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Role of long-range coupling in the properties of single polarons in models with dual
electron-phonon couplings
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We use the variational exact diagonalization to investigate the single polaron properties for four different
dual models, combining a short-range off-diagonal (Peierls) plus a longer-range diagonal (Holstein or breathing-
mode) coupling. This allows us to investigate the sensitivity of various polaron properties both to the range of
the diagonal coupling and to the specific diagonal coupling chosen. We find strong sensitivity to the range
for all dual models as the adiabatic limit is approached; however, considerable sensitivity is observed for
some quantities even in the antiadiabatic limit. Also, strong dependence of the results on the specific form of the
diagonal coupling is observed everywhere in the parameter space. Taken together, these results suggest that a
careful consideration must be given to the specific coupling and its proper range, when quantitative comparisons
with experiments are sought.
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I. INTRODUCTION

The consequences of the interplay between bosonic and
fermionic degrees of freedom are of interest in most areas
of physics. In solid state physics, polarons are one of the
earliest and most quintessential examples of such physics,
where the coupling between electronic and phononic degrees
of freedom results in the formation of a quasiparticle (the
polaron) comprising a charge carrier dressed by a cloud of
phonons. Physically, this dressing describes the lattice distor-
tion induced by the charge carrier.

One limit of this problem where there has been substantial
progress is on understanding the properties of single polarons
(at vanishing charge carrier concentration) for a variety of
electron-phonon (e-ph) couplings. While most of the earlier
work was dedicated to continuum models with long-range
e-ph coupling like the Fröhlich model [1], the advent of con-
siderable computational power together with the development
of numerical methods in the past few decades has made the
study of lattice models feasible. The most well studied lattice
model with electron-phonon coupling is the Holstein model,
which assumes local (on-site) coupling between the density of
carriers and the phonon displacement operator [2,3].

For some time, it was assumed that the properties of Hol-
stein single polarons are qualitatively representative of the
properties of all single polarons, irrespective of the details
of the e-ph coupling. More recently, however, it has become
clear that this is not the case. There are, in fact, two different
classes of electron-phonon couplings, differentiated based on
their physical origin. The Holstein model is part of the class
of so-called g(q) models, where the coupling arises from the

modulation of the on-site energy of the electron due to the
motion of nearby ions. Because the underlying interaction is
of (screened) Coulomb nature, this coupling is proportional to
the density of electrons, i.e., it is diagonal in electron operators
in real space. This is the reason why, upon Fourier transform-
ing, its vertex g(q) cannot depend on the electron momentum
k, only on the momentum q of the emitted/absorbed phonon.
To date, it appears that g(q) models are indeed qualitatively
similar to one another insofar as the properties of their single
polarons are concerned. In particular, they all show a smooth
crossover between the weak- and strong-coupling limits [4]
and the polaron effective mass increases monotonically as the
coupling strength is increased [5].

The second class of models, the so-called g(k, q) models,
arise from modulation of the hopping integrals of the electron
due to the motion of nearby ions; here, dependence of the
electron momentum k appears from the fact that the electronic
part is off-diagonal in real space. The most well-known such
model is the Barisić-Labbé-Friedel model [6–8], also known
as the Su-Schrieffer-Heeger (SSH) [9,10] (in the context of
polyacetylene) or, more generally, the Peierls model. For
brevity, we will refer to this as the Peierls coupling from now
on. In Ref. [11], it was shown that the Peierls single polaron
has properties that are qualitatively different from those of the
g(q) polarons and this was later confirmed for a variety of
related models [12–14]. In particular, in some g(k, q) models
including the Peierls coupling, sharp transitions of the polaron
ground state between weak- and strong-coupling limits have
been identified [15–17], and it was also found that single po-
larons can remain very light even when the effective coupling
is large [11,13,14].
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TABLE I. Summary of the various extended-range g(q) models studied here in combination with the short-range g(k, q) Peierls coupling.
The various couplings f j, gj are also plotted in Fig. 1.

Coupling Shorthand Defined in Spatial dependence

Extended Holstein EHM(2M + 1) Eq. (4) f j = �(M − | j|)( j2 + 1)−
3
2

Extended breathing mode + EBM+(2M + 1) Eq. (10) gj = (1 − δ j,0) j
| j| f j

Extended breathing mode 0 EBM0(2M + 1) Eq. (10) gj = (1 − δ j,0) f j

Extended breathing mode − EBM−(2M + 1) Eq. (10) gj = −(1 − δ j,0) j
| j| f j

The question of what happens upon combining a g(q) and
a g(k, q) coupling has also been explored, although much less.
It is clear that, depending on the symmetries of the two cou-
plings, nontrivial interplay effects are possible. For example,
a combination of the g(q) breathing-model (BM) coupling
[18,19] and the Peierls coupling has revealed the appearance
of two sharp transitions in the single polaron ground-state
properties [20], even though the BM single polaron cannot
have a transition [4], while the Peierls single polaron only
has one [11]. On the other hand, a combination of Holstein
and SSH couplings was found to be more trivial, in the sense
that the results are essentially the sum of the results for the
individual couplings; there is no interplay leading to new
physics [21].

All this work, however, has focused on short-range e-ph
couplings, where the electron operators are coupled to phonon
operators either on the same site or a nearest-neighbor site.
To our knowledge, there has been no study of a dual model
where the g(q) coupling has a long range in real space. We
note that the extended Holstein model (EHM) was studied on
its own to contrast the results of this long-range lattice model
with those of the continuum Fröhlich model [22,23], but not
in combination with a g(k, q) coupling. We also note that a
long-range g(k, q) coupling is less physical, which is why we
do not consider it (this issue is discussed in more detail below,
where the specific models are introduced).

Studies of longer-range e-ph couplings have become very
timely given recent work that supports the idea that the
longer-range nature is essential for quantitative modeling of
one-dimensional (1D) cuprate chains [24,25]. This motivates
us to study in this work the properties of single polarons
in several 1D dual models whose g(q) part has a variable
range, so as to understand how/when the longer range part
is relevant and how sensitive the results are to other details of
the specific g(q) coupling chosen. In this work, we study four
different extended-range g(q) models, distinguished through
their dependence on the distance j between the carrier and
the displaced site, as summarized in Table I. The correspond-
ing functions f j, g j are plotted in Fig. 1. These models are
studied both on their own and also in combination with the
Peierls coupling. While all dual models show sensitivity to
the range of the g(q) model, we find that there are significant
quantitative and even qualitative differences in the dispersion
and other polaron properties for the various dual models, as
discussed below. Our results strongly suggest that it is impor-
tant to consider which particular types of couplings can arise
in the specific material one wants to model, as opposed to just
picking the simplest possible option.

Of course, these single polaron results are relevant in the
vanishing carrier limit, whereas the cuprate chains mentioned

above are at a finite concentration. Our results are there-
fore not directly relevant for those systems. Nevertheless, we
believe that they highlight important conclusions about the
modeling of such systems at any charge carrier concentration,
in addition to increasing the general knowledge of single
polaron physics.

Our work is organized as follows. In Sec. II we introduce
the various models we study and explain their underlying
assumptions. In Sec. III we briefly review the well-established
variational exact diagonalization (VED) method we used to
study these dual models. Section IV contains our representa-
tive results, while Summary and Conclusions are formulated
in Sec. V.

II. MODELS

All the models investigated in this work are for an infinite
chain of identical atoms, with lattice constant a = 1. In all
cases, the bare Hamiltonian is assumed to be

H0 = T + Hph, (1)

where

T = −t
∑

i

(c†
i ci+1 + H.c.) (2)

describes nearest-neighbor (NN) hopping of the electron and
ci annihilates an electron at site i (we ignore the spin pro-
jection because it is irrelevant in single polaron physics in
the absence of spin-orbit coupling). Correlations are irrelevant
because there is a single carrier in the system. The phonons,
with creation operators b†

i , are described as an Einstein mode
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FIG. 1. Plots of f j for the EHM and of gj for the three EBM
models considered in this work. Also, see Table I.
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of frequency � (we set h̄ = 1 throughout):

Hph = �
∑

i

b†
i bi. (3)

Various forms of the e-ph coupling are discussed next.

A. Extended Holstein coupling

We begin with a brief review of the extended Holstein
model (EHM) g(q) coupling both to establish a link to ex-
isting previous work [22,23] and also because a similar model
was used in Refs. [24,25] for quantitative modeling of e-ph
coupling in 1D CuO chains.

The extended Holstein coupling has the standard form
[22,23]

V̂eh = g�
∑

i j

f jc
†
i ci(b

†
i+ j + bi+ j ), (4)

where g is a dimensionless parameter quantifying the overall
strength of the EH coupling, while the spatial dependence is
described by

f j = �(M − | j|)
( j2 + 1)

3
2

. (5)

The Heaviside function allows us to control the range of this
model depending on the cutoff M. If M is chosen so that
the coupling is finite only for j = 0, we regain the standard
Holstein model (on-site coupling). Increasing M allows us
to study increasingly longer-range coupling, to see how this
influences the results. In the following, we characterize the
coupling range with (i) the label 1 for the Holstein model
(M = 0.5), (ii) the label 3 when the extended coupling in-
cludes the three sites j = 0,±1 (M = 1.5), (iii) the label
5 when the extended coupling includes the five sites j =
0,±1,±2 (M = 2.5), and (iv) the label 7 when the extended
coupling includes the seven sites j = 0,±1,±2,±3 (M =
3.5).

To make meaningful comparisons for these different
ranges, we need to rescale the magnitude g as a function of
the cutoff M, so that the physical energy scale—the polaron
formation energy in the single-site limit—remains the same.
For EHM, the polaron formation energy (at t = 0) for a given
cutoff M is

εp = −g2�
∑

| j|<M

f 2
j . (6)

Comparing this energy to the ground-state energy −2t of
the bare electron defines the dimensionless electron-phonon
coupling λ = −εp/2t . For the Holstein model, then, λh =
g2/(2t�). In order to have the same overall λeh = λh for
different coupling ranges in the EHM, we rescale the value
of g such that

g =
√

2tλh

�
∑

j f 2
| j|<M

. (7)

B. Peierls coupling

The g(k, q) Peierls coupling is due to linear modulations
of the NN hopping because of displacements of the atoms

involved in the hopping:

V̂p = α
∑

i

(c†
i ci+1 + H.c.)(b†

i+1 + bi+1 − b†
i − bi ). (8)

Following previous work [11], we use the dimensionless ef-
fective coupling λp = 2α2/(�t ) to characterize the strength
of the Peierls coupling.

For the Peierls coupling we do not consider a longer-range
extension. That can be accommodated by VED; however, it
is not very physical given that such terms would arise from
modulations of the longer-range hopping integrals. The hop-
ping integrals are assumed to decrease exponentially with the
distance between the sites, which is a much faster decrease
than the power-law screening of the Coulomb interactions
responsible for the g(q) couplings. This is why we believe that
the primary source of long-range coupling must be coming
from the g(q) model and we only consider this option in our
work.

C. EHM+P dual model

The first dual model that we study combines the extended
Holstein+Peierls couplings. Its Hamiltonian is

Heh+p = H0 + V̂p + V̂eh (9)

and the strengths of the couplings will be characterized by a
λp and a λeh, while the EHM range is set by M as discussed
above. We note that this extends the work of Ref. [21] where
the combination of Peierls and Holstein models was inves-
tigated, providing another point of contact to previous work
and another way to validate our results. The comparison with
those results will illustrate the effects of longer-range EHM
coupling on the properties of the resulting polaron. On the
other hand, contrasting these results with those of the EHM
coupling will also allow us to understand the effects of adding
Peierls coupling in the model.

However, although the EHM model was already suggested
to be relevant for 1D chains while the Peierls coupling is
generically expected to appear in any system with e-ph cou-
pling, their combination is not very physical. This is because
Holstein-like couplings are due to an internal distortion of the
“polar molecule” assumed to be located at each lattice site,
when an additional electron visits it. As such, this coupling
is to the “vibron” describing the internal distortion of the
molecule, whereas the Peierls coupling is to actual phonons
describing the displacements of sites from their equilibrium
position.

To mitigate for this issue, we propose another g(q) model
which does couple to the same actual phonons like the Peierls
model, so that their combination is more physical. For com-
pleteness, we also note that, for a chain with a strictly one-site
basis, there is a single longitudinal acoustic phonon mode;
there is no optical mode that could be modeled as an Ein-
stein phonon, as we do here. Nevertheless, we continue to
use the simplified Einstein phonon mode instead of a more
realistic acoustic phonon mode. Physically, this is because
both the Peierls coupling and the extended breathing-mode
coupling described below vanish for q = 0, i.e., there is no
coupling to the gapless phonons at the center of the Brillouin
zone. In contrast, the coupling is strong to the phonons at the
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Brillouin-zone boundary at q = π , which describe antiphase
motion of consecutive ions. In other words, the phonons to
whom the coupling is strong are similar to optical phonons
(gapped and describing antiphase motion). The second reason
to use an Einstein model is because this is what was used in
all the previous work with which we contrast our results. By
using the same phonon model we ensure that any differences
in results are due to the changes in the coupling.

D. Extended breathing-mode coupling

In this model, the electron-phonon coupling is due to the
modulation of the screened Coulomb interaction V (i − j) be-
tween the electron at site i and the ion at site j, because of the
motion of both sites. To linear order, this leads to the extended
breathing-mode (EBM) coupling:

V̂ebm = gbm

∑
i, j

g j−ic
†
i ci(b

†
j + b j − b†

i − bi ),

where g j−i = −gi− j is an odd function. As a result, the total
coupling to the phonons at the carrier site j = i vanishes and
the EBM coupling can be written in a form similar to the EHM
coupling:

V̂ebm = gbm

∑
i, j

g jc
†
i ci(b

†
i+ j + bi+ j ). (10)

However, now g( j) is an odd function (as opposed to an even
one, for the EHM), so g0 = 0. So while in the EHM the on-
site coupling is the largest, for the EBM the on-site coupling
vanishes.

To facilitate comparisons between results of the EBM and
the EHM, in the following we take

g j = (1 − δ j,0)χ j f j (11)

so that the long-range decay is similar. The coefficients χ j

are just signs. Specifically, we study three possible choices
as follows. (i) χ j = j/| j|, describing a case where there is
overall attraction between the electron and the other ions in
the lattice (we always take gbm > 0). We call this the “EBM+”
case. (ii) χ j = − j/| j|, describing a case where there is over-
all repulsion between the electron and the other ions in the
lattice. We call this the “EBM−” case. And (iii) χ j = 1. This
last choice is not leading to an odd gj function so it is not
a proper breathing-mode coupling; instead it describes the
EHM coupling without the on-site term. We will study it for
comparison purposes and we label it (somewhat improperly)
“EBM0.” Like for the EHM, we use the labels 1, 3, 5, or 7 to
characterize the range of the extended coupling.

To characterize the strength of the EBM coupling, we pro-
ceed as follows. First, we note that we could use a formula
similar to the one used for the EHM coupling. However, that
choice would mean that if λeh = λebm, then gbm � g in order
to compensate for the absence of the on-site coupling. This
is not suitable for our purpose, which is to compare models
with equal magnitudes of the longer range coupling to see how
important are the details of the chosen form.

This is why we will characterize gbm = g by saying (rather
improperly) that λeh = λebm. In other words, the magnitude
gbm for a given value of λebm is taken to be equal to the
magnitude g of the EHM of equal range, when λeh = λebm.

Comparing EHM with EBM0 will allow us to gauge the im-
portance of the on-site coupling (present for EHM and absent
for EBM0) for equally strong longer-range coupling, while
comparing EBM0 with EBM± will reveal the importance of
the even vs odd coupling under inversion.

E. EBM+P dual model

The second, more physical dual model that we investigate
therefore combines the EBM+P couplings:

Hebm+p = H0 + V̂p + V̂ebm. (12)

As mentioned just above, there are actually three distinct
variants of the EBM depending on the choice of χ j . All three
are investigated below.

III. VARIATIONAL EXACT DIAGONALIZATION

The variational approach based on exact diagonalization
(VED) is one of the most successful numerical methods for
studying electron-phonon problems in different paradigms,
especially in the dilute regime (with one or few electrons on
an infinite lattice).

The VED is well established [26–28] so we provide here
only a very brief summary. We start from a one-electron Bloch
state with a given momentum k in the phonon vacuum of an
infinite chain, |k〉 ∝ ∑

n exp(ikn)c†
n|0〉. Additional basis states

are generated by repeated action of the off-diagonal pieces
of the Hamiltonian on this initial state. If a new configu-
ration (describing a new distribution of phonons relative to
the electron) is generated, only one copy is retained because
translational symmetry is automatically taken care of. One
of the biggest strengths of this method is that it allows for
computation of polaron properties at any |k| � π in the Bril-
louin zone, rather than being limited to multiples of 2π

N , which
would be the case for doing “traditional” ED on a finite N-site
chain.

The largest variational basis that we have used in this study
has Nh = 14 (i.e., the Hamiltonian was applied 14 times on
the initial state and all new configurations thus generated were
retained) for the coupling involving on-site interaction (label
“1”), resulting in a basis with N = 15 646 560 configurations,
Nh = 13 for coupling involving up to the nearest neighbor
and the second nearest-neighbor sites (labels “3” and “5”),
resulting in bases with N = 6 233 884 and N = 1 370 156,
respectively, and Nh = 12 for coupling involving up to third
nearest-neighbor sites (label “7”), resulting in a basis with
N = 9 826 209 configurations. The numerical convergence of
the results we present was verified by comparing these results
obtained with the largest base against those from the previous
step (for example, Nh = 14 vs Nh = 13 for the short-range
models). The ground-state energies show excellent conver-
gence (up to 7–8 decimal places) for all the models in the
antiadiabatic regime. However, in the adiabatic regime, for
strong e-ph coupling, since smaller value of � facilitates
higher phonon excitations, the numerical convergence cannot
match the high standards of its adiabatic counterpart (they
match up to 3–4 decimal places), but are well within the
linewidth of the plotted bands.
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FIG. 2. Shifted polaron dispersion Ek − E0 vs k at � = 3, λeh =
0.5 for different ranges of the extended Holstein coupling: 1 (black
dotted line), 3 (red + symbols), 5 (blue open squares), and 7 (green
solid lines). The four panels correspond to four different values of λP.
E0 is the energy of the polaron at k = 0, while Egs is the ground-state
polaron energy. The latter corresponds to a finite momentum kgs at
larger Peierls couplings.

One of the biggest strengths of the VED method is its ac-
curacy in the intermediate coupling regime where perturbative
methods are very problematic. There is a constraint on the
size of Nh that can be implemented for any given microscopic
Hamiltonian, and hence the numerical accuracy becomes an
issue in the very strong coupling regime. For the couplings
used in this work we have achieved convergence using the
traditional VED. We note that methods like Lang-Firsov VED
[23,29] and incorporation of shifted oscillator states in con-
junction with VED [30] have been successfully used to deal
with the Holstein Hamiltonian at strong couplings. Similarly,
the method of SC-VED [31,32,34] has been shown to be quite
successful in numerically challenging parametric regimes for
Holstein and extended Holstein as well as Edwards models
[12,33,34]. These extensions could be used to extend the study
of the dual models proposed here to stronger couplings than
we consider.

IV. RESULTS

A. EHM+P results

First, we analyze the properties of polarons in the dual
coupling model combining the extended Holstein + Peierls
couplings. We set the energy scale to be t = 1. We generated
results for � = 0.5, 1, and 3, covering the crossover from
weakly adiabatic (defined as �/t < 1) to weakly antiadiabatic
(defined as �/t > 1) regime. Figures 2 and 3 show represen-
tative results for a variety of coupling strengths and ranges,
for the largest and smallest � values considered.

In all of these panels, the black dotted curves (label 1)
are for the (on-site) Holstein+Peierls dual models and are in
great agreement with those generated in Ref. [21] using bold
diagrammatic Monte Carlo and the variational momentum
average approximation. In particular, they show the expected
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FIG. 3. Same as in Fig. 2 but for � = 0.5.

change in the dispersion from one with a ground state (GS)
at kgs = 0 at weak Peierls coupling into one with a doubly
degenerate GS with a ±kgs �= 0 at strong Peierls coupling. The
reason for this change is the dynamical generation of second
nearest-neighbor, phonon-mediated, hoppings in the presence
of Peierls coupling [11].

As the range of the extended Holstein coupling is increased
(labels 3, 5, and 7 for couplings including NN, second NN,
and third NN, respectively), such that λeh = 0.5 remains fixed,
Fig. 2 shows a nontrivial quantitative change with the addition
of the extended coupling to the NN sites, but then results
are converged and no longer change if the range is further
increased. By contrast, for the smaller � = 0.5 in Fig. 3,
we see that dispersion continues to change as the range is
increased. For weak Peierls coupling λP � 0.5, convergence
is achieved at the second NN range, but for the stronger Peierls
coupling the dispersion is not yet converged at the third NN
range. Furthermore, the quantitative changes are much more
substantial than was the case for the results of Fig. 2.

At first sight, this strong sensitivity to the range of the
extended coupling is rather unexpected, considering how rel-
atively weak the coupling is to the second and especially
the third NN sites, compared to the on-site one (see Fig. 1).
However, it is known that the spatial size of the polaron cloud
increases as � decreases, especially for moderate Holstein
coupling such as the one used here, λh = 0.5. One expects
the structure of a more extended cloud to be quite sensitive to
the details of the extended coupling, as the probabilities for
various configurations could be reshuffled significantly for an
extended vs a local coupling. This appears to be consistent
with the results reported so far.

However, the interplay between the effects of the extended
range and those of a dual coupling are, in fact, even more
intricate, as can be seen from Fig. 4. Here we consider how the
GS properties of the polaron, specifically its energy E (kgs),
GS momentum kgs, quasiparticle weight Zgs, and inverse ef-
fective mass change with increasing Peierls coupling λP, at a
fixed but large λh = 2 and for a large � = 3. For these values
the polaron is closer to the small polaron regime (note that
Zgs < 0.5 at λP = 0 for the Holstein model, label 1) and one
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would therefore anticipate a reduced sensitivity to range. The
results show a significant change when coupling to the NN
sites is turned on (label 3). This is reasonable, given that the
Peierls coupling also involves phonons on the NN sites but
with different signs (we further comment on this below). The
less expected fact is that for larger λp there is another sizable
change when turning on the coupling to the third NN sites
(label 5), as most clearly seen in the value of the effective
polaron mass. We find this hard to explain in any simplistic
way.

Figure 5 provides a different way to analyze the sensitivity
to the range of the coupling. Here we plot the critical value λ∗

P
at which kgs has the transition from zero to a finite value [11]
for several EHM strengths λeh = λh (curves of different col-
ors in each panel). The various panels correspond to various
ranges of the EHM coupling.

The black dotted curves are for Peierls only coupling
(λh = 0); thus they are the same in all panels. They agree
with the known result from Ref. [11] and are provided as
guides to the eye. The other three curves in each panel are
for increasing values of the EHM coupling λh. For the dual
Holstein+Peierls coupling (panel labeled 1), an increase of
λh results in a decrease of λ∗

P, in agreement with the results
reported in Ref. [21]. Extending the Holstein coupling to NN
sites (panel labeled 3) has a drastic effect: now λ∗

p increases
strongly with increasing λh nearly everywhere in the parame-
ter space. (The exception is for the smaller value λh = 0.5 for
a narrow range of phonon frequencies close to � ≈ 0.5, where
λ∗

p is slightly below the value for the pure Peierls model.)
Further extending the range to second and to third NN sites
(panels labeled 5 and 7, respectively) has less severe impact.
For small � there is a visible decrease of λ∗

P with increasing
range for the strongest λh = 2, but everywhere else the results
for λ∗

P appear to be converged—at least at this scale. This
supports the view that the strongest sensitivity to the range of

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

0.75

1

1.25

1.5

λ∗

P
   =0.5
   =1.0
   =2.0

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

0.75

1

1.25

1.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Ω

0.5

0.75

1

1.25

1.5

1.75

λ∗

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Ω

0.5

0.75

1

1.25

1.5

1 3

5

λ
λ
λP

h
h
h

P

7

FIG. 5. Critical coupling λ∗
P vs � for different ranges of the

extended Holstein coupling: 1 (top left), 3 (top right), 5 (bottom left),
and 7 (bottom right). The EHM is set to λeh = 0 (black filled circles),
λh = 0.5 (red solid lines), λh = 1 (blue dashed lines), and λh = 2
(green dotted lines).

the coupling is observed as one moves towards the adiabatic
limit. However, we emphasize again that, even for parameters
like those used in Fig. 4, which show little difference in the
value of λ∗

P between second and third NN ranges, the changes
in m∗ are much more substantial.

Our conclusion is that, insofar as a dual EHM+P coupling
is concerned, the polaron properties’ sensitivity to the specific
modeling of the extended coupling should certainly be a big
concern in the adiabatic limit. As discussed, this is in line
with expectations of a more extended polaron cloud in this
limit. However, our results show that the sensitivity to the
range of the coupling could be significant even rather far from
the adiabatic limit, and that it varies for different properties.
Furthermore, even in parts of the parameter space where
the results converge fast with increasing range, we find that
adding NN coupling makes a significant difference and the
results are very different from those due to on-site coupling
only.

B. EBM+P results

The significant differences observed everywhere when
adding coupling to NN sites motivates us to study how sensi-
tive the results are to the particular g(q) coupling used. To do
this, in this section we replace the EHM with EBM coupling.
We remind the reader that EBM has zero on-site strength, so
the range here starts from coupling to NN sites and can be
extended to coupling to second and third NN sites (labels 3,
5, and 7, respectively). Also, we study three nonequivalent
possible overall signs for these couplings, as illustrated in
Fig. 1.

In Figs. 6 and 7 we show the shifted polaron dispersion
energies Ek − E0 vs k at � = 3 and � = 0.5, respectively.
We remind the reader that λebm = 0.5 means that the coupling
gbm is chosen to be equal to the EHM g corresponding to
the same λeh = λebm, i.e., the magnitude of the couplings to
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FIG. 6. Shifted polaron dispersion Ek − E0 vs k at � = 3 for
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ing ranges (3, 5, or 7) are indicated in the legend.

NN (and further sites, if allowed) remains the same as for the
corresponding EHM.

Before commenting on the sensitivity to the range of the
coupling, it is interesting to note how peculiar the shapes
of some of these polaron dispersions are, especially for the
P+EBM+ model at weak and medium couplings in the adi-
abatic limit. The top left panel of Fig. 7, for instance, shows
that the P+EBM- polaron dispersion has the usual expected
shape at weak couplings, where the dispersion first roughly
follows the bare dispersion and then flattens just below the
polaron+one-phonon continuum that starts at E0 + �. By
contrast, the P+EBM+ polaron dispersion is located well
below the continuum everywhere in the Brillouin zone, only
reaching the continuum at k = π for the weakest couplings
considered. Given that the only difference is the overall sign
of these EBM couplings, this major difference is clearly a
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FIG. 8. Ground-state momentum kgs as a function of λP, when
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Results are for the three EBM models −, 0, + (black, green, orange,
respectively). The corresponding ranges (3, 5, or 7) are indicated in
the legend.

consequence of the interplay between the BM and the Peierls
couplings. We discuss this in more detail below.

Similar to the results obtained with EHM+P, we see lit-
tle sensitivity of the polaron dispersion to the range for the
larger �, whereas as the adiabatic limit is approached this
sensitivity appears again, especially at stronger λP. What is
very striking, though, are the significant differences between
the results for the three different EBM couplings (also from
those for the corresponding EHM+P model). This is further
demonstrated in Figs. 8–11, where we show the various GS
properties of the polarons as a function of λP. All of these
are quantitatively quite different for the three EBM flavors.
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FIG. 9. Ground-state energy Egs as a function of λP. All parame-
ters and symbols are as in Fig. 8.
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They also show a different level of sensitivity to the range of
the coupling, which depends not only on the “flavor” of EBM
but also on the ground-state property considered. For instance,
in Fig. 8, the dual P+EBM+ model shows significant differ-
ences in all panels for going from BM coupling to only NN
sites, to EBM coupling to second NN, and also to third NN
sites. The dual P+EBM− model only shows this sensitivity
as the adiabatic limit is approached when λebm is increased,
while the P+EBM0 coupling is the least sensitive to range.
On the other hand, the top right panel of Fig. 10 reveals
that, for those parameters, the P+EBM− model has the larger
sensitivity to range.

It is also interesting to note the unusual behavior of the
P+EBM− model in the weak-coupling limit of λP, for the
stronger λebm = 2 values. Here all ground-state quantities
have rather unusual behavior; most strikingly Egs increases
with λP below the sharp transition. This is suggestive of a
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FIG. 11. Inverse effective polaron mass m/m∗(k = kgs) as a func-
tion of λP. All parameters and symbols are as in Fig. 8.
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in Fig. 8.

partial reciprocal cancellation of the effects of the Peierls
and EBM+ couplings, consistent with previous work showing
strong interplay effects between the (short-range) BM and
Peierls models [20]. In fact, we can follow the arguments in
Refs. [11,20] to understand the behavior of these dual models
in the strongly antiadiabatic limit where � � α, gbm. After
projecting out the higher energy manifolds with one or more
phonons, the resulting effective polaron dispersion is Ek =
εp − 2t∗ cos k − 2t2 cos 2k. For all three flavors of EBM,

we find the expected εP = − 4α2

�
− g2

bm
�

∑
| j|<M f 2

j and the
phonon-mediated second NN effective hopping t2 = −α2/�,
which is the driver of the sharp transition in the polaron GS
properties [11,21]. However, we also find a renormalization
of the NN hopping [20]. Specifically, t∗ = t for the P+EBM0
model, whereas t∗ = t ± 2αgbm f1

�
for the P+EBM± couplings,

demonstrating the interplay between the Peierls and the NN
BM couplings. For small α (weak λP) this renormalization of
t∗ is the dominant change, explaining the already mentioned
increase of Egs with λP for the P+EBM− model. Of course,
at larger λP, the quadratic terms become more important, the
dispersion becomes dominated by t2, and the system transi-
tions into the strong-coupling polaron regime. This argument
also qualitatively explains the considerable differences in the
values of λ∗

P shown in Fig. 12. On the other hand, the sensi-
tivity to the range of the EBM coupling, still clearly seen for
the P+EBM+ model even at � = 5, is a higher-order effect
whose explanation requires a more accurate approximation.

C. Comparison of EHM and EBM0 model

Here we examine the effect of the on-site e-ph coupling
term through our comparison of the EHM with the EBM0
model—the latter is obtained from the former EHM upon
removing the on-site coupling; see Fig. 1. This allows us to ex-
amine the effect of the on-site term, which had the maximum
weight. Figure 13 compares the corresponding polaron bands
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at � = 3 for four different strengths of the e-ph coupling.
The black solid line is the EHM(1), i.e., the on-site Holstein
polaron. As we increase the spatial extent of EHM, there is a
significant increase in the polaron bandwidth that converges
quickly with the range. This increase is expected because the
overall strength of the dominant on-site coupling is decreased
with increasing range; see Eq. (7). This explains both the
lighter polaron (larger curvature near k = 0) and the larger
bandwidth, capped at � for the weaker couplings. EBMO has
the same longer range like EHM. As expected, the absence
of the on-site coupling now results in an even lighter po-
laron, with an even broader bandwidth. At weak couplings the
differences between EHM and EBM0 are surprisingly small,
but they become more substantial as the effective coupling is
increased.

V. SUMMARY AND CONCLUSIONS

This work reports the study of single polaron properties in
dual models with Peierls + longer-range g(q) couplings. For

the latter, we considered both the extended Holstein coupling
and three flavors of the extended breathing-mode coupling.
In all cases, we find that the polaron dispersion and other
physical properties like the polaron effective mass are quite
sensitive to the spatial range of the extended coupling, es-
pecially as the adiabatic regime is approached. This is to be
expected to some extent, given that the size of the polaron
cloud increases as �/t decreases, but the persistence of this
sensitivity even far from the adiabatic regime, for some quan-
tities, is surprising. Furthermore, we find that the different
extended g(q) couplings can lead to very different results,
even if they have equal magnitudes. These differences come
from the different signs and different inversion symmetry
(even or odd with respect to the relative distance between
carrier and phonons) of these couplings. Such differences
are expected because the NN BM coupling will interfere
differently with the Peierls coupling (which is also sensitive
to NN phonons) for the different signs and symmetries, as
demonstrated in the antiadiabatic expression for the polaron
dispersion discussed above. Again, though, the surprising
sensitivity to the range of the EBM coupling points to the
generation of even longer-range effective hoppings, whose
effect can be significant even at rather large � values.

Our results point to the need to very carefully consider
the actual range and the actual form of the electron-phonon
coupling consistent with a specific material, if a quantitative
comparison with experiments is desired. Our work is confined
to the single-polaron limit, but the significant differences ob-
served here between various longer-range models suggest that
care may be needed when choosing a specific coupling to
model a specific material even at finite carrier concentrations.
However, it remains a topic of further research to understand
how significant the differences are at finite carrier concentra-
tions. We believe that doing this work is timely, in light of
the recent studies [24,25] on cuprate chains, which are likely
to drive renewed interest in understanding the behavior of
systems with longer-range electron-phonon coupling.
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