lined we see that the largest values are found at
energies just below 0, where the extended statessthe critical
regiond are found for this particular realization of disorder.
Because it is a smooth, sharp line, even the most extended
trajectory has significant probabilities at only about 10% of
the grid sites. For both higher and lower energies, this num-
ber decreases very fast, indicating wave functions localized
more and more about maxima or minima in the disorder
potential, as expected. Addition of a small periodic potential
increases this number substantially, clearly showing the
supplementary spreading of the wave functions in the pres-
ence of the periodic potential.

Figure 12 shows this effect for three types of periodic
potential: triangular lattices withA.0 and A,0 supper
paneld, and square lattice in the lower panel. All three cases
show significant enhancement, as compared to the pure dis-
order case. In addition, we see that while the square potential
gives a fairly symmetrical enhancement, the triangular po-
tential does not, with curves for ±A not overlapping. This is
a consequence of the asymmetric shape of the periodic po-
tential, which has different values for its minima and maxima
uVmuÞ uVMu, as well as different arrangements for the points
where minima/maxima appearstriangular lattice vs honey-
comb latticed. Figure 12 clearly shows thatA.0 favors in-
creased delocalization below the critical energy regime,
while A,0 favors increased delocalization above it.

The reason for this different response to the two signs of
the triangular potential can be nicely explained within the
semiclassical framework. In Fig. 13 we show the equipoten-
tial lines corresponding to filling factorsn=0.3 swell below
critical regiond andn=0.7 swell above the critical regiond for
a realization of Coulomb disordersnot shownd plus a trian-
gular potential withA.0. Areas with energy below the equi-

potential value are shaded. We see that instead of the con-
tinuous, smooth trajectory expected for disorder-only cases,
there are also periodic “bubbles” regions connecting the ar-
eas between such contours. Since the choiceA.0 leads to
deep minima at −Vm=−6A with triangular arrangement and
relatively flat maxima at +VM =3A with honeycomb arrange-
mentfsee Eq.s4dg, it follows that the triangularshoneycombd
“bubbles” region appear roughly in the area bounded by the
equipotentialsE and E+Vm srespectively,E−VM and Ed of
the pure disorder potential. At low filling factors, the pure
disorderE equipotential is a collection of closed contours
surrounding local minimafsee panelsdd of Fig. 10 for an
illustrationg. It follows that for the choiceVm.VM, the more
extended region with triangular “bubbles” will be found out-
side these “islands” and will lead to a spread of the wave
function over considerably larger areas, as indeed seen in the
upper panel of Fig. 13. On the other hand, at large filling
factors the triangular “bubbles” betweenE and E+Vm are
inside the disorderE contour, and do not help to enhance
percolation. The smaller areasssince VM ,Vmd of honey-
comb “bubbles” do this, but much less effectively.

FIG. 12. sColor onlined Number of grid points for which
rPsr ;Ed.100 as a function ofE. This quantity characterizes the
“spatial extent” of the wave function. The upper panel compares
results for disorder onlysA=0d and disorder plus triangular poten-
tials with A±0.01 meV. The difference observed for the two signs
is a consequence of particle-hole asymmetry of the triangular po-
tential. The lower panel shows results for disorder only and disorder
plus a square potential.
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In the quantum-mechanical case one expects interference
sdue to tunnelingd within the “bubbles” regions, and there-
fore a wave function which is extended over their entire area,
as indeed we observe to be the case in Figs. 10 and 11. In
other words, one expects that a triangular potential withA
.0 will lead to considerable increase of the localization
length, and, respectively, widening of the critical energy re-
gion, at filling factors below one-half, whereasA,0 will
favor delocalization at filling factors above one-half, as seen
in Fig. 12. This asymmetry is therefore clearly a conse-
quence of the asymmetry of the triangular potential, and is

absent for a particle-hole symmetric square potential. This
has clear effects on the transport properties of the system.

V. SUMMARY AND CONCLUSIONS

We have investigated the effects of moderate-to-large,
long-range disorder on the Hofstadter butterfly expected for
2DES in a perpendicular magnetic field and a pure periodic
modulation. The parameters of our study are chosen so as to
be suitable for the interpretation of a recent experiment on a
modulated 2DES.5 The experiment shows thatsid the longi-
tudinal resistanceRxx is still peaked approximately at half-
filling; sii d there are many reproducible oscillations inRxx,
indicating nontrivial electronic structures in the patterned
sample;siii d the distribution of these oscillatory features is
asymmetric, with most of them appearing on the high mag-
netic fieldssi.e., low filling factorsn,0.5d side of the peak
of Rxx; and sivd the temperature dependence ofRxx indicates
that the asymmetric off-peak resistance is thermally acti-
vated, whereas the centralRxx peaksclose to half-fillingd has
metallic behavior.

These observations cannot be explained on the basis of
the Hofstadter structure.5 This is not surprising, since one
expects that large disorder will modify the butterfly consid-
erably. Effects of small disorder on the Hofstadter butterfly
had been investigated previously using SCBA,8 but this ba-
sically perturbational approach is not appropriate for the case
of moderate-to-large disorder. Instead, we identify and use a
number of techniques which give the exact solutionsif
electron-electron interactions, as well as inelastic scattering
are neglectedd while avoiding brute force numerical diago-
nalizations.

Our results demonstrate that while the Hofstadter butterfly
is destroyed by large disorder, the effects of the periodic
potential are nontrivial for states near the critical regime.
First, they lead to a significant increase in localization
lengths of the localized states at mesoscopicsµmd length
scale and induce an effective widening of the critical regime.
This is achieved through a spreading of the electron wave
function on the flat regions of the slowly varying disorder
potential, where their behavior is dominated by the periodic
modulation.

This regime shows an interesting transition between the
pure disorder and the pure periodic potential cases. In the
case of pure disorder, the semiclassical approach predicts
that at finite filling factors, areas of the sample where
Vdsr d,EF are filled with electrons with the maximum den-
sity of 1/s2pl2d whereas areas whereVdsr d.EF have no
electrons. Moreover, the boundary between such regions is
very sharp. On the other hand, for a pure periodic modula-
tion all wave functions have translational invariance with the
proper symmetry, and therefore electron densities are uni-
form over the entire samplesup to small periodic modula-
tions inside each unit celld. When both types of potential are
present, with disorder being dominant, our results showthree
types of areas. There are regions which are fully occupied
and regions which are completely devoid of electrons, as in
the case of pure disorder. However, the periodic potential
leads to a widening of the boundary between the two, where

FIG. 13. Equipotential contours at filling factorn=0.3 supper
paneld and n=0.7 slower paneld for a 3 mm33 mm sample with
disorder plus a small triangular periodic potential withA.0. The
shaded regions correspond to energies below the respective equipo-
tential. In the semiclassical approximation, the shaded areas are
filled with electrons, with the maximum density of 1/2pl2, whereas
the white areas are completely devoid of electrons. Quantum-
mechanically, one expects interference in the regions with small
periodic “bubbles,” induced by the periodic potentialssee Figs. 10
and 11d.
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the wave functions interact with several oscillations of the
periodic modulation and therefore have some partial local
filling. Such regions have a Hofstadter-type local electronic
structure. If the partial filling factor in such a region is inside
the gap of the local Hofstadter butterfly, one expects no
transport through this local area, leading to a decrease in the
total longitudinal conductivity. By contrast, if the local filling
factor in such a region is inside a subband of a local Hofs-
tadter structure, the resulting wave function will increase the
percolation, leading to an enhancement of the transport
through the sample. Transport in this regime should show
strong thermal activated behavior, in contrast to metallic
transport in the critical regime where extended wave func-
tions connect opposite edges of the sample.

As a result, one expects a series of local minima and
maxima in the longitudinal resistivity on either side of the
central peak induced by the extended statesscritical regimed.
Furthermore, for an asymmetric triangular potential, this re-
sponse should be strongly asymmetric, with the effect most
visible on one side of the central peak.sOne must keep in
mind that since tunneling leads to exponential dependencies,
even small differences in the extent of the wave functions
can have rather large effects onrxx.d Such an asymmetry
should also be present in longitudinal conductance at finite
but low temperature, e.g., in the hopping regime which is
sensitively dependent on the nature of the localized wave
functions, as is indeed seen experimentally.5

To summarize, our qualitative explanation for the various
experimental features are as follows:

sid The Rxx peak is roughly at the center of the band be-
cause the weak periodic potential cannot establish a
Hofstadter-type structure over the whole band. Instead, low
and highn states remain strongly localized.

sii d New extended states induced by the periodic potential
are responsible for the reproducible peaks and valleys ap-
pearing inRxx.

siii d The periodic potential also leads to the expansion of
localized wave functions, which contribute to the thermally
activated conduction at lower filling factors. The detailed
structure of the wave functions gives rise to the oscillations
of the off-peakRxx, similar to conductance fluctuations.22

sivd The asymmetry inRxx is a manifestation of the asym-
metry of the triangular potential, which has a stronger effect
at low filling factors than at high filling factors forA.0. We
predict that this asymmetry should be absent for a symmetric
square periodic potential.

The weak point in our calculation is that we are unable to
accurately model the potential in the real samples, because
various screening effects have not been properly taken into
account. Also, we have no quantitative information about the
magnitude of the periodic potential in the 2DES layer, be-
cause of the additional strain23 contribution induced by the
periodic decoration. As a result, we only claim qualitative
agreement with the experiment, although our investigations
show the same type of behavior for various types of disorder
potentials and variousssmall-to-moderated strengths of the
periodic potential. The most direct check of this work would
be an experimental demonstration that thermally activated
conduction appears symmetrically on both sides of theRxx
peak for a periodic potential with square symmetry.

Limited computer resources restrict our calculations to
samples no larger than 3mm33 mm, while the sample used
in the experiment has a size of 20mm320 mm. From a
theoretical point of view, it is interesting to ask what is the
thermodynamic limit. For pure disorder, it is believed that in
this limit the typical size of wave function diverges at a
single critical energy. As we cannot pursue size-dependent
analysis, we do not know whether the small periodic poten-
tial will lead to a finite size critical regime, although this
seems likely. Our results for these mesoscopic samples are
consistent with previous work on the different effects of at-
tractive and repulsive scattering centers.29 We expect that in
the thermodynamic limit, the asymmetric effect of the trian-
gular potential will lead to shifts inRxx similar to those found
in Ref. 29, because the triangular potential is predominantly
attractive or repulsive depending on the sign of its amplitude.
On the other hand, the order of potential minimasmaximad,
either a local or a global order, which is absent in the calcu-
lation of Ref. 29, will enhance the non-Born scattering, be-
lieved to cause the shift inrxx minima in Ref. 29. From an
experimental point of view, the interesting question is
whether the Hofstadter structure can be observed at all. Our
studies suggest that this may be possible for small mesos-
copic samples, where the slowly varying disorder has less
effect. Alternatively, one must find a way to boost the
strength of the periodic modulations inside the 2DES.
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APPENDIX: NUMERICAL METHODS

In this appendix we summarize the numerical methods we
used, including derivations of some relevant formulas.

Semiclassical treatment

The semiclassical approach is valid15 for the integer quan-
tum Hall effect in the presence of a slowly varying, smooth
disorder potential and large magnetic fieldsssuch as we con-
siderd, so that the magnetic lengthl is much smaller than the
length scale of variation of the smooth disorder potential,
u¹Vsr du!"vc/ l. Then, semiclassically the electron moves
along the equipotential contours of the disorder potential
Vsr d, in the direction parallel to¹Vsr d3B. Since the kinetic
energy is quenched in the lowest Landau level, the total en-
ergy of the electron simply equals the value of the disorder
potential on the equipotential line on which its trajectory is
located. As a result, the density of states in the semiclassical
approach is directly given by the probability distribution for
the disorder potential, which can be calculated by randomly
sampling the potential energy and plotting a histogram of the
obtained values.15,24
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In Sec. IV we compared the results obtained within this
semiclassical approach with fully quantum mechanical re-
sults. As expected, the agreement is good when only the
slowly varying disorder is present. However, if the periodic
modulation is also included, the lattice constanta provides a
new length-scale which is comparable to the magnetic length
l, and the semiclassical picture breaks down. Quantum me-
chanical calculations are absolutely necessary to quantita-
tively treat this case.

Quantum mechanical treatment

As shown in Sec. II, the degeneracy of each LL isN
=LxLyB/f0=LxLy/ s2pl2d. Since the disorder varies very
slowly, we need to consider systems withLx, Ly@ l to prop-
erly account for its effects. As a result, the number of states
in a LL can be as large as 104 in our calculations. Storage of
the Hamiltonian as a dense matrix requires considerable
amount of computer memory and its direct diagonalization is
prohibitively time consuming. Sparse matrix diagonalization
techniques could be employed, but they are less efficient
when all eigenvectors are needed, and may have stability
issues.

Here we describe the numerical methods we used to com-
pute densities of states and infer the natureslocalized or ex-
tendedd as well as the spatial distribution of the wave func-
tions, while avoiding direct diagonalization.

Matrix elements

Since interlevel mixing is ignored, the Hilbert subspaces
corresponding to different spin-polarized Landau levels do
not hybridize. Each Hilbert subspacesn,sd has a basis de-
scribed by Eq.s1d, containingN orthonormal vectors indexed
by differentky values.

In order to compute matrix elements of the total Hamil-
tonian in such a basis, we use the following identity derived
in Ref. 9 sNotice their different sign convention forky. If
sÞs8, the overlap is zerod:

kn8,ky8ue
iq·r un,kyl = dky8,ky−qy

Ln8,nsqdesil 2/2dqxsky8+kyd, sA1d

where

Ln8,nsqd = S m!

M!
D 1

2
i un8−nuF qx + iqy

Îqx
2 + qy

2Gn−n8

3 e−1
2

QQ
1
2

un8−nuLm
sun8−nudsQd,

with Q= 1
2l2sqx

2+qy
2d , m and M are the minimum and the

maximum ofn8 and n, respectively, andLm
sun8−nudsQd the as-

sociated Laguerre polynomial. When band-mixing is ne-

glectedn=n8 and Ln,nsqd=e−1
2

QLnsQd. For the first Landau
level, L0sxd=1.

EquationsA1d gives us the matrix elements for the square
fEq. s3dg or triangularfEq. s4dg periodic potentials. In either
case, there are Fourier components corresponding toqy
= ±2p /a and qy=0. Since only basis vectors for which the
differenceky−ky8=qy give nonvanishing matrix elements, we

must choose the lengthLy of the sample to be a multiple
integer ofa, the lattice constant.

The matrix elements of the disorder potential are com-
puted in a similar way. We use a grid of dimensionNx3Ny to
cover the sample and generate the values of the disorder
potential on this grid. Then, fast Fourier transformsFFTd25 is
used to find the long wavelength components of the disorder
potential corresponding to the allowed valuesqx,y
=0, ±s2p /Lx,yd ,… , ±sNx,y/2ds2p /Lx,yd sproper care is taken
to define Fourier components so thatVq=V−q

* d. The matrix
elements of this discretized disorder potential are then com-
puted using Eq.sA1d. In principle, finer gridssincreased val-
ues for Nx and Nyd will improve accuracy. However, they
also result in longer computation times, since they add extra
matrix elements in the sparse matrix, corresponding to large
wave vectors. We have verified that a grid size of dimension
Nx=Ny=72 is already large enough to accurately capture the
landscape of a 3mm33 mm sample and the computed
quantities have already converged, with larger grids leading
to hardly noticeable changes. This procedure is also justified
on a physical basis. First, the neglected large wave-vector
components describe very short-range spatial features, which
are not accurately captured by our disorder models to begin
with, and which are not believed to influence the basic phys-
ics. Second, this procedure insures that the actual disorder
potential we use is periodic in they-direction, since each
Fourier component retained has this property. This is consis-
tent with our use of a basis of wave functions which are
periodic alongy.

The matrix elements of the Hamiltonian within a
given Landau level sn,sd are then kn,ky,suHun,ky8 ,sl
=En,s+kn,kyuVun,ky8l, whereEn,s are given by Eq.s2d and
the matrix elements of both the periodic and the disorder part
of the potentialV are computed as already discussed. This
produces a sparse matrix, which is stored efficiently in a
column compressed format.

Densities of states and filling factors

A quantity that can be computed without direct diagonal-
ization is the filling factor. In the absence of LL mixing, we
define the filling factor for thesn,sd LL as

nn,ssEFd =
1

N
o
a

QsEF − En,a,sd, sA2d

where Qsxd is the Heaviside function andN is the degen-
eracy of the LL. The filling factor is the fraction of occupied
states atT=0, for a given Fermi energyEF. It corresponds to
the average filling factor measured in experiment and is pro-
portional to the integrated totalsas opposed to locald density
of states.

The filling factor is straightforward to compute if the
eigenenergiesEn,a,s are known. However, we want to avoid
the time-consuming task of numerical brute force diagonal-
ization. The strategy we follow is a generalization to Hermit-
ian matrices of the method used in Ref. 26. We restate the
problem in the following way: assume we have a Hermitian
matrix of size N3N, given by the matrix elements of
M =H−EF1 in the basisun,ky,sl s1 is the unit matrixd.
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Then, nn,ssEFd is proportional to the number of negative
eigenvalues of the matrixM. We now generate the quadratic
form M=oi,j=1

N ziz j
*Mij , and transform it into its standard

form M=oi1
Ndiuxiu2 using the Jacobian method described be-

low. Here,di’s are all real numbers, and thexi’s are linear
combinations of thezi’s. This is a similarity transformation
which retains the signature of the matrix. As a result, even
though the numbersdi are not eigenvalues ofM, the number
of negative eigenvalues equals the number of negativedi
values. It follows thatnn,ssEFd is obtained by simply count-
ing the number of negativedi values for the givenEF.

The Jacobian method is iterative in nature. First, all terms
containingz1 and z1

* are collected and the needed comple-
mentary terms are added to form the first total squared1ux1u2.
The procedure is then repeated for allz2 andz2

* termsspro-
ducingd2d, etc., until allN valuesdi are found. Computation-
ally, this can be done by scanning the lower or upper triangle
of the Hermitian matrixM only once. The total number of
operations is proportional to the number of nonzero elements
of the matrix, meaning that for a dense matrix it scales with
N2 ssparse matrices require much fewer operationsd. As a
result, this procedure is much faster than brute force diago-
nalization which scales withN3 sfor us,N,104d. The filling
factor nn,ssEd is a sum of steplike functions, with steps lo-
cated at the eigenvalues. By scanningE and identifying the
position of these steps we can also find the true eigenvalues
En,a,s, with the desired accuracy. Finally, the total density of
states is given byrnssEd=dnn,ssEd /dE.

Green’s functions: extended vs localized states

The advanced/retarded Green’s functions are the solutions
of the operator equation

s"v − H ± iddĜR,Asvd = 1, sA3d

where d→0+. sIn practice we use a set of small positive
numbers, as discussed laterd. If the exact eigenstates and ei-
genvalues of the total HamiltonianH are known,
Hun,a ,sl=En,a,sun,a ,sl sno LL mixingd, it follows:

ĜR,Asvd = o
n,a,s

un,a,slkn,a,su
"v − En,a,s ± id

= o
n,s

Ĝn,s
R,Asvd. sA4d

The exact eigenstates can be expanded in terms of the basis
statesun,ky,sl as

un,a,sl = o
ky

cn,askydun,ky,sl. sA5d

Since the statesun,ky,sl are localized nearx=kyl
2 fsee Eq.

s1dg, the coefficientscn,askyd describe the probability ampli-
tude for an electron in the stateun,a ,sl to be located within
a distancel from x=kyl

2. Knowledge of these coefficients
allows us to infer whether such states are extended or local-
ized in thex-direction, i.e., whether they can carry currents
between the leads.

However, we wish to avoid direct diagonalization. We can
still infer whether the Hamiltonian has extended or localized
wave functions near a given energy"v in the following way.
We introduce the matrix elements,

Gn,s
R,Asky,ky8;vd = kn,ky,suĜR,Asvdun,ky8,sl

= o
a

cn,askydcn,a
* sky8d

"v − En,a,s ± id
. sA6d

EquationsA3d can be rewritten in the basisun,ky,sl as

o
ky9

fs"v ± idddky,ky9
− kn,ky,suHun,ky9,slgGn,s

R,Asky9,ky8;vd

= dky,ky8
. sA7d

We use the popular numerical library SuperLU,27 based
on LU decomposition and Gaussian reduction algorithm for
sparse matrices, to solve these linear equations. Consider
now the matrix elementGn,s

R,Askmin,kmax;vd corresponding to
the smallestky=kmin and the largestky=kmax values. If all
wave functions with energies close to"v are localized in the
x-direction, it follows thatuGn,s

R,Askmin,kmax;vdu is a very small
number, of the ordere−Lx/jsvd, wherejsvd is the localization
length at the given energy. On the other hand, we expect to
see a sharp peak in the value ofuGn,s

R,Askmin,kmax;vdu if "v is
in the vicinity of an extended state eigenvalue, sincefsee
Eqs.sA5d andsA6dg bothcn,askmind andcn,askmaxd are nonva-
nishing for an extended wave function with significant
weight near both the −Lx/2 and theLx/2 edges. Moreover,
the height of this peak scales like 1/d, so by varyingd we
can easily locate the energies of the extended states.

Green’s functions: local densities of states

We can also use Green’s functions techniques to image
the local density of states at a given energyE. By definition
sand neglecting LL mixingd, the local density of states in the
level sn,sd is

rn,ssr ;Ed = o
a

ukr un,a,slu2dsE − En,a,sd =
1

p
Imkr uĜn,s

A sEdur l,

sA8d

where the second equality follows from Eq.sA4d. This func-
tion traces the contours of probabilityukr un,a ,slu2 for elec-
trons with the given energyE. Its direct computation, how-
ever, is very time-consuming.

For the rest of this section, the discussion is restricted to
the LLL with n=0; the value ofs is irrelevant. We know that
in the LLL, electronic wave functions cannot be localized in
any direction over a length-scale shorter than the magnetic
length l. As a result, it suffices to compute a projected local
density of states on a grid withl 3 l sor largerd spacings. The
projection is made on maximally localized wave function,
defined as follows. Letr 0=sx0,y0d be a point on the grid. We
associate it with a vector

ux0,y0l = o
ky

ukylkkyux0,y0l, sA9d

where we use the simplified notationukyl;un=0,ky,sl for
the basis states of the LLLfsee Eq.s1dg and we take
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kkyux0,y0l =Î2lp
1
2

Ly
e−sx0

2/2l2d−sky
2l2/2d+kysx0+iy0d. sA10d

It is then straightforward to show that

kr ux0,y0l =
1

Î2pl
e−fsx − x0d2/4l2g−fsy − y0d2/4l2ge−si/2l2dsx+x0dsy−y0d.

sA11d

In other words,ux0,y0l is an eigenstate of the lowest Landau
level strongly peaked atr =r 0. sThe phase factor is due to the
proper magnetic translation.d We then define the projected
density of statesfcompare with Eq.sA8dg,

rPsx0,y0;Ed =
1

p
Imkx0,y0uĜAsEdux0,y0l, sA12d

and use it to study the spatial distribution of the electron
wave functions at different energies. Strictly speaking, the
local density of states defined in Eq.sA8d cannot be pro-
jected exactly on the LLL, because the LLL does not support
a d-function skr un,ky,slÞ0,∀nd. However, the coherent
statesux0,y0l we select are the maximally spatially localized
wave functions in the LLL, and have the added advantage
that they can be easily stored as sparse vectors, because of
their Gaussian profilesfsee Eq.sA10dg. Moreover, in the
limit l →0sB→`d where ukr ux0,y0lu→dsx−x0ddsy−y0d, the
projected density of statesrPsx0,y0;Ed→r0,ssr ;Ed. There-
fore, for the largeB values that we consider here,rP should
provide a faithful copy of the local density of states.

We compute the projected local density of states follow-
ing the method of Ref. 28. Letu0 be the vector with elements
kky ux0,y0l obtained from the representation ofux0,y0l in the

ukyl basis fsee Eq.sA9dg, and let H be the matrix of the
HamiltonianH in the ukyl basis. We generate the series of
orthonormal vectorsu0, u1, … using

v1 = Hu0, a0u0
†v1, u1 =

v1 − a0u1

Îv1
†v1 − a0

2

and fornù2, vn=Hun−1, an−1=un−1
† vn , bn−2=un−2

† vn, and

un =
vn − an−1un−1 − bn−2un−2

Îvn
†vn − an−1

2 − bn−2
2

.

The numbersan andbn can be shown to be real. We do not
have a “terminator”28 to end this recursive series. Instead,
our procedure ends when the orthonormal set of vectors
u0, u1, … exhausts a subspace of the LLL containing all
states coupled through the disorder and/or periodic potential
to the stateux0,y0l, i.e., all states that contribute to the pro-
jected DOS at this point. In the presence of disorder, this
usually includes the entire LLL.

Then, the projected density of states is given by Eq.
sA12d, where the matrix element of the Green’s function is
the continued fraction

kx0,y0uGAsEdux0,y0l

= hE − id − a0 − b0
2fE − id − a1 − b1

2s¯d−1g−1j−1.

sA13d

Because the Hamiltonian is a sparse matrix, the generation of
these orthonormal sets and computation ofrpsEd for all the
grid points is a relatively fast procedure. Moreover, this com-
putation is ideally suited for parallelization, with different
grid points assigned to different CPUs.
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