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Abstract
Motivated to understand phonon spectrum renormalization in the ground state of the half-filled
Su–Schrieffer–Heeger model, we use the Born–Oppenheimer approximation together with the
harmonic approximation to evaluate semi-analytically the all-to-all real-space ionic force constants
generated through both linear and quadratic electron-phonon coupling. We then compute the
renormalized phonon spectrum and the corresponding lattice zero-point energy (ZPE) as a
function of the lattice dimerization. Crucially, the latter is included in the system’s total energy, and
thus has a direct effect on the equilibrium dimerization. We find that inclusion of a small quadratic
coupling leads to very significant changes in the predicted equilibrium dimerization, calling into
question the use of the linear approximation for this model. We also argue that inclusion of the
ZPE is key for systems with comparable lattice and electronic energies, and/or for finite size chains.
Our method can be straightforwardly generalized to study similar problems in higher dimensions.

1. Introduction

The concept of Peierls instability in one-dimensional (1D) simple metals—the idea that 1D lattices are prone
to dimerization in the presence of electron-phonon coupling—has been well established for over half a
century. Notably, Su, Schrieffer and Heeger demonstrated it with the celebrated Su–Schrieffer–Heeger (SSH)
Hamiltonian for polyacetylene [1], treating the lattice semiclassically.

In the SSH model, the effect of Peierls instability on the electronic spectrum is well-known. Yet the
electron-phonon coupling responsible for the instability also affects the phonon spectrum, a fact that is less
commonly discussed. The questions of how to properly account for lattice vibrations (phonons) and
zero-point energy (ZPE) in systems with electron-phonon coupling, how strongly the phonon spectrum is
modified, and how much the thus ‘renormalized’ ZPE influences the equilibrium lattice structure, remain
open.

There are several available approaches to quantifying the effect of the electron-phonon interaction on the
phonon spectrum. Early work by Ovchinnikov et al [2, 3] focused on semiclassical techniques. Others, such
as Nakahara and Maki [4] and Schulz [5], used Green’s function methods and the random phase
approximation to calculate the phonon spectrum renormalization, demonstrating phonon softening and
phonon gap opening at the Brillouin zone edge (signatures of polaron formation as seen from effective mass
renormalization have also been demonstrated using perturbative methods [6]). However, these studies did
not explicitly sought to calculate the ground state dimerization self-consistently, by minimizing the total
system energy including the ZPE; the equilibrium dimerization was obtained by minimizing only the
electronic energy.

Specifically in the case of the SSH model, the questions highlighted above regarding the phonon
spectrum and ZPE have a long history. Most early treatments neglected the quantum nature of the
underlying crystal lattice: however, it soon became clear that the magnitude of the zero-point lattice
fluctuations∆u in the SSH model is comparable to the size of the dimerization u itself [7], raising the
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question whether the ground state is indeed dimerized. In the continuum SSH model these concerns were
addressed with numerical renormalization group methods, which confirmed the presence of dimerization
[4, 7]—only mildly reduced by the lattice fluctuations—including for finite values of ionic massM [8].

More recently, the dimerized ground state was also demonstrated in the lattice SSH model [9–13], with
methods ranging from continuous-time quantumMonte Carlo to density matrix renormalization group. On
the other hand, some recent studies combining ab initio density functional theory (DFT) calculations with
the Fourier Grid Hamiltonian (FGH) method for the ionic Hamiltonian argued that the zero-point motion is
sufficient to favor undimerized chains [14, 15].

Separately, it was recognized that electron-electron interactions can play a significant role if added to the
SSH model: for example, it was found that the phase diagram of the SSH model with Hubbard on-site
repulsion can host a Mott–Hubbard insulator competing with the Peierls dimerized state [11, 13]. It was also
shown using the Gutzwiller approximation that electron-electron interactions generally tend to suppress the
tendency towards dimerization by hardening the soft optical phonon and generally renormalizing the
phonon spectrum to smaller energies [16], as well as (in the 2D case) potentially promoting nesting at other
wavevectors [17]: at the same time, strong Hubbard interactions were seen to also encourage phase
separation, just as in the Hubbard–Holstein model. However, few studies explicitly computed the phonon
spectrum or investigated how it is affected by the lattice geometry.

Recently, a wide range of advanced variational methods have been developed to attack this problem,
including the self-consistent ab initio lattice dynamics [18], time-dependent effective potential method [19],
anharmonic lattice model from molecular dynamics [20], self-consistent phonon theory (SCPH) [21], and
the stochastic self-consistent harmonic approximation [22] (the introduction of [22] offers a comprehensive
recent review to the various methods). While these approaches offer incredible accuracy and are able to
identify the equilibrium lattice configurations of a variety of challenging materials phases, the accuracy often
comes at the expense of physical insight, and convergence can present difficulties.

In this paper, we study the phonon spectrum, ZPE and dimerization in the SSH model with linear and
quadratic coupling. Combining the Born–Oppenheimer approximation and the harmonic approximation,
we propose a direct, semi-analytical, self-consistent method of calculating the total system energy,
accounting for both electronic and, crucially, lattice contributions. We show that the ZPE lattice contribution
to the total energy is itself a function of dimerization. Minimizing the total energy allows us to
self-consistently determine the equilibrium dimerization, and to evaluate when it is important to include
quadratic coupling and/or the ZPE in the calculation. We acknowledge that a similar approach to calculating
the renormalized phonon spectrum has appeared elsewhere [23], however to our knowledge we are the first
to add quadratic coupling and also the first to include the resulting ZPE into total energy calculations and
thus let it affect, self-consistently, the equilibrium lattice structure. Our method is demonstrated here for the
SSH Hamiltonian, but it can be straightforwardly generalized to higher dimensions and multiple phonon
and/or electron bands. The work presented here ignores electron–electron interactions. These can be
introduced in the formalism described here at a mean-field level (we discuss possible effects of correlations
on our results in more detail in section 5).

Our method can be straightforwardly integrated with existing DFT calculations, which presently do not
account for ZPE during geometry optimization. Unlike more complex variational methods, it would only
require adding ZPE—a quantity DFT methods already routinely evaluate with supercell calculations of the
phonon spectrum—to the total energy during optimization; and this should not significantly affect
convergence behavior of geometry optimization. The proposed method could be helpful in improving
geometry optimization in systems with strong electron-phonon coupling—especially those with small
effective bandwidthW and relatively large phonon frequencies Ω, such as in organic photovoltaics.

The work is organized as follows: in section 2, we describe our effective model Hamiltonian. In section 3
we describe the proposed method (with certain technical details kept in the appendices for clarity). Our
results are discussed in section 4, and we conclude with some final remarks in section 5.

2. The model

We start from the Hamiltonian of a half-filled, undistorted, 1D chain with lattice constant a and one orbital
per site, and include longitudinal lattice vibrations:

H=−
∑
nσ

tn,n+1

(
c†n+1,σcnσ + h.c.

)
+
∑
n

p̂2n
2M

+
K

2

∑
n

(ûn+1 − ûn)
2. (1)

2
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Here c†nσ is a creation operator for an electron on site n with spin σ, tn,n+1 are nearest-neighbor hopping
integrals, K is the stiffness of the bonds between neighboring ions, and ûn = R̂n − na are the (operator)
deviations of the ions from their undistorted equilibrium positions.

This Hamiltonian, compared to an actual conjugated polymer chain it is often taken to model, has many
approximations. First, it neglects electron–electron interactions. We note that in materials where these are
important (such as polyacetylene [2, 11, 24]) one can incorporate them into the formalism we describe here
at the Hartree–Fock level. Second, we include only nearest-neighbor hopping and only nearest-neighbor
effective interactions between ions: however, both these approximations can be relaxed trivially. Third, as
customary, we neglect the geometric complexity of real chain polymers, including the zig-zag structure of
trans-polyacetylene, the presence of other ligands, out-of-plane bending and torsion, defects, etc [3]. All
these geometric simplifications can be relaxed when a quantitative description of a specific material is
sought, however the simple model of equation (1) suffices for our current purposes of illustrating the
proposed method.

Hamiltonian (1) must be supplemented by a rule for the dependence of the hoppings tn,n+1 on the bond
lengths R̂n+1 − R̂n. It is customary to use the SSH linear approximation for the electron-phonon coupling:
tn,n+1 = t−α(un+1 − un), however we note that this is not consistent with the harmonic expansion of the
Born–Oppenheimer potential energy surface, which is carried out to second order. For internal consistency,
we expand the hopping amplitude also to second order, resulting in the quadratic coupling:
tn,n+1 = t−α(un+1 − un)+β/2(un+1 − un)2.

We therefore consider the quadratic SSH model:

H=− t
∑
nσ

(
c†n+1,σcnσ + h.c.

)
+α

∑
nσ

(ûn+1 − ûn)
(
c†n+1,σcnσ + h.c.

)
+
β

2

∑
nσ

(ûn+1 − ûn)
2
(
c†n+1,σcnσ + h.c.

)
+
∑
n

p̂2n
2M

+
K

2

∑
n

(ûn+1 − ûn)
2. (2)

In the following, we investigate a range of possible (t,α,β,K,M) choices, beginning with those relevant for
polyacetylene. In all cases we demand that β||ûn|| ≪ α, α||ûn|| ≪ t and ||ûn|| ≪ a, so that the harmonic
approximation remains valid.

3. The method

To simplify notation, the formulae below are for the linear coupling model (β= 0). Those corresponding to
finite β are listed in appendix C.

3.1. Born–Oppenheimer decomposition
We treat our Hamiltonian within the well-established Born–Oppenheimer approximation, which is justified
given the small ratio of the electron and ion masses. This allows us to sequentially solve the separate
electronic and ionic problems, with the total electronic energy acting as a potential for the ions—that is,
defining a Born–Oppenheimer potential energy surface.

Specifically, the Hamiltonian of equation (2) separates into electronic He and ionic H
(BO)
i parts, with:

He =− t
∑
nσ

(
c†n+1,σcnσ + h.c.

)
+α

∑
nσ

⟨ûn+1 − ûn⟩
(
c†n+1,σcnσ + h.c.

)
+

K

2

∑
n

⟨ûn+1 − ûn⟩2, (3)

H(BO)
i =

∑
n

p̂2n
2M

+ Ee({R̂n}). (4)

where ⟨ûn⟩ ≡ ⟨R̂n⟩− na. For completeness, we sketch our Born–Oppenheimer procedure in appendix A.

3.2. The electronic problem
Keeping in line with previous work going back to Peierls [25], we anticipate a dimerization of the 1D chain.
We single out this dominant static distortion from smaller lattice fluctuations by adopting the ansatz

ûn = (−1)nu+ x̂n, ||x̂n|| ≪ u. (5)

We will check the self-consistency of this approximation a posteriori, by minimizing the total energy with
respect to this variational parameter which sets the new equilibrium positions to R0

n = na+(−1)nu.

3
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Combining the static distortion term with the hopping term, we recover the standard electronic SSH
model plus a perturbation (we denote ⟨x̂n⟩= xn)

He =−
∑
kσ

Ek(u)(ν
†
kσνkσ −χ†

kσχkσ)+α
∑
nσ

(xn+1 − xn)
(
c†n+1,σcnσ + h.c.

)
︸ ︷︷ ︸

≡Ûel−ph

+
K

2

∑
n

(xn+1 − xn − 2(−1)nu)2. (6)

The first term involves the usual conduction and valence band operators:

νkσ = αkc
(e)
kσ +βkc

(o)
kσ (7)

χkσ = αkc
(e)
kσ −βkc

(o)
kσ (8)

where αk =
1√
2
,βk =

1√
2

(
ϵk+i u∆k
Ek(u)

)
,

ϵk =−2tcos(ka) (9)

∆k = 4α sin(ka), (10)

and

c(o)kσ =
∑
n

e−i k(2n+1)a√
N/2

c2n+1,σ (11)

c(e)kσ =
∑
n

e−i k(2n)a√
N/2

c2n,σ (12)

for a chain with N sites (N/2 dimerized unit cells). Furthermore, the band energies are defined by

Ek(u) =
√
ϵ2k + u2∆2

k. (13)

This bandstructure is the usual SSH result, showing a gapped electronic spectrum whose size is controlled by
the static dimerization u.

The equilibrium contributions (xn = 0) to the ionic Hamiltonian, at half-filling, are:

Ee({R0
n}) =−2

∑
k

Ek(u)+ 2Ku2N

=−Na

π

ˆ π
2a

− π
2a

dk
√
ϵ2k + u2∆2

k + 2Ku2N. (14)

The next step is to find the dependence of the electronic energy on all xn = Rn −R0
n, so that we can then

use Ee({R̂n}) to solve the ionic problem.

3.3. Harmonic approximation
To allow further analytical progress, we use the harmonic approximation to represent a region of the
Born–Oppenheimer potential energy surface Ee({R̂n}). The zeroth order term is the (electronic) energy
associated with the equilibrium lattice positions, Ee({R0

n}), listed above. The first order term vanishes when
we are expanding the electronic energy around the new equilibrium lattice positions. To second order in
ionic displacements, we are left with:

H(BO)
i,har =

∑
n

p̂2n
2M

+ Ee({R0
n})+

1

2

∑
nm

∂2Ee
∂xn∂xm

x̂nx̂m. (15)

The second-order derivatives are commonly known as the dynamical matrix. We now proceed to calculate
them.

4
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Substituting equation (14) into equation (15), we find

H(BO)
i,har =

∑
n

p̂2n
2M

+ 2Ku2N− 2
∑
k

Ek(u)+
1

2

∑
nm

∂2Ee
∂xn∂xm

x̂nx̂m. (16)

An immediate simplification can be made at this stage. The contribution V̂i−i = K/2
∑

n⟨ûn+1 − ûn⟩2
does not depend explicitly on the electronic wavefunctions. This implies Ee = ⟨Ĥe⟩= ⟨Ĥ− V̂i−i⟩+
K/2

∑
n(un+1 − un)2. Using the definition of xn = un − (−1)nu, we arrive at

H(BO)
i,har =

∑
n

p̂2n
2M

+
K

2

∑
n

(x̂n+1 − x̂n)
2 + 2Ku2N− 2

∑
k

Ek(u)+
1

2

∑
nm

∂2⟨Ĥe − V̂i−i⟩
∂xn∂xm

x̂nx̂m. (17)

To evaluate the derivatives, we use perturbation theory to calculate the expectation value Fe ≡ ⟨Ĥe − V̂i−i⟩
to second order in xn. The only non-trivial dependence comes from the Ûel−ph electron-phonon coupling

term in equation (6). To set the stage for the perturbative calculation, we rewrite Ûel−ph =
∑

n xn f̂n where the

electronic operators f̂n are expressed in terms of the νk,σ and χk,σ conductance and valence band operators.
Their form depends on whether n is even or odd. Specifically, using the shorthand sin(ka)≡ sk, we find

f̂2n =
α

N/2

∑
kqσ

(2i)e−i(k−q)(2n)a
(
ν†k χ†

k

)(−αk(skβk − sqβ∗
q ) −αk(skβk + sqβ∗

q )

αk(skβk + sqβ∗
q ) αk(skβk − sqβ∗

q )

)(
νq
χq

)
, (18)

f̂2n+1 =
α

N/2

∑
kqσ

(2i)e−i(k−q)(2n+1)a
(
ν†k χ†

k

)( αk(sqβk − skβ∗
q ) αk(sqβk + skβ∗

q )

−αk(sqβk + skβ∗
q ) −αk(sqβk − skβ∗

q )

)(
νq
χq

)
. (19)

These expressions are cumbersome, but for a ground state calculation of a half-filled model we only need
a single entry, as shown in appendix B.

The perturbative expansion is: Fe ≈ F(0)e + F(1)e + F(2)e + . . . where the corrections are given by the usual
quantum-mechanical expressions, namely

F(1)e = ⟨Ψ0|Ûel−ph|Ψ0⟩, (20)

F(2)e = ⟨Ψ0|Ûel−ph
(1− |Ψ0⟩⟨Ψ0|)
F(0)e − Ĥunper

Ûel−ph|Ψ0⟩. (21)

Here |Ψ0⟩ is the electronic Slater-determinant ground state of the half-filled SSH model, consisting of a full
valence band and an empty conduction band. This leads to:

δKnm =
∂2F(2)e

∂xn∂xm
= ⟨Ψ0 |̂fn

(1− |Ψ0⟩⟨Ψ0|)
E0 − Ĥunper

f̂m|Ψ0⟩+ ⟨Ψ0 |̂fm
(1− |Ψ0⟩⟨Ψ0|)
E0 − Ĥunper

f̂n|Ψ0⟩ (22)

Now we consider several cases depending on the even/odd character of n,m. The details are relegated to
appendix B. The relevant results are the expressions for the dynamical matrix entries δKnm listed below (the
factor of 2 is from the sum over spins).

δK2n,2m = δK2n+1,2m+1 =−2

(
4α

N

)2 ∑
|k|,|q|< π

2a

(
cos[(k− q)(2n− 2m)a]

Ek + Eq

)∣∣skβk + sqβ
∗
q

∣∣2 (23)

δK2n,2m+1 =+2

(
4α

N

)2 ∑
|k|,|q|< π

2a

(
e−i(k−q)(2m−2n+1)a

2(Ek + Eq)

){
(sqβq + skβ

∗
k )(skβ

∗
q + sqβk)

}
+ h.c. (24)

δK2n+1,2m =+2

(
4α

N

)2 ∑
|k|,|q|< π

2a

(
e−i(k−q)(2m−2n−1)a

2(Ek + Eq)

){
(sqβq + skβ

∗
k )(skβ

∗
q + sqβk)

}
+ h.c. (25)

Note that the sums over k,q run over the reduced Brillouin zone [−π/2a,π/2a] due to the dimerization
ansatz.

5
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While the expressions for the even–even and odd–odd sites turn out to be identical, there are subtle
differences for the cross-terms that lift the phonon spectrum degeneracy at the Brillouin zone edge and split
the optical phonon band from the acoustic band. In particular, there are two inequivalent terms
δK2n,2n+1 ≡ Y+

1 , δK2n+1,2n+2 ≡ Y−
1 , which correspond to the fact that there are even and odd electronic

operators that give rise to conduction and valence bands, c(e), c(o) ∼ χ,ν.
It is remarkable that even though we started with only nearest-neighbor atomic force constants, through

interactions with the extended electronic states we now have all-to-all force constants emerging. Because the
equations (23)–(25) are closed-form expressions, we can easily calculate their values using computer
integration, after going to the thermodynamic limit

∑
k →

L
2π

´
dk (L= Na= (N/2) · 2a).

The final step is to diagonalize the ionic Hamiltonian defined by these dynamical matrix elements.

3.4. The renormalized phonon spectrum
We adopt the following short-hand notation for the dynamical matrix elements: the onsite value is
Z0 ≡ 2K+ δKn,n; the two-sites away value is Z2 ≡ δKn,n+2; the even and odd bond values are
Y+
1 ≡−K+ δK2n,2n+1,Y

−
1 ≡−K+ δK2n+1,2n+2; and the remaining longer-range values are

Z2+2δ ≡ δK2n,2n+2δ = δK2n+1,2n+1+2δ,Y
+
1+2δ ≡ δK2n,2n+1+2δ,Y

−
1+2δ ≡ δK2n+1,2n+2δ . Renaming the ionic

operators as p̂n, P̂n, x̂n, X̂n for the even and odd lattice sites of the nth unit cell, respectively (our unit cell is
taken to start at the even site) we rewrite:

Ĥ(BO)
i,har =

∑
n

p̂2n + P̂2n
2M

+
1

2

∑
n

[
Z0(x̂

2
n + X̂2

n)+Y+
1 x̂nX̂n +Y−

1 X̂nx̂n+1 +Z2(x̂nx̂n+1 + X̂nX̂n+1)

+
∑
δ⩾1

(Z2+2δ x̂nx̂n+1+δ +Z1+2δ x̂nX̂n+δ +Z2+2δX̂nX̂n+1+δ +Z1+2δX̂nx̂n+δ)
]
+ Ee({R0

n}). (26)

Because Y+
1 ̸= Y−

1 , the ionic motion is influenced by the dimerization and we find an optical phonon branch
(in the folded Brillouin zone), even though we started with only a bare acoustic branch (in the full Brillouin
zone). Longer-range terms do not affect the size of the unit cell, but they do further renormalize the phonon
spectrum.

The resulting phonon spectrum (see appendix D for details on the diagonalization of equation (26)) is:

ω2
jq =

Z0 − 2
∑

δ⩾1 |Z2δ|cos(2δqa)
M

± 1

M

{[
(Y+

1 )
2 +(Y−

1 )
2 + 2Y+

1 Y
−
1 cos(2qa)

]

+ 4

[∑
δ⩾1

Z1+2δ cos((1+ 2δ)qa)

]2
+ 8(Y+

1 +Y−
1 )cos(qa)

∑
δ⩾1

Z1+2δ cos((1+ 2δ)qa)

}1/2

. (27)

This expression for the phonon spectrum demonstrates the appearance of an optical branch separated from
the acoustic one when u ̸= 0. Note that in the absence of electron-phonon coupling we have Z0 = 2K,
Zδ⩾2 = 0,Y±

1 =−K, from which we readily recover the original acoustic spectrum folded in the smaller
Brillouin zone:

ωjq
α→0−−−→

√
2K

M

√
1+(−1)j cos(qa). (28)

For a finite electron-phonon coupling, the number of Zδ to be included in the calculation, defined by the
cut-off |δ|< δmax, depends on how quickly they decay. We select the cutoff δmax so as to ensure the
convergence of the phonon spectrum and ground state energies. In practice, much higher δmax is needed for
smaller u, because the energy difference denominator for small u is small, leading to difficulties in the
integrand.

In the appropriate basis of phonon operators bjq,b
†
jq, we thus have:

Ĥ(BO)
i,har =

∑
jq

ℏωjq

(
b†jqbjq +

1

2

)
+ Ee({R0

n}). (29)

To complete the calculation and find the ground state, we need to find the uGS that minimizes the total
energy of the system

E(u) =
∑
jq

ℏωjq

2
+ Ee({R0

n}). (30)
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Furthermore, this value of uGS must lead to a real phonon spectrum ωjq, signifying that this is indeed a stable
equilibrium point.

Because the renormalization of the phonon spectrum ωjq depends on the value of u, the lattice ZPE
contributes to determining the equilibrium value uGS, unlike in the traditional SSH approach where only the
electronic contribution (second term) is considered. This is one key result of our work.

4. Results and discussion

We now discuss the impact of including the ZPE in total energy, as well as the effect of adding the quadratic
coupling β ̸= 0.

4.1. The renormalized phonon spectrum
When not otherwise stated, we adopt the typical polyacetylene parameters t= 2.5 eV, α= 4.16 eVÅ−1,
K = 21 eVÅ−2 and lattice constant a= 1.22 Å [1]. Following Ovchinnikov et al, for the mass of the C–H unit
we use the ‘reduced mass’M= 2.16× 10−26 kg [3].

First, we study the phonon spectrum of the model without any dimerization, u= 0. The traditional
semiclassical calculation neglects any back-reaction of the electrons on the phonons and predicts an
undisturbed, folded acoustic phonon band (equation (28)), shown in panel (a) of figure 1. By contrast, for
the undimerized (u= 0) chain our method finds a massive Kohn anomaly in the optical phonon branch at
q= 0 (the folded q= 2kF point), as expected for a system that is unstable to dimerization, see panel (b) of
figure 1. The anomaly is so strong that it results in the phonon frequencies becoming imaginary near q= 0:
for such values we take their magnitude and plot them as negative on the graph, in accordance with the usual
convention for calculations near an unstable lattice configuration. Note that the solid line corresponds to
β= 0 (linear coupling model), while the dashed line is for a finite β (quadratic coupling model). We follow
this convention throughout.

An interesting observation is that a finite β renormalizes the phonon spectrum in figure 1(a) even
without dimerization. The phonon bandwidth is increased slightly due to the constant term in the
first-order perturbative expansion (see equation (C17)). In particular, for u= 0 we find δKnn ∼ 8β/π,
δKn,n+1 ∼−4β/π, boosting the bare spring constant K. This makes sense: even in the absence of
dimerization, the quadratic coupling provides some additional ‘glue’ to the bonds.

The Kohn anomaly seen in panel (b) of figure 1 arises out of the many new force constants generated by
the electron-phonon coupling, shown in figure 2. The case u= 0 is a difficult limit for our calculation due to
the strong singularity in the denominators of equations (23)–(25) which makes the force constant
corrections Zδ decay very slowly with δ, so that a δmax ∼ 160 is needed for convergence (the biggest obstacle
to convergence is the q= 0 point of the acoustic spectrum which gathers in-phase contributions from all the
spring constants). This slow convergence with neighbor number is not unreasonable for this case and has
been noted by other researchers [26]. The force constants decrease as the distortion moves away from the
singularity at u= 0, see panel (a) of figure 2; this improves the convergence drastically. Panel (b) shows that
increasing the electron-phonon coupling strength increases the magnitude of the force constants, but does
not affect their range significantly.

In general, the effect of finite β is to lower the force constants, with the most sizable effects on the first
two force constants. This is because there are two kinds of β-generated corrections: those from the first order
of perturbation theory (equation (C17)), which are relatively large but only nonzero for same-site and
nearest neighbor spring constants, i.e. δ = 0,1; and those∼u2 from second order of perturbation theory
(equations (C29)–(C32)), which are much smaller because u∼ 0.1 or smaller. The apparent increase of force
constants with β for the blue curve with α= 1 eVÅ−1 is only because we plot the absolute value Z: in reality,
the force constants flip sign and become more negative, as the β corrections are subtracted off of the
nearly-zero α ones.

Panel (c) of figure 1 shows the phonon spectrum corresponding to the equilibrium dimerization uGS
(discussed below). As expected for a dimerized chain, a proper optical phonon branch emerges, separated
from the acoustic branch by a gap of∼10meV at kF = π/a. The Kohn anomaly is lifted, its only remnant
being the q= 0 softening of the optical phonon mode, by∼60meV if β= 0, and less for finite β. We note
that now all phonon frequencies are real and positive, showing that this dimerized configuration represents a
stable equilibrium.

The quadratic coupling β moderately increases the phonon gap: for β= 2 eVÅ−1, the gap changes from
10 meV to 12 meV—a 20% increase. The phonon gap is driven by the difference between the two
inequivalent force constants, Y+ −Y−, for the long-short bonds. This increase can be attributed in roughly
equal parts to (a) the effect of β on force constants, and (b) the effect of β on increasing the equilibrium
dimerization ugs. As discussed above, the former effect is because through equations (C29)–(C32),
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Figure 1. Phonon spectra ωjq in eV (a) assuming no effect of the electrons on the phonon spectrum (standard SSH infinite-mass
approximation), (b) with our method but no dimerization, at u= 0; and (c) with our method at the equilibrium dimerization
u= uGS that minimizes the total energy. Parameters are t= 2.5 eV, α= 4.16 eVÅ−1, K= 21 eVÅ−2, a= 1.22 Å,
M= 2.16× 10−26 kg. Solid lines are for β= 0, dashed lines for β= 2 eVÅ−2. A giant Kohn anomaly is clearly visible in the
optical branch at q= 0 in panel (b)—it is so large it leads to imaginary frequencies, plotted here as negative frequencies according
to standard convention. It is lifted when the chain is allowed to dimerize, its only remnant being the softening of the optical
branch at q= 0. The convergence parameter is δmax = 160 for panels (b) and (c), although convergence is achieved already at
δmax = 20 for panel (c).

β contributes directly to Y+ and Y−, and introduces further Y+
δ /Y

−
δ terms which also contribute to the gap.

The latter effect is more subtle: the quadratic SSH coupling induces a dimerization dependence into the
effective hopping amplitude, t→ t+ 2βu2 (we discuss this in more detail in section 4.2). This dependence
widens the electronic bandwidth, favoring a larger equilibrium ugs. In turn, the larger ugs enhances the
Y+/Y− asymmetry, so that the gap increases (roughly) linearly with u.

The quadratic coupling also has a significant effect on the optical phonon softening, which decreases by
about 30 meV—a considerable 50% decrease. This is also primarily due to the increase in ugs discussed
above: a larger dimerization supresses the softening because the latter arises from the singularity in the
denominators of equations (23)–(25) (Kohn anomaly).

4.1.1. Comparison to other phonon spectrum calculations for polyacetylene
Before continuing the analysis, it is useful to compare our results to other existing predictions for the phonon
spectrum, to gauge the performance of our method.

8



J. Phys. Mater. 6 (2023) 035003 S Fomichev and M Berciu

Figure 2. Absolute value of force constants |Zδ|/K vs. δ (cf equation (26)) (a) for the polyacetylene-like coupling α= 4.16 eVÅ−1

and several values of u. In general, the closer to u= 0, the larger the force constants (the equilibrium distortion is uGS ≈ 0.04 Å).
In panel (b) we plot the force constants for several values of α, with u= 0.04 Å and otherwise polyacetylene parameters. Solid
lines (guides to the eye) and symbols correspond to β= 0, dashed lines are for β= 2 eVÅ−2. The horizontal, black dashed line
shows the zero level. Finite β lowers all spring constants, even those for the blue curve: the apparent increase is because we are
showing the absolute value of |Zδ| (see text for more discussion).

Figure 3. Comparison of scaled phonon spectra computed using our method (orange solid line) versus results from Miao et al
[27]: analytical (black dashed line) and DFT (dotted green line). The parameters we use are as in figure 5, with convergence
achieved with δmax = 40. See text for more details.

Figure 3 shows a comparison with DFT results on 10-site supercells of polyacetylene by Miao et al [27],
and to a previous analytical calculation mentioned in their introduction [23]. It is unclear to us what
parameters were used by these authors to generate the analytical results, hence we use the typical
polyacetylene parameters listed above (with β= 0), and we scale the phonon spectra ωjq by the bare optical

phonon frequency ωQ =
√
2K/M∗. For the study by Miao et al, we estimate their ωQ = 1420 cm−1 from the

available results.
We find reasonable agreement, despite the uncertainty about their parameter values. For the optical

branch our method produces a slightly larger phonon softening and a smaller phonon gap. For the acoustic
branch the agreement is perfect between the two analytical methods, while DFT predicts a strongly flattened
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Figure 4. Phonon spectrum ωjq of carbyne, in cm−1, computed using our BO+Har method (orange solid line) versus that of
Milani et al [28] (black dashed line). We use the same parameters t= 6.15 eV, α= 7.6 eVÅ−1, K= 81 eVÅ−2,
M= 1.99× 10−26 kg but set u= 0.044 Å to reproduce the electronic band gap of 2.7 eV used in [28]. Convergence was achieved
with δmax = 40.

acoustic branch, similar to what is seen in other DFT studies of polyacetylene [29]. Miao et al hypothesize
that this is because the SSH model treats only longitudinal phonons, whereas in DFT studies there is
significant coupling between the long wavelength acoustic mode and transverse phonons. More work is
needed to clarify this point.

4.1.2. Comparison to other spectrum calculations for carbyne
Carbyne—a pure carbon chain with alternating single and triple bonds—is also convenient for a
comparison, given the similarly of its crystal structure to polyacetylene. However, carbyne has two degenerate
electron orbitals, py and pz, that can host delocalized π-bond electrons, compared to polyacetylene’s single pz
orbital. A simple way to address this difference, widely used in other semiempirical approaches, is to consider
the orbitals as fully equivalent and account for them by adding an overall factor of 2 in equations (23)–(25).

In [28], carbyne was studied with a semi-empirical bond–bond polarization approach to construct a
force field that gave good agreement with experimental measurements of Raman spectra. By adjusting model
parameters to match the observed electronic band gap and Raman excitation frequencies, the authors
adopted t= 6.15 eV, α= 7.6 eVÅ−1, K = 81 eVÅ−2,M= 1.99× 10−26 kg and found the dimerization
uGS = 0.088 Å. Note that their approach did not explicitly minimize the ground state energy against
dimerization or other crystal lattice parameters, and thus does not provide a theoretical origin for the ground
state dimerization.

For these parameters, our method predicts an undistorted ground state, uGS = 0, because the spring
constant is very stiff and the lattice deformation energy∼Ku2 grows too quickly. However, it is known from
numerous previous experimental and ab initio studies that carbyne (and finite-length polyynes) are indeed
dimerized. The fact that our method predicts an undimerized ground state may be due to the exclusion of
electron–electron interactions from the model, whose importance was long ago recognized by
Ovchinnikov [3].

To still be able to compare phonon spectra, we forego energy minimization and simply set our u= 0.044
Å, so as to reproduce the electronic band gap of 2.7 eV. Figure 4 shows a comparison of our corresponding
phonon spectrum against results reported in figure 3 of [28]. We find strong agreement especially for the
optical phonon branch, however the phonon gap is somewhat smaller in our approach.

Overall, we conclude that our quasi-analytical method works reasonably well in predicting the
renormalized phonon spectrum.

4.2. The equilibrium dimerization
After checking the renormalized phonon spectrum generated by our method, we return to our calculation,
and plot in figure 5 the total energy per site as a function of u (still for polyacetylene-like parameters). The
curves labeled ‘SSH’ are obtained by the standard SSH calculation (disregarding the renormalization of the
phonons and their ZPE), while our results are labeled ‘BO+Har’.

For the linear coupling model (β= 0), inclusion of the renormalized ZPE contribution reduces the
ground state dimerization value from 0.041 Å to 0.039 Å (vertical dot-dashed lines). This amounts to a 5%
change—a small, but noticeable effect. Either with or without the ZPE, 2αuGS ≈ 0.33 eV≪ t= 2.5 eV, so the
linear approximation appears to be justified. Nevertheless, the dashed lines show that adding even a small
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Figure 5. Total energy per site E(u) in eV versus chain dimerization u in Å, for our approach BO-Har (orange lines), versus the
semiclassical SSH approach (blue lines). The circles indicate the corresponding ground states, with vertical dot–dash lines as
guides to the eye. Solid/dashed lines correspond to β= 0 and β= 2 eVÅ−2, respectively. The orange triangle is the total energy of
the system in the absence of electron-phonon coupling, but accounting for ZPE. The convergence parameter is δmax = 160, the
other parameters are as in figure 1. See text for more details.

quadratic coupling has a very significant effect, changing the dimerization to uGS ≈ 0.055 Å. Note that even
for this larger dimerization, 2βuGS ≈ 0.2 eVÅ−1 ≪ α= 4.16 eVÅ−1, so a priori one would not expect the
quadratic coupling to have such a significant effect.

This effect is primarily driven by the non-linear dependence on u introduced into the electronic
bandwidth by the β term: t→ t̃= t+ 2βu2 (see appendix C). This results in a smaller α/̃t ratio so naively
one may expect a decrease in uGS. (Note that the observed decrease in the optical phonon softening near
q= 0 at finite β, see figure 1(c), is consistent with the smaller α/̃t). Instead, the dependence of the bandwidth
on u2 drives the observed increase in uGS in the quadratic model. This shows that the effects of the quadratic
coupling cannot be accounted for by a re-scaling of the parameters of the linear model.

This significant dependence of uGS on β when βuGS ≪ α is one of our main results. It is very important
because it is customary to choose α so as to obtain uGS equal to the value measured experimentally. The
strong dependence of uGS on β shows that this choice of parameters is very dubious. Instead, one should
include the quadratic coupling in the model and use another experimental data point (for instance, the
softening of the optical mode) to find more appropriate values for the electron-phonon couplings α,β.

4.2.1. To dimerize or not to dimerize
The results in figure 5 also show that the typical ZPE is clearly larger than the Peierls dimerization barrier
(the energy difference between the dimerized and undimerized structure). This has long been known, as is
the fact that the magnitude of the zero-point fluctuations∆u in the SSH model is comparable to the size of
the dimerization u itself [7]. These observations called into question the validity of neglecting the quantum
nature of the lattice in earlier work, and raised concerns whether the model’s true ground state was
dimerized at all.

These concerns were addressed for both continuum models, e.g. [4, 7, 8], and for lattice models, e.g.
[9, 11–13], as mentioned in the Introduction. By using a variety of approaches, these works demonstrated
that the half-filled, spinful, Hubbard-SSH model with quantum acoustic phonons admits two ground states:
a Mott–Hubbard insulator and a Peierls (dimerized) insulator, but no metallic phase.

And yet in recent years several works have questioned this conclusion. Hudson and Allis [14] argue that
zero-point motion is sufficiently strong to favor undimerized chains, invoking a two-step calculation:
ab initio DFT calculations for the electronic energy, and a single-particle FGH method for the ionic
Hamiltonian (with the ionic potential reconstructed from the DFT electronic energy). Their findings appear
to be supported by other researchers [15]. Interestingly, recent experimental transport studies on short
(N = 10 to 20) carbyne chains [30, 31] found that un-strained chains are metallic. Meanwhile, polyacetylene’s
semiconducting behavior and Raman spectra [32–34] can be attributed to electron–electron interactions
without recourse to a Peierls instability [35], as suggested by Ovchinnikov et al in the early 1980s [3, 36].

We use our results to address the possible origin of (some of) this disagreement. The renormalized
phonon dispersion in figure 1(c) shows that the modes most strongly affected by the electron-phonon
coupling are those near q= 0. If only the q= 0 mode is considered, i.e. a Γ-point approximation is employed
like in [14], the variation of the ZPE with dimerization u is overestimated. To exemplify this, in figure 6 we
repeat figure 5 but assuming that the whole ZPE comes from the q= 0 modes scaled by the system size N/2
for a proper comparison (only β= 0 results are shown). Clearly, this additional approximation significantly
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Figure 6. Same as figure 5, but the Γ-point approximation is used to generate the ZPE contribution (i.e. only the energy of the
q= 0 phonon modes is counted in the BO+Har approach, scaled by the system size). This additional approximation predicts a
significantly reduced ground state dimerization—if it were not for the fact that the phonon spectrum becomes imaginary closer
to u= 0 (energy not shown), the undimerized chain would be the predicted ground state. The two curves touch when the optical
frequency vanishes at q= 0.

changes the results. If it were not for the fact that the phonon spectrum becomes unstable near u= 0, the
predicted ground state would now be undimerized. This emphasizes the importance of using the entire
phonon spectrum when calculating the ZPE, and shows that employing the Γ approximation can
overestimate the ZPE’s contribution to the point of predicting an incorrect lattice structure.

4.3. Isotope effect
The results presented so far might suggest that calculating the renormalization of the phonon spectrum and
including the ZPE in the total energy is an unwarranted complication, given that uGS is little affected. This is
to be expected for polyacetylene, given the order of magnitude difference between the electronic and lattice
energy scales. However, there may be materials where the energy scales are not so disparate—for instance, in
a hypothetical hydrogen chain, or if the electron mass is strongly renormalized through interactions. In such
cases, including the ZPE in the calculations should lead to noticeable changes to the predicted uGS.

To exemplify this point, we lower the mass parameterM as a simple way to boost the lattice ZPE energy
scale. The results are shown in figure 7, where we compare the total energy curves for cases where the ionic
massM∗ = 0.1,0.01M,M being the polyacetylene value; the other parameters are kept unchanged. Indeed,
whenM∗ decreases by two orders of magnitude (so that the characteristic phonon energy increases by one
order of magnitude and becomes comparable to the electronic energy scale), the addition of the ZPE predicts
a much less dimerized GS. We caution against a literal interpretation of the energies close to u= 0, where the
phonon spectrum is unstable (and results are not shown). For contrast, we note that the standard SSH
calculation remains as in figure 5, predicting uGS ≈ 0.4Å for any value ofM∗. As before, adding the quadratic
coupling increases the equilibrium dimerization compared to that of the linear model, all else being equal
(dashed lines).

Of course, the results in panel (b) are unphysical as at mostM∗ ≈ 0.07M≈mp (for a hypothetical
hydrogen 1D chain). However, the phonon energy scale can be increased not just by loweringM, but also by
stiffening the spring constant K. The important point is that if

√
K/M∼ t, the ZPE contribution varies

significantly as a function of the dimerization u, thus contributing nontrivially to setting uGS.
Comparing figures 5 and 7, we note that the finite β curve has lower energy in figure 5, but its energy

seems to increase with decreasing mass parameterM∗. This can be explained by changes to the magnitude of
the zero-point lattice energy. Larger β leads to a larger ZPE contribution, mainly because the phonon
bandwidth is mildly boosted by the first-order perturbative term (as we argued in section 4.1). This ZPE
contribution varies relatively weakly with u and so generally just shifts the entire energy curve upward. As the
mass is decreased in figure 7, the magnitude of the ZPE contribution increases: and it increases more for the
case with finite β, leading to the change in relative positions of the energies.

4.4. Finite length rings
If we calculate the discrete sums in equations (23)–(25) instead of taking the thermodynamic limit N→∞,
we can study finite-size effects for closed rings with an even number of atoms. Here we fix δmax = N/2 where
N is the total number of atoms. The physical point of comparison here is something like a benzene ring
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Figure 7. E(u) versus u for the mass (a)M∗ = 0.1M, and (b)M∗ = 0.01M; all other parameters are the same as for polyacetylene.
A significant reduction of the ionic mass boosts the characteristic phonon energy, and thus the importance of ZPE. As before,
dashed lines represent results with β= 2 eVÅ−2. A significantly smaller lattice dimerization is favored onceM∗ becomes
sufficiently small: it would be zero were it not for the phonon spectrum becoming unstable—this happens near u= 0, and data
for such u is not shown.

(N = 6). Cyclic polyenes are known to have a transition from all-equal (undimerized) to conjugated bonds at
a critical size, typically pegged at N∼ 30–50. In what follows, we always take the lowest energy state as the
ground state, subject to the phonon spectrum being stable.

In figure 8 we plot the ground state dimerization uGS (panel (a)), and ground state energy EGS (panel (b))
as a function of chain length N using the polyacetylene model parameters and β= 0, calculated using the
SSH and BO+Har approaches. For comparison, the corresponding infinite N limits are given by the dotted
and dashed lines, respectively, and are denoted ‘SSH inf ’ and ‘BO+Har inf ’ in the legend. As discussed above,
there is a small difference between the dimerization predicted in the infiniteN SSH and BO+Har approaches,
see figure 5. We split our dataset into chains whose length N is such that N/2 is even (blue triangles), while
the rest are in the odd group (orange circles). We also show the SSH finite N results (red diamonds for both
even and odd groups) in panel (a), to gauge the change in the ground state dimerization driven by the ZPE.

Convergence to the thermodynamic results is achieved for N∼ 40. Interestingly, even group chains
converge to the asymptotic limit from above (bigger dimerization, higher energy at small N), while odd
group chains approach from below (smaller dimerization, lower energy at small N). This is a finite size effect,
because in the even group, a pair of momentum points (one point for each of optical/acoustic, and
valence/conduction bands) at the edge of the Brillouin zone is included, and it is here where the effect of
dimerization on the electronic bands (and thus on the total energy) is strongest. For short rings with only a
few allowed momenta, there is a big difference if the edge value is included or not.

This alternation is indeed seen in both the SSH and our approach. In organic chemistry, this is known as
Hückel’s ‘4n/4n+2’ rule: the odd group has all electrons in ‘bonding orbitals’, whereas the even group has a
pair of electrons in the non-bonding orbital with k=±π/2a.

Figure 8(a) shows that for small N≲ 20 values, the inclusion of the ZPE in the total energy can result in
much more significant changes to the predicted uGS than is the case in the thermodynamic limit; this points
out to the importance of the ZPE contribution in such cases.

We remark that open chains can also be studied with our method, but this leads to dimerizations that
vary along the chain and thus to various complications whose study is left for future work.
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Figure 8. Ground-state dimerization uGS (panel (a)) and ground state energy EGS (panel (b)) for finite-N chains with N/2 odd
(orange circles) and even (blue triangles), as well as the SSH finite N results (red diamonds in panel (a)). The lines connecting the
circles and triangles are guides to the eye. The SSH and BO+Har infinite N limits are given by the dotted and dashed lines,
respectively, and are denoted ‘SSH inf ’ and ‘BO+Har inf ’ in the legend. The even/odd behavior is explained by the momentum
points that are allowed for each N, and whether they fall on the BZ edge or not. Finite N results approach corresponding infinite
N results for both the SSH and the BO+Har approach. The effect of ZPE on ground state dimerization is visible in panel (a),
where the SSH predicts a higher uGS than the BO+Har for N> 14.

5. Conclusions

In this paper, we used the Born–Oppenheimer approximation together with a harmonic approximation of
the Born–Oppenheimer potential energy surface, to propose a semi-analytical approximation that
self-consistently accounts for the contribution of the zero-point lattice energy to the ground-state energy
optimization. For consistency with the harmonic approximation, we also included quadratic terms in the
electron-phonon coupling.

In contrast to variational techniques discussed in the introduction, in our approach the force constants
generated through the electron-phonon coupling, are calculated directly instead of being taken to be
variational parameters adjusted to minimize the energy; the static lattice dimerization u is our only
variational parameter.

For a model with typical polyacetylene parameters, including the ZPE in the total energy led to a modest
change of the average dimerization uGS, of around 5%. However, we argued that for systems whose lattice
and electronic energies are more comparable, and/or for finite chains, including the ZPE in the total energy
changes the predicted uGS much more significantly.

Adding even a very small quadratic coupling changes uGS for (otherwise) polyacetylene parameters by
around 30%, and similarly big changes are observed for other parameters. This strongly calls into question
the validity of using a linear approximation for the electron-phonon coupling in these models.

For polyacetylene-like model parameters, we find that the zero-point phonon energy contribution does
not destroy the dimerized ground state of polyacetylene for an infinite chain. This agrees with several
previous results and disagrees with others. Relevant to the latter, we point out the potential downfall of using
the Γ-point approximation, as it overestimates the ZPE dependence on u and can thus lead to incorrect
conclusions.

The key approximations we made—insofar as the Hamiltonian we use is meant to be a model for
polyacetylene and other 1D organic chains—are to treat the ionic BO energy within the harmonic
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approximation, and to ignore electron–electron interactions. The former is fairly well-established: the utility
of the harmonic approximation is that it allows calculating the force constants using perturbation theory,
and thus an analytical expression for the phonon spectrum is available. In principle one can relax this
approximation by including cubic and higher order anharmonic terms, whose coefficients can be calculated
with the appropriate higher-order perturbation theory. However, additional approximations (e.g.
mean-field) are needed to then ascertain the effect of these anharmonic terms on the phonon spectrum.
Given its small lattice energy scale, we believe that for polyacetylene such a calculation is not warranted, but
it might be relevant for a system with larger phonon frequencies Ω∼

√
K/M.

We have completely ignored electron–electron interactions, which could be important for systems like
polyacetylene. If added, such interactions would likely increase dimerization in the ground state [2, 24] and
further renormalize the phonon spectrum by reducing the phonon frequency at low and intermediate
momenta [16]; on the other hand, such interactions are known to open the door to other ground states such
as charge density wave order [11, 12], phase separation [16], and even nesting instabilities at other
wavevectors (in the 2D case) [17]. Weaker electron-electron interactions can be added into our formalism at
the mean-field level, and it would be interesting to study the competition between the phonon spectrum
renormalization effects of both electron–electron and electron-phonon interactions.

The remaining limitation of this study is that it only investigates T= 0 ground-state behavior. A finite-T
generalization is in principle straightforward and would allow us to investigate the effects of the quadratic
coupling on the transition temperature to an undimerized state [37]. We note that unusual behavior with T,
attributed to quantum anharmonic effects, has been recently observed in carbyne chains by Romanin et al
[38], wherein, counter-intuitively, dimerization actually increases with temperature: given that β deepens the
potential energy well, it is possible that some of the behavior observed in [38] (obtained in ab initio), while
unattainable with linear SSH coupling, could be manifested with quadratic coupling. We leave such
calculations for future work.
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Appendix A. The Born–Oppenheimer approximation

In this appendix, we describe in detail the precise statement of the Born–Oppenheimer approximation that
we apply in our method. Consider a generic Hamiltonian

Ĥ= T̂e + V̂e−i + V̂i−i︸ ︷︷ ︸
=Ĥe

+T̂i + V̂e−e︸︷︷︸
neglect

, (A1)

where T̂e/i are the kinetic energies of electrons (e) and ions (i), and V̂ are the various Coulomb interactions,
respectively. (As discussed, in this work we will neglect the electron–electron interactions, however the
Born–Oppenheimer analysis holds in their presence, as well.) We aim to solve the Schrödinger equation

ĤΨ({Rn, rn}) = EΨ({Rn, rn}) (A2)

where Rn are the ions’ positions, and rn are the electrons’ positions (for simplicity, we restrict these to one
dimension). Following Born and Oppenheimer, we assume that the wavefunction can be factorized:
Ψ(Rn, rn)≡ ψ(rn;Rn)ϕ(Rn) (note that a more complicated ansatz of Born–Huang type [39] is possible). The
electronic wavefunction ψ satisfies the Schödinger equation

Ĥeψ(rn;Rn) = Ee(Rn)ψ(rn;Rn) (A3)

and depends on the ion positions’ Rn as parameters. The ion wavefunction ϕ satisfies the equation[
T̂i + Ee(R̂n)

]
ϕ(Rn) = Eϕ(Rn). (A4)
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Given these assumptions, we have:

Ĥψ(rn;Rn)ϕ(Rn) = ψ(rn;Rn)
[
Ee(Rn)+ T̂i

]
ϕ(Rn)+

[
T̂iψ(rn;Rn)

]
ϕ(Rn) (A5)

= Eψ(rn;Rn)ψ(Rn)+
[
T̂iψ(rn;Rn)

]
ϕ(Rn).

The last term in equation (A5) is the term preventing the Born–Oppenheimer ansatz from being exact. An
argument due to Slater [40] demonstrates this term to be smaller than the rest by a factor ofme/M: note that
the last term is ℏ2/(2M)∂2ψ/∂R2

n ≈ ℏ2/(2M)∂2ψ/∂r2n. The approximate equality holds because the
wavefunction depends on the differences rn −Rn of the coordinates and thus both derivatives remain of the
same order. However, Ee will have in it the kinetic energy of the electrons, which is order ℏ2/(2me)∂

2ψ/∂r2n,
with the difference being precisely a factor ofme/M. Therefore ignoring the last term in equation (A5) is an
accurate approximation forme ≪M.

Appendix B. Perturbative calculation details

In this appendix we describe the details of getting from the general perturbative expressions in equation (22)
to the results reported for δKnm in equations (23)–(25). First, we catalog the ‘halves’ of the perturbative
expressions for the even–odd cases.
Evenm:

(1− |Ψ0⟩⟨Ψ0|)
E0 − Ĥunper

∂V̂

∂x2m
|Ψ0⟩=

2iα

N/2

∑
kqσ

e−i(k−q)(2m)a

Ek + Eq
αk(skβk + sqβ

∗
q )χ

†
kνq|Ψ0⟩. (B1)

We arrived at this expression as follows: since on the right we have the ground state |Ψ0⟩, the only term
from the matrix product in equation (18) that can survive at half-filling is the χ†ν combination. As for the
energy denominator,

(
E0 − Ĥunper

)
χ†
kνq|Ψ0⟩=

−
∑
p

Ep

−

−
∑
p

Ep

− (−Ek)+ (+Eq)

=−(Ek + Eq). (B2)

Given the reasoning above, we can immediately write down the odd version of the term
Oddm:

(1− |Ψ0⟩⟨Ψ0|)
E0 − Ĥunper

∂V̂

∂x2m+1
|Ψ0⟩=− 2iα

N/2

∑
kqσ

e−i(k−q)(2m+1)a

Ek + Eq
αk(sqβk + skβ

∗
q )χ

†
kνq|Ψ0⟩. (B3)

The corresponding left-hand sides of the overall perturbation expression are no different: now we keep
the ν†χ combination, so that it does not annihilate the state on the left
Evenm:

⟨Ψ0|
∂V̂

∂x2m
=− 2iα

N/2

∑
k ′q ′σ

e−i(k ′−q ′)(2m)aαk(sk ′βk ′ + sq ′β∗
q ′)⟨Ψ0|ν†k ′χq ′ . (B4)

Connecting the left and right halves of the expressions forces q ′ = k,k ′ = q. Re-writing it for clarity

⟨Ψ0|
∂V̂

∂x2m
=− 2iα

N/2

∑
kqσ

e+i(k−q)(2m)aαk(sqβq + skβ
∗
k )⟨Ψ0|ν†qχk. (B5)

The only thing that changes for oddm is the prefactor:
Oddm:

⟨Ψ0|
∂V̂

∂x2m+1
=

2iα

N/2

∑
kqσ

e+i(k−q)(2m+1)aαk(skβq + sqβ
∗
k )⟨Ψ0|ν†qχk. (B6)
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Now that we have all of the relevant expressions, we can begin to put them together. The first of
equations (23)–(25) is derived as follows

δKnm =

(
2α

N

)2∑
kqσ

(
−e−i(k−q)(n−m)a

Ek + Eq

)
(4α2

k)
{
(skβk + sqβ

∗
q )(sqβq + skβ

∗
k )
}
+(n⇄m)

=−2

(
4α

N

)2∑
kq

(
cos[(k− q)(n−m)a]

Ek + Eq

)∣∣skβk + sqβ
∗
q

∣∣2 (B7)

The other equations are obtained similarly.

Appendix C. Extension to the quadratic SSHmodel

We now use:

t(Rn+1 −Rn) = t(a+ un+1 − un)≈ t−αn(un+1 − un)+
1

2
βn(un+1 − un)

2. (C1)

Here αn and βn are first and second derivatives of the hopping integral with respect to Rn+1 −Rn. The minus
sign in front of α is convention to ensure α positive in magnitude.

The usual expansion is only to first order. However, in the harmonic approximation of the effective ionic
Hamiltonian, the ion-ion interaction potential V̂(R̂n+1 − R̂n) was expanded to second order, which makes a
first order expansion for the hopping to appear inconsistent. We discuss here the consequences of using a
quadratic Peierls expansions, which to our knowledge was not considered elsewhere.

Assuming constant values for α and β and defining Tn,n+1 =
∑

σ c
†
n+1,σcnσ + h.c., we now find:

He =−(t+ 2u2β)
∑
n

Tn,n+1 − 2αu
∑
n

(−1)nTn,n+1 +
∑
n

(α+ 2β(−1)nu)(xn+1 − xn)Tn,n+1

−
∑
n

β

2
(xn+1 − xn)

2Tn,n+1 + Ee({R0
n}), (C2)

The ‘easy’ part can be diagonalized as before (the only change being t→ t+ 2βu2), giving

He =−2
∑
k

Ek
(
ν†kσνkσ −χ†

kσχkσ

)
+
∑
n

(α+(−1)n2βu)(xn+1 − xn)Tn,n+1

−
∑
n

β

2
(xn+1 − xn)

2Tn,n+1 + Ee({R0
n}). (C3)

In the rest of this section, using results from appendix B, we do the perturbative calculation for this
second-order SSH model. Start with the ionic Hamiltonian from equation (26) (with the understanding that
here ϵk =−2(t+ 2βu2)cos(ka))

Ĥ(BO)
i,har =

∑
n

p̂2n
2M

+
K

2

∑
n

(x̂n+1 − x̂n)
2 +

1

2

∑
nm

∂2⟨Ĥe − V̂i−i⟩
∂Rn∂Rm

x̂nx̂m

− 2
Na

2π

ˆ π
2a

− π
2a

dk
√
ϵ2k + u2∆2

k + 2Ku2N. (C4)

The inter-ionic potential in this Hamiltonian is generated by various corrections up to second order to the
energy of the electronic Hamiltonian, which reads
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Ĥe − V̂i−i =−
∑
kσ

Ek(ν
†
kσνkσ −χ†

kσχkσ)+
∑
nσ

(α+(−1)n2βu)(xn+1 − xn)Tn,n+1︸ ︷︷ ︸
≡Âel−ph

−
∑
nσ

β

2
(xn+1 − xn)

2Tn,n+1︸ ︷︷ ︸
B̂el−ph

. (C5)

All the definitions are as in appendix B, with the caveat that t→ t+ 2βu2.
As before, we are evaluating energy corrections

Fe ≈ F(0)e + F(1)e + F(2)e + . . . (C6)

where the terms are given by

F(1)e = ⟨Ψ0|(Âel−ph + B̂el−ph)|Ψ0⟩, (C7)

F(2)e = ⟨Ψ0|(Âel−ph + B̂el−ph)
(1− |Ψ0⟩⟨Ψ0|)
E0 − Ĥunper

(Âel−ph + B̂el−ph)|Ψ0⟩. (C8)

Introduce the notation

δKnm ≡ ∂2Fe
∂xn∂xm

= 0+
∂2F(1)e

∂xn∂xm
+

∂2F(2)e

∂xn∂xm
≡ δK(1)

nm + δK(2)
nm . (C9)

Unlike in the conventional SSH model, the linear term from the perturbative expansion will have a
non-zero contribution due to B̂el−ph in the Hamiltonian. That is the new calculation: the second-order term
will be simply appended with the new coefficients α± = α± 2βu. There is no contribution from B̂el−ph at
second order because those will lead to terms cubic or quartic in atomic displacements, which will be set to
zero in the harmonic approximation for the Born-Oppenheimer energy surface.

Start with the first-order term coming from B̂el−ph. For |n−m|> 1, the first-order correction is zero, as
is clear from the following calculation:

δK(1)
nm =

∂2

∂xn∂m

(〈
− β

2

∑
l

(xl+1 − xl)
2Tl,l+1

〉
Ψ0

)

=
∂2

∂xn∂m

(〈
−β

∑
l

[x2l
2
(Tl,l+1 +Tl−1,l)− xlxl+1Tl,l+1

]〉
Ψ0

)
=−δnmβ⟨Tn,n+1 +Tn−1,n⟩Ψ0 +βδn,m+1⟨Tm,m+1⟩Ψ0 +βδn,m−1⟨Tm−1,m⟩Ψ0 . (C10)

Then:

δK(1)
2n,2n =−β

〈
T2n,2n+1 +T2n−1,2n

〉
Ψ0

=− 2β

N/2

∑
kqσ

e−i(k−q)(2n)a
[
cos(ka)⟨c(o)

†
kσc

(e)
qσ ⟩Ψ0 + cos(qa)⟨c(e)

†
kσc

(o)
qσ ⟩Ψ0

]
. (C11)

To finish the evaluation, we must compute the expectation values above. To do so, we should express the old
c operators in terms of ν,χ (at half-filling, we will take the un-perturbed ground state to be the usual Fermi
sea |Ψ0⟩=

∏
|k|<π/2a,σ ν

†
kσ|0⟩)

⟨c(o)
†
kσc

(e)
qσ ⟩Ψ0 = ⟨(βkν†kσ −βkχ

†
kσ)(αqνqσ +αqχqσ)⟩Ψ0 = δkqβkαq. (C12)

Similarly, for the other expectation value, we find at half-filling

⟨c(e)
†
kσc

(o)
qσ ⟩Ψ0 = ⟨(αkν

†
kσ +αkχ

†
kσ)(β

∗
q νqσ −β∗

qχqσ)⟩Ψ0 = δkqβ
∗
qαk. (C13)

Substituting into equation (C11), we find

δK(1)
2n,2n =− 2β

N/2

∑
kqσ

δkq
[
cos(ka)βkαq + cos(qa)β∗

qαk

]
=−2

2β

N/2

∑
k

ϵk cos(ka)

Ek
. (C14)
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If n is odd, the matrix elements swap places, but the end result remains

δK(1)
2n+1,2n+1 =−2

2β

N/2

∑
k

ϵk cos(ka)

Ek
. (C15)

We may combine the two terms by writing

δK(1)
nn =−2

2β

N/2

∑
k

ϵk cos(ka)

Ek
, n ∈ Z. (C16)

It makes sense that the terms are the same for even and odd sites, as these are on-site corrections, and any site
connects to a pair of short/long bonds.

After more similar calculations, we find

δK(1)
nm = δnm

(
− 4β

N/2

∑
k

ϵk cos(ka)

Ek

)
+(δn+1,m + δn−1,m)

(
2β

N/2

∑
k

ϵk cos(ka)+ (−1)nu∆k sin(ka)

Ek

)
.

(C17)

Evidently, there are two inequivalent spring constants, and thus an optical and an acoustic branch will
emerge for a nonzero α.

Now for the contribution from Âel−ph. As in the linear SSH model case, re-write it in terms of ν and χ
operators,

Âel−ph ≡
∑
n

xnĝn (C18)

where we defined α±(n) = α± (−1)n2βu, and ĝn =−α+(n)Tn,n+1 +α−(n)Tn,n−1. Then α±(2n) = α±,
and

ĝ2n =
1

N/2

∑
kqσ

x2ne
−i(k−q)2na

[
(−2iα sin(qa)− 4βucos(qa))c(e)kσ

†
c(o)qσ

+(2iα sin(ka)− 4βucos(ka))c(o)kσ

†
c(e)qσ

]
. (C19)

while

ĝ2n+1 =
1

N/2

∑
kqσ

x2n+1e
−i(k−q)(2n+1)a

[
(2iα sin(ka)+ 4βucos(ka))c(e)kσ

†
c(o)qσ

+(−2iα sin(qa)+ 4βucos(qa))c(o)kσ

†
c(e)qσ

]
. (C20)

The final step is to convert the operators to the ν,χ basis. Defining gk = 2iα sin(ka)− 4βucos(ka) and
hk = 2iα sin(ka)+ 4βucos(ka), we find

ĝ2n =
1

N/2

∑
kqσ

x2ne
−i(k−q)(2n)a

(
ν†k χ†

k

)( αk(gkβk + g∗qβ
∗
q ) αk(gkβk − g∗qβ

∗
q )

αk(−gkβk + g∗qβ
∗
q ) αk(−gkβk − g∗qβ

∗
q )

)(
νq
χq

)
. (C21)

ĝ2n+1 =
1

N/2

∑
kqσ

x2n+1e
−i(k−q)(2n+1)a

(
ν†k χ†

k

)( αk(h∗qβk + hkβ∗
q ) αk(h∗qβk − hkβ∗

q )

αk(−h∗qβk + hkβ∗
q ) αk(−h∗qβk − hkβ∗

q )

)(
νq
χq

)
. (C22)

As in the linear SSH model case, we only need a single entry from these matrices at half-filling. Moreover,

defining δK(2)
nm as the second-order corrections to the n,m-binding atomic spring, by analogy we also have

δK(2)
nm =

∂2F(2)e

∂xn∂xm
= ⟨Ψ0 |̂gn

(1− |Ψ0⟩⟨Ψ0|)
E0 − Ĥunper

ĝm|Ψ0⟩+ ⟨Ψ0 |̂gm
(1− |Ψ0⟩⟨Ψ0|)
E0 − Ĥunper

ĝn|Ψ0⟩. (C23)

It is here that we have to work our way through several cases depending on the even/odd character of n,m.
First, catalog the halves of the perturbative expressions for the even–odd cases.
Evenm:

(1− |Ψ0⟩⟨Ψ0|)
E0 − Ĥunper

∂V̂

∂x2m
|Ψ0⟩=

1

N/2

∑
kqσ

e−i(k−q)(2m)a

Ek + Eq
αk(gkβk − g∗qβ

∗
q )χ

†
kνq|Ψ0⟩. (C24)
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Oddm:

(1− |Ψ0⟩⟨Ψ0|)
E0 − Ĥunper

∂V̂

∂x2m+1
|Ψ0⟩=

1

N/2

∑
kqσ

e−i(k−q)(2m+1)a

Ek + Eq
αk(h

∗
qβk − hkβ

∗
q )χ

†
kνq|Ψ0⟩. (C25)

Now for corresponding left-hand sides. The main difference is that now we keep the ν†χ combination.
We immediately have
Evenm:

⟨Ψ0|
∂V̂

∂x2m
=

1

N/2

∑
k ′q ′σ

e−i(k ′−q ′)(2m)aαk ′(gk ′βk ′ − g∗q ′β∗
q ′)⟨Ψ0|ν†k ′χq ′ . (C26)

When connected with the appropriate right-hand side, the equality q ′ = k,k ′ = q is ensured. Hence

⟨Ψ0|
∂V̂

∂x2m
=

1

N/2

∑
kqσ

e+i(k−q)(2m)aαq(gqβq − g∗kβ
∗
k )⟨Ψ0|ν†qχk. (C27)

The only thing that changes for oddm is the prefactor:
Oddm:

⟨Ψ0|
∂V̂

∂x2m+1
=

1

N/2

∑
kqσ

e+i(k−q)(2m+1)aαq(h
∗
kβq − hqβ

∗
k )⟨Ψ0|ν†qχk. (C28)

Now assemble the full expressions:
Case 1: n even,m even.

δK2n,2m =

(
1

N/2

)2∑
kqσ

(
e−i(k−q)(n−m)a

Ek + Eq

)
(α2

k)
{
(−gkβk + g∗qβ

∗
q )(−g∗kβ

∗
k + gqβq)

}
+(n⇄m)

= 2

(
2

N

)2∑
kq

(
cos[(k− q)(n−m)a]

Ek + Eq

)∣∣−gkβk + g∗qβ
∗
q

∣∣2 (C29)

Case 2: n odd,m odd.

δK2n+1,2m+1 = 2

(
2

N

)2∑
kq

(
cos[(k− q)(2n− 2m)a]

Ek + Eq

)∣∣−h∗qβk + hkβ
∗
q

∣∣2 . (C30)

Case 3: n even,m odd.

δK2n,2m+1 = 2

(
2

N

)2∑
kq

(
e−i(k−q)(2m−2n+1)a

Ek + Eq

)
α2
k

{
(gqβq − g∗kβ

∗
k )(h

∗
qβk − hkβ

∗
q )
}
+ h.c. (C31)

Case 4: n odd,m even.

δKnm = 2

(
2

N

)2∑
kq

(
e−i(k−q)(2m−2n−1)a

Ek + Eq

)
α2
k

{
(h∗kβq − hqβ

∗
k )(gkβk − g∗qβ

∗
q )
}
+ h.c. (C32)

The subsequent calculation of the phonon spectrum is carried out exactly as for the linear case.

Appendix D. Diagonalizing the ionic Hamiltonian

Starting from the Hamiltonian in equation (26), we use the fact that the dispersions of quantum
Hamiltonians and equivalent classical Hamiltonians are identical, and write down the corresponding
classical Lagrangian

L(BO)
i,har =

M

2

∑
n

(ẋ2n + Ẋ2
n)−

1

2

∑
n

[
Z0(x

2
n +X2

n)+Y+
1 xnXn +Y−

1 Xnxn+1 +Z2(xnxn+1 +XnXn+1)

+
∑
δ⩾1

(Z2+2δxnxn+1+δ +Y+
1+2δxnXn+δ +Z2+2δXnXn+1+δ +Y−

1+2δXnxn+δ+1)
]
+ Ee({R0

i }). (D1)
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The Euler–Lagrange equations have the form

Mẍn =−Z0xn −

(
Y+Xn +Y−Xn−1 +

∑
δ⩾1

[Y+
1+2δXn+δ +Y−

1+2δXn−1−δ]

)
−Z2(xn+1 + xn−1)

−
∑
δ⩾1

Z2+2δ(xn+1+δ + xn−1−δ), (D2)

MẌn =−Z0Xn −

(
Y+xn +Y−xn+1 +

∑
δ⩾1

[Y−
1+2δxn+δ+1 +Y+

1+2δxn−δ]

)
−Z2(Xn+1 +Xn−1)

−
∑
δ⩾1

Z2+2δ(Xn+1+δ +Xn−1−δ). (D3)

Using the standard Fourier transform

xn =
1√
N/2

∑
q

e−2iqna−iωtxq, Xn =
1√
N/2

∑
q

e−2iqna−iωtXq, (D4)

we find a 2 by 2 system of equations (
J K
K∗ J

)(
xq
Xq

)
= 0, (D5)

where (define cos[(x)qa]≡ cx, sin[(x)qa]≡ sx, andW
±
1+2δ = (Y+

1+2δ ±Y−
1+2δ)/2 for brevity)

J=
1

M

(
Z0 + 2Z2c2 + 2

∑
δ⩾1

Z2+2δc2+2δ

)
−ω2,

K=
1

M

(
Y+
1 +Y−

1 e
2iqa + 2eiqa

∑
δ⩾1

[W+
1+2δc1+2δ − iW−

1+2δs1+2δ]

)
. (D6)

The dispersion reported in the text is obtained from diagonalizing this matrix.
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