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Electromagnetically coupled two-level systems play a central role in several condensed matter components
being considered for quantum information processing applications. If the states couple to phonon excitations,
their electromagnetic response is altered via phonon-assisted transitions and lifetime broadening. The former
has been treated extensively for a number of specific two-level systems (e.g., excitons in artificial quantum dots,
localized states associated with impurities or defects, etc.), but the latter has received less attention. Here we
study a microscopic model of the dipole transition of a two-level system under the influence of both diagonal
and nondiagonal interactions with a bath of phonons. Our results capture both the influence of the frequency
distribution of phonons on the relative spectral weight of the zero-phonon transition and the phonon sidebands,
and the broadening of the zero-phonon line due to nondiagonal electron-phonon coupling. We use a formalism
that includes non-Markovian effects related to the feedback mechanism between the two-level system and the
phonon bath. For simplified forms of the phonon spectral functions we provide analytical expressions up to
second order in the coupling strength that demonstrate the importance of including both forms of electron-
phonon coupling in studies of these systems. Our formalism can be generalized to higher orders of coupling and
for realistic phonon spectral functions.
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I. INTRODUCTION

Some defect centers in dielectric environments are char-
acterized by localized electronic states that are known to
exhibit remarkably long coherence times [1–3], making them
attractive as quantum information processing components.
However, direct electronic coupling of the long-lived defect
states, towards the purpose of quantum-gate implementation,
is challenging due to the requirement for them to be in close
proximity (within a few nanometers). “Spin-photon” inter-
faces that access the long-lived states via electromagnetic
transitions to higher lying excited states have been proposed
to solve this problem, based on the use of cavity quantum
electrodynamics [4]. However, engineering spin qubits with
favorable excited-state optical or microwave transition char-
acteristics, as well as effectively accessing and utilizing the
dipole-coupled states, remains a challenge, in part because
of the presence of electron-phonon coupling in the solid-state
lattice [5].

Vibrations in the host lattice manifest as both continu-
ous acoustic and discrete Einstein optical phonon modes that
can couple to the defect states, affecting their electromag-
netic coupling properties [6]. This coupling generally poses
a hurdle to developing high-quality single-photon sources,
and more generally spin-photon interfaces, which are nec-
essary for the development of photonic-based, fault tolerant
quantum-computing networks [5,7]. Understanding the role of
electron-phonon interactions with the goal of mitigating their
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adverse effects, is therefore paramount for advancing the field
of optically coupled, defect-based quantum computing.

The most commonly studied model of electron-phonon
interactions involving localized dipole transitions utilizes Hol-
stein (diagonal) coupling [8], where phonons modulate (dress)
the energy levels constituting the optical transition. This form
of electron-phonon interactions has been extensively studied
in the context of spin-photon interfaces [9,10], quantum dot
single photon sources [11], and more generally in terms of
spin-boson systems [12]. The other, Peierls (nondiagonal)
form of electron-phonon coupling [13] arises because the
phonons also modulate the hopping integrals (tunneling) be-
tween these energy levels. In solids, the Peierls coupling has
been shown to result in polarons whose properties are qual-
itatively different from those of Holstein polarons [14–17].
While it has been included in calculations pertinent to defect
spin qubits via dynamical symmetry breaking [18], the Peierls
coupling is commonly neglected in this context because of the
complications it poses.

In this work we use a generic microscopic model at
zero temperature that captures the influence of both di-
agonal and nondiagonal electron-phonon coupling on the
absorption/emission properties of a two-level electronic
dipole transition within the band gap of a host dielectric (see
Appendix A for more details). This model captures the shape
of the phonon sideband contribution to the spectrum, the rel-
ative spectral strength of the zero-phonon line (ZPL), and the
ZPL linewidth broadening which is due solely to the Peierls
coupling. While previous works have used Fermi’s golden
rule (FGR) to study the effects of both forms of coupling
separately on the longitudinal spin-relaxation time of donor-
bound electrons in direct band-gap semiconductors [19], here
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both forms of coupling are considered simultaneously, and
through the use of Greens functions we are able to calculate
the entire spectral response of the system. The methods used
in this work also allow us to go beyond FGR and consider
non-Markovian effects which retain feedback mechanisms be-
tween the defect and phonon bath.

Other works have explored the effect of virtual phonons
on dephasing, incorporating higher-order diagonal couplings
which are quadratic in phonon operators [20]. While ZPL
linewidth broadening has been predicted in this case, this ef-
fect is entirely temperature dependent. Conversely, our study
focuses on a zero-temperature model where quantum fluctua-
tions are entirely responsible for all predicted broadening.

The basic formulation is valid for arbitrary coupling
strengths, but we provide specific analytic results up to second
order in the coupling strength for a range of parametrized
phonon spectral functions. A comparison is also made to
experimental results reported for a microwave transition as-
sociated with the phosphorus (P) impurity in silicon (Si) [21],
and for a midinfrared transition associated with singly ionized
selenium (Se) impurities, also in silicon [1,22]. While the ana-
lytic form of the phonon spectral functions used in the present
work prohibit a quantitative comparison with experimental
results, the parametric dependence of the model predictions
for P in silicon suggest that higher than first order terms are
likely playing a role in the ZPL linewidth associated with
Peierls coupling. For ionized Se, the contrasts in model versus
experimental phonon sideband spectra and the relative spec-
tral weight of the ZPL transition, provide strong motivation
for numerically extending this work to higher order coupling,
using more realistic phonon spectral functions.

The paper is structured as follows: Section II describes
our model and Sec. III explains how we calculate its
absorption/emission spectrum. Section IV shows representa-
tive results and Sec. V contains a summary and discussions.
Some technical details are relegated to Appendices.

II. THE MODEL

We model the dipole transition as a two-level system (TLS)
spanning the basis {|1〉 , |2〉}, coupled to a phonon bath repre-
senting both the acoustic and the optical phonon modes of the
host semiconductor [6,23]. Our Hamiltonian is

H = 1

2
εσz + 1

2
(σz + ζσx )

∑
q

λq(b†
q + bq) + Hph, (1)

where ε is the transition energy, σz = |1〉〈1| − |2〉〈2|,
σx = |1〉〈2| + |2〉〈1|, and b†

q, bq are the bosonic creation and
annihilation operators, respectively, for a phonon mode q
of energy ωq. The phonon bath is described by Hph =∑

q ωqb†
qbq (we set h̄ = 1).

Our Hamiltonian includes both types of coupling to the
phonon bath [24]. The “diagonal” Holstein term, of strength
λq, couples the phonon displacement operator bq + b†

q to the
σz spin degree of freedom, and describes a fluctuating dipole-
polarization term.

The “nondiagonal” Peierls term couples the phonons to σx,
describing a tunneling matrix element modulated by phonon
emission and absorption. As mentioned, this term is usu-
ally ignored because of the complications it introduces, even

though it is generally present in real systems. Here we assume
that its magnitude ζλq is proportional to that of the diagonal
coupling, with ζ being a small, dimensionless number. This
proportionality is simply a convenient approximation that al-
lows us to deal with this Peierls coupling relatively easily, to
weigh its importance.

In realistic models, one expects the couplings to differ
more significantly and if one was to relax the assumption of
proportional couplings, then there would be no a priori reason
to exclude an inhomogeneous coupling to σy also. However,
doing this would significantly complicate the treatment, there-
fore the degree to which this inhomogeneity might suppress
the effects of a nondiagonal coupling remains to be seen [25].
Nevertheless, the results for our simpler model show that it is
necessary to deal with this complication instead of ignoring
the off-diagonal term, as done previously.

To proceed we turn to the “polaron frame” by making use
of the following unitary transformation:

Ũ = e−S, S = σz + ζσx

2

∑
q

uq(bq − b†
q), (2)

where uq = λq/ωq. Performing the transformation H →
ŨHŨ T ≡ H̃ , and ignoring a constant energy shift as well as
states with multiple excitations [17], produces

H̃ = 1
2 ε̂σz + 1

2 K̂−σ+ + 1
2 K̂+σ− + Hph, (3)

where the transformed on-site energy ε̂ = εζ − δε̂ and trans-
formed tunneling energies K̂± are functions of the boson
operators:

εζ = ε + ζ 2ε

1 + ζ 2
, δε̂ = ζ 2ε

1 + ζ 2
cosh(φ̂ζ ), (4)

and

K̂± = ζ ε

1 + ζ 2

(
cosh(φ̂ζ ) − 1

) ± ζ ε√
1 + ζ 2

sinh(φ̂ζ ), (5)

where

φ̂ζ =
√

1 + ζ 2
∑

q

uq(bq − b†
q).

In order to facilitate further analysis, we move to the inter-
action picture, separating the Hamiltonian H̃ = H̃0 + H̃ ′ into
its free part H̃0 = HB and its interaction part

H̃ ′ = 1
2 ε̂(t )σz + 1

2 K̂−(t )σ+ + 1
2 K̂+(t )σ−. (6)

The phonon operators now acquire time dependence so that

φ̂ζ (t ) =
√

1 + ζ 2
∑

q

uq
(
bqe−iωqt − b†

qeiωqt
)
. (7)

III. SINGLE DEFECT FLUORESCENCE
EMISSION SPECTRUM

In the interest of modeling the experimentally determined
emission spectra from single-photon emitters [22], we study
the fluorescence emission determined from the spectral inten-
sity radiated per unit solid angle [18,26]

dI

d	
= ω4

0

8π2c3
|(n × d) × n|2S(ξ ), (8)
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where d is the dipole vector, n is the corresponding directional
unitary vector, and ω0 is the frequency of incident radiation.
The frequency dependence of emitted radiation is determined
by the emission spectrum

S(ξ ) = Re
∫ ∞

0
dteiξ t 〈σ−(t )σ+(0)〉ph, (9)

where the average 〈· · · 〉ph = trph(ρph · · · ) denotes the average
over the phonon bath. Assuming the phonon bath to be in
thermal equilibrium, and the initial excitation to be instanta-
neous, we assume zero correlations prior to t = 0 such that
the full density matrix of the system is initially factorizable
ρ(0) = ρS (0)ρph(0), where ρS = trphρ describes the reduced
dynamics of the spin and ρph = trSρ those of the phonon bath
only.

As written, the time evolution of Eq. (9) is governed by H .
In transforming to the polaron frame, not only do we trans-
form H → H̃ , but also rotate and dress the spin states |1〉 , |2〉
due to the nondiagonal component of the polaron transforma-
tion Ũ . The first approximation we make is to assume small
nondiagonal coupling strengths ζ � 1 and discard terms of
order O(ζ 3) and higher. We then find the emission spectrum
can be approximated as (see Appendix A for details)

S(ξ ) ≈ Re
∫ ∞

0
dteiξ t 〈G̃†

11(t )G̃22(t )〉ph, (10)

written now in terms of operators in the interaction picture.
For convenience we define the Green’s functions Gαβ (t ) =
〈α̃| Ũ ′(t ) |β̃〉, where the unitary time-evolution operator in the
interaction picture is the solution to the differential equation
i∂tŨ ′(t ) = H̃ ′(t )Ũ ′(t ). The kets ˜|α〉 = e−φ̂0 |α〉 represent the
dressed spin states due to the rotation in Eq. (2).

The next step is to calculate these propagators:

G̃αβ (t ) = 〈α̃| exp

[
−i

∫ t

0
dτ H̃ ′(τ )

]
|β̃〉 . (11)

The Green’s functions can be expressed in their infinite series
representation by

G̃αβ (t ) =
∞∑

n=0

(−i)n
∫ t

0
dτn · · ·

∫ τ2

0
dτ1

× 〈α| eφ̂0(t )[ε̂(τn)σz + K̂+(τn)σ− + K̂−(τn)σ+] · · ·
× [ε̂(τ1)σz + K̂+(τ1)σ− + K̂−(τ1)σ+]e−φ̂0(0) |β〉 ,

(12)

where the expectation value is now taken over the undressed
spin states to account for phonon cloud correlations with the
initial and final configurations of the bath.

This equation is exact, and correlations are entirely non-
local in time and include those created on site and while
undergoing a transition. As a result, the number of diagram-
matic processes included in (12) is infinite and this series
cannot be summed analytically.

At this point we apply our second approximation in which
we retain only nearest-neighbor (in time) phonon cloud corre-
lations which amounts to a lowest-order cumulant expansion
in the bath fluctuations [27]. This approximation has been
shown [28,29] to be equivalent to the noninteracting-blip

approximation (NIBA) [12], where coherent spin states are as-
sumed to be short lived. Such an approximation is understood
to be valid in the limit of small electron-phonon coupling [30]
relative to the characteristic phonon frequency which is the
limit we consider here. NIBA therefore amounts to retain-
ing only correlations between successive bath displacements
such that the average over the full expansion of operators
in Eq. (10) truncates to the average over a product of bath
displacement operators [31].

With both approximations in mind it is consistent to retain
only nearest-neighbor phonon cloud correlations due to tun-
neling events—which take the form 〈K̂+(tn)K̂−(tn−1)〉ph—as
well as on-site correlations 〈δε̂(tn)〉ph. Note that correla-
tions between tunneling and on-site events are of order
〈K̂+(tn)δε̂(tn−1)〉ph ∼ O(ζ 3) and so are suppressed within
these approximations.

The correlator in Eq. (10) therefore approximates to

〈G̃†
11(t )G̃22(t )〉ph ≈ e−iεζ t B2

0〈eφ̂0(t )e−φ̂0(0)〉ph − 2B2
0

∫ t

0
dτ2

×
∫ τ2

0
dτ1e−iεζ t 〈K̂+(τ2)K̂−(τ1)〉ph. (13)

The two-point phonon cloud correlation functions can be
calculated using a Feynman operator disentangling method
[32] (see Appendix C for more details). We find

〈
K̂+(t )K̂−(0)

〉
ph = (ζ ε)2(1 − 2B)

4(1 + ζ 2)2
− (ζ ε)2

4(1 + ζ 2)
sinh [ϕ(t )]

+ (ζ ε)2

4(1 + ζ 2)2
cosh [ϕ(t )] (14)

while 〈eφ̂0(t )e−φ̂0(0)〉ph = eϕ0(t ). The phase ϕ(t ) is given by

ϕ(t ) =
√

1 + ζ 2
∑

q

u2
q[nq(eiωqt − 1) + (1 + nq)(e−iωqt − 1)]

(15)
with Bose occupation numbers nq = 1/(eβωq − 1) at temper-
ature T = 1/(kBβ ) and ϕ0(t ) = ϕ(t )|ζ=0. The Debye-Waller
factor B = 〈e±φ̂ζ 〉ph is linked to the time-independent part of
the phase:

B = exp

[
−

√
1 + ζ 2

∑
q

u2
q(1 + 2nq )

]
, (16)

and similarly we denote B0 = 〈e±φ̂ζ=0〉ph. At this point we note
that by taking the limit ζ → 0, such that the nondiagonal cou-
pling is switched off, we recover the result of Ref. [9] where
only diagonal couplings were studied. As we consider only the
T = 0 K case here, our calculation of the Debye-Waller factor
is restricted only to the zero-temperature contribution and can
be interpreted as follows. The phonon clouds associated with
the two defect states are not identical and therefore their over-
lap is less than unity. The quantity produced by this overlap
is the zero-temperature Debye-Waller factor and physically
represents the polarization of the surrounding lattice due to the
defect atom, leading to a corresponding reduction in tunneling
between the two defect states [33].
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These results allow us to formally evaluate the emission
spectrum of Eq. (10):

S(ξ ) = Reϒ0(ξ − εζ − iη)

+ Reϒ(εζ − iη)δ(ξ − εζ − iη)2, (17)

where we have applied the convolution theorem and taken
the real part of the Fourier transform of the step function
Re[θ (ξ )] = Re

∫ ∞
0 dteiξ tθ (t ) = πδ(ξ ) We have also analyt-

ically continued the frequency ξ → ξ + iη to include a
small phenomenological damping factor η [34]. Furthermore,
ϒ0(ξ ) = ∫ ∞

0 dte−iξ t 〈eφ̂0(t )e−φ̂0(0)〉ph defines the Holstein con-
tribution, while the Peierls contribution comes from

ϒ(ξ ) = 2B2
0

∫ ∞

0
dte−iξ t 〈K̂+(t )K̂−(0)

〉
ph. (18)

To make further progress, we need to model the phonon bath.
This is because the phase that appears in the integrand of the
above Fourier transforms can be expressed as

ϕ(t ) =
√

1 + ζ 2

∫ ∞

0
dω

J (ω)

ω2

[
coth

βω

2
[cos(ωt ) − 1]

− i sin(ωt )

]
, (19)

where the frequency distribution of phonon modes weighted
by their coupling strengths to the spin is completely charac-
terized by the spectral density function

J (ω) =
∑

q

λ2
qδ(ω − ωq). (20)

A. Acoustic phonons

It now remains to characterize the bath by choosing a
form for J (ω). Semiconductor substrates usually exhibit de-
formation potential coupling to acoustic phonon modes, with
an expression for λq listed in Appendix B. Given that this
form of coupling is dominated by the long-wavelength portion
of the phonon dispersion [32], we assume a linear Debye
approximation for the acoustic phonon branches ωq = v|q|,
where v is either a longitudinal or transverse sound velocity,
depending on the branch. Turning the discrete sum over q
into an integral and summing over one longitudinal and two
transverse acoustic branches (see Appendix B for details), we
recover the well known cubic form for the spectral density
Jac(ω) = γac(ω3/ω2

c ), where γac is a dimensionless acoustic
phonon coupling strength and ωc is the “characteristic” acous-
tic phonon frequency scale, related to material constants.

In real physical systems, there are upper limits to the
phonon frequencies and furthermore, the Debye approxima-
tion of a linear dispersion breaks down near the Brillouin zone
boundary. Therefore, the phonon density of states must be
skewed towards the low frequency portion of the dispersion
and fall off rapidly as we approach the K point. To account
for this we introduce a standard cutoff [27]:

Jac(ω) = γac
ω3

ω2
c

e− ω
ωc . (21)

In Fig. 1 we plot Jac(ω) for several values of the parameter
ωc. We note that the distribution of acoustic phonon modes

FIG. 1. Normalized spectral density function J (ω) = Jac(ω) +
Jop(ω) for an Einstein optical mode at ω0 = 0.5 with Lorentzian
broadening � = 0.01, and characteristic acoustic phonon frequen-
cies: Purple (solid line) ωc = 0.1, pink (dashed line) ωc = 0.2,
orange (dotted line) ωc = 0.3, for γac/γop = 200.

spreads over a much larger range than ωc, and the density of
states for the lower frequency modes is severely suppressed
as ωc is increased. The former observation indicates that ωc is
not the actual “cut-off” frequency to the distribution (unlike
a Debye frequency which is a physical maximum). This sim-
plified form of the spectral density function, adopted here so
that various integrals can be evaluated semianalytically, does
limit the extent to which the calculated spectra below can be
quantitatively compared to experimental results.

With this Jac(ω), the phase at T = 0 K is found to be

ϕac(t ) =
√

1 + ζ 2

(1 + iωct )2
(22)

and the contribution to the Debye-Waller factor simplifies to

Bac = e−
√

1+ζ 2γac .
For the acoustic phonons, the Holstein contribution to the

emission spectrum, see Eq. (17), is then calculated to be

Re
[
ϒ0

ac(ξ − εζ − iη)
]

≈ η

(ξ − εζ )2 + η2
+ γ

ω2
c

B2
0exp

(ξ − εζ

ωc

)

× cos
( η

ωc

)
(ξ − εζ )θ (εζ − ξ ) + γ 2

12ω4
c

× B2
0exp

(ξ − εζ

ωc

)
cos

( η

ωc

)
(ξ − εζ )3θ (εζ − ξ ) (23)

while the corresponding expression for the Peierls contribu-
tion is listed in Appendix C.

B. Optical phonons

In addition to low-momentum acoustic phonon with linear
dispersion modeled by the Jac(ω), experimentally determined
phonon spectra for semiconductors such as silicon also reveal
dispersionless optical phonons at low momenta, as well as
flat portions of some acoustic phonon branches near the BZ
boundary [6,23]. For small enough ranges of momenta, such
flat portions of the dispersion curves can be modeled as Ein-
stein modes, leading to contributions of the form Jop(ω) =
γopω

2
0δ(ω − ω0) where γop is the dimensionless coupling
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TABLE I. Summary of model parameters used and their physical
description.

ε Optical transition energy/TLS transition energy
ζ Peierls coupling strength (dimensionless)
ωc Characteristic acoustic phonon frequency
ω0 Optical (Einstein) phonon frequency
γac Acoustic phonon coupling strength (dimensionless)
γop Optical phonon coupling strength (dimensionless)
η Phenomenological damping
� Optical phonon linewidth

strength of this constant energy mode. In Fig. 1 we plot such
a contribution for ω0 = 0.5, where the δ function is replaced
by a Lorentzian with a broadening � = 0.01.

The coupled phonon propagator is easily evaluated for such
Jop(ω) to be ϕop(t ) =

√
1 + ζ 2γopexp(−iω0t ) and the corre-

sponding contribution to the Debye-Waller factor is Bop =
e−

√
1+ζ 2γop .

The corresponding contribution to the emission spectrum
from optical phonons is then just a Lorentzian ϒop(ξ −
εζ ) = γop�/[(ξ − εζ )2 + �2], with half-width half-maximum
�. Taylor expansion of eϕac+ϕop to second order in electron-
phonon couplings also produces a mixed term ϒmix(ξ ) (listed
in Appendix C) accounting for simultaneous acoustic and
optical phonons emission.

Table I provides a summary of the various parameters in-
troduced in this model, and their physical associations.

The strength of the electron-phonon coupling can be di-
rectly linked to the number of phonons in the cloud. In the
ground state, for Holstein-only coupling, this corresponds to
〈n〉 = ∑

q u2
q/4 = ∫

dωJ (ω)/4ω2. For example, for the sim-
plistic optical phonon spectral density we consider here, this
evaluates to 〈n〉 = γop/4. This is reflected in the fact that the
difference in the number of phonons in the optical transi-
tions excited and ground state’s clouds is an indication of the
amount of spectral weight that is removed from the optical
transition and goes into the phonon sideband. The Debye-
Waller factor is closely related to this quantity, as can be seen
by expansion of Eq. (16). We will show in Sec. IV that the
Peierls coupling, at least within our approximation of small ζ ,
has very little effect on this quantity but instead substantially
alters the lifetime of the optical transition.

IV. RESULTS

We are now ready to calculate the emission spectrum of
Eq. (17) for various cases. For completeness, we first con-
sider the pure Holstein contribution to the emission spectrum
if there are only acoustic phonons, such that ϕ(t ) = ϕac(t ).
Figure 2 illustrates the effect of increasing the dimensionless
coupling γac. For γac = 0, only the ZPL is present in the
spectrum, with a linewidth entirely due to the phenomenolog-
ical broadening η. The broad shape of the phonon sideband
visible at finite γac can be attributed to the acoustic phonon
spectral density function used, which is peaked towards the
lower frequencies (relative to the ZPL) and presents a broad
tail owing to the small, but nevertheless significant spectral
weight at high frequencies, controlled by the parameter ωc.

FIG. 2. Emission spectrum for the pure Holstein model (ζ = 0)
with acoustic phonons only. We set ε = 1 as our energy unit. Other
parameters are ωc = 0.1, η = 0.0001. The dimensionless coupling
strength is: purple (solid line) γac = 0, pink (dashed line) γac = 0.01,
and blue (dotted line) γac = 0.1.

As γac is switched on we see the formation of a continuous
phonon sideband, as phonon emission becomes more likely.
For γac = 0.1, the phonon sideband already contains signifi-
cant spectral weight, corresponding in a reduction of the ZPL
spectral weight (see inset), reflecting the decreasing likelihood
of the optical transition relaxation without a phonon. The
broadening of the ZPL peak is still η, i.e., there is no additional
broadening due to Holstein coupling to phonons.

Next, we turn on the Peierls electron-phonon coupling
ζ �= 0 and calculate the corresponding emission spectrum,
this time with an added optical phonon mode at ω0 = 0.1,
such that ϕ(t ) = ϕac(t ) + ϕop(t ). The corresponding emission
spectrum is shown in Fig. 3. For ζ = 0 (solid blue line), we
recover the Holstein-only coupling but now with additional
sideband peaks at energies ξ = ε − nω0. For this coupling
strength, only the n = 1, 2 peaks are resolved due to the
models’ second order perturbative treatment of the electron-
phonon coupling. This reflects the fact that the strength of the
electron-phonon coupling represents the number of phonons
in the cloud thereby capping the number of optical phonon
peaks at two.

FIG. 3. Emission spectrum for dual coupling to acoustic phonons
and an optical phonon mode. Inset 1: ZPL, inset 2: first order op-
tical phonon peak, inset 3: second order optical phonon peak. The
parameters are ε = 1, ωc = 0.1, ω0 = 0.1, γac = 0.1, γop = 0.05,
η = 0.0001, � = 0.01. The relative strength of the Peierls coupling
is blue (solid line) ζ = 0, and orange (dashed line) ζ = 0.1.
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FIG. 4. ZPL characteristics in the presence of Peierls coupling to
acoustic phonons only: J (ω) = Jac(ω). (a) Full-width half-maximum
(FWHM) vs ζ , for ωc = 0.1 (blue squares), ωc = 0.2 (yellow trian-
gles), and ωc = 0.3 (pink circles). (b) FWHM vs ωc, for ζ = 0.01
(purple squares), ζ = 0.05 (blue triangles), and ζ = 0.1 (green cir-
cles). (c) ZPL spectral weight relative to total spectral weight [same
legend as (a)]. Other parameters are ε = 1, γac = 0.1, η = 0.0001.

When ζ is switched on (orange dashed line), we note two
effects of the Peierls coupling on both the ZPL and phonon
sideband. The first is a frequency shift to the entire spectrum
(ZPL and sideband) arising from the renormalization of the
optical transition frequency, see Eq. (4). The second is a
reduction in ZPL peak height alongside an increased weight
in the phonon sideband, as shown in the insets, qualitatively
similar to Fig. 2.

More careful inspection of the ZPL reveals a third, qual-
itatively new effect produced by the Peierls coupling on the
emission spectrum. To illustrate it, we fit the ZPL with a
Lorentzian and extract its full-width half-maximum (FWHM)
and fraction of the total integrated spectral weight. The results
are plotted in Fig. 4.

Figure 4(a) shows that unlike for pure Holstein coupling, in
the presence of Peierls coupling ζ �= 0, the ZPL acquires a fi-
nite intrinsic broadening in addition to the phenomenological
η. This can be a substantial effect, with a intrinsic broadening

of as much as 0.2% of the ZPL energy for γac = 0.1, ζ = 0.1,
and ωc = 0.3. The ZPL broadening is also seen to depend
strongly on the characteristic acoustic phonon frequency ωc

[see Fig. 4(b)] indicating the importance of the distribution of
phonon modes in the bath. Along with this increasing broad-
ening, the ZPL spectral weight diminishes with ζ [Fig. 4(c)],
indicating that phonon-assisted emission becomes more likely
with increased Peierls coupling. The spectral weight distribu-
tion between ZPL and sideband can also be inferred from this
plot where we see that the ZPL dominates over the sideband,
at least within the range of parameters used for our model.
The relative low intensity of the sideband feature is due to
the small electron-phonon coupling strengths used and would
be amplified for stronger couplings. For real systems, such as
the Se+:Si system we consider in Sec. IV, experimentalists are
able to probe these sideband features despite their relative low
intensities, as there is no significant background noise beyond
phonon excitations [22].

The origin of the ZPL broadening induced by the Peierls
coupling can be understood as follows. If we consider the
Holstein-only coupling contribution to the Hamiltonian, we
recover the well-known, exactly solvable, independent Bo-
son (IB) model [32]. The corresponding spectrum has two
manifolds corresponding to the two possible impurity spin
projections σ = |1〉 , |2〉 (see Appendix D for details). Phonon
emission due to Holstein coupling conserves the spin, hence it
cannot induce a transition between any states belonging to the
two different manifolds. This is why Holstein-only coupling
does not lead to an intrinsic broadening of the ZPL.

By contrast, a Peierls coupling allows for such transitions,
thereby inducing a finite lifetime to the excited dipole tran-
sition. To demonstrate this explicitly, we treat the Peierls
coupling as a perturbation and apply FGR to calculate the de-
cay rate of an initially excited optical transition. This predicts
the excited state inverse lifetime to increase quadratically with
Peierls coupling ζ and to have a nonmonotonic dependence
of ωc [see Eq. (E2)], in strong agreement with the linewidth
calculated from S(ξ ) and shown in Fig. 4. The details are
discussed in Appendix D.

We now turn our attention to address the relevance of
these model calculations to experimental measurements in the
specific cases of phosphorous and selenium donor impurities
in silicon. Both of these impurities exhibit long spin life-
times in isotopically purified silicon, making them attractive
as spin qubits [2]. Spin-photon coupling at microwave (ε =
34 meV) and mid infrared (ε = 427 meV) [22,35] frequen-
cies, respectively, may offer a means of coupling adjacent spin
qubits [22].

The T1 contribution to the ZPL linewidth of the phospho-
rous 1S-2Po TLS transition is ∼1.5 μeV [21]. In our model,
the ZPL linewidth is due entirely to T1 processes and to
first order it is determined entirely by the phonon spectral
function evaluated at ε = 34 meV and ζ . To second order, the
detailed shape of the spectral function will play a role. Since
the phonon density of states of silicon has a large peak near
34 meV, we choose an analytic approximation to the relevant
spectral function to comprise a continuum parametrized by
ωc = 5 meV, plus an optical phonon mode parametrized by
an ωo that can be varied about 34 meV. Figure 5 shows the
prediction for the ZPL linewidth (a proxy for the inverse T1
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FIG. 5. Change in FWHM of the P:Si model ZPL. Parameters are
ε = 34 meV, ωc = 5 meV, γac = 0.1, γop = 0.001, η = 0.5 μeV.
(a) Pink: ω0 = 34 meV, purple: ω0 = 40 meV, (b) blue: ζ = 0.025,
yellow: ζ = 0.05.

time) as a function of ζ for a set of ωo values. The ZPL
transition contributes ∼0.6 to the entire spectrum in these
calculations, regardless of the value of ωo.

The experimental T1 limited ZPL linewidth of ∼1.5 μeV
can therefore be obtained from the model calculations either
assuming a moderate Peierls coupling to a resonant “opti-
cal” phonon mode (really here the optical mode mimics a
flat portion of the acoustic spectrum), or by increasing the
Peierls coupling if the spectral function is not strongly peaked
at 34 meV. Regardless of this tradeoff, model values of ζ

on the order of 5% seem consistent with the experimental
value.

In the case of Se, there is negligible ZPL linewidth pre-
dicted by the model because it would take at least seven
phonons to induce a transition at this large ε. However, the
florescence emission spectrum and the relative ZPL spectral
weight have been measured at cryogenic temperatures [22].
In Fig. 6 we plot the emission spectrum calculated for this
optical transition (solid line), using the same phonon spectral
density functions used for the P calculations, with the addition
of two optical phonon modes at 18 and 55 meV to better
reflect the triple peaked phonon density of states in silicon
that does manifest itself in the experimental sideband spectra.
The model parameters γac, γop, ωc, �, ω0 were adjusted within
the bounds imposed by the approximations used in our for-
malism, to generate a phonon sideband spectrum that comes
closest to that experimentally reported [22]. However, it is
important to note that we have to limit the upper values of the
ζ , γac, and γop parameters because our analytic calculations
are only expected to be accurate for weak couplings.

FIG. 6. Emission spectrum at zero temperature for the Se:Si
optical transition (green line) for the phonon spectral density
function J (ω) (pink dashed line). Parameters are ε = 427 meV,
ωc = 5 meV, three optical phonons at: ω1 = 18 meV, ω2 = 34 meV,
ω3 = 55 meV, γac = 0.1, γop = 0.001, η = 0.1 μeV, � = 0.5,
ζ = 0.1.

The calculated sideband spectrum only vaguely resembles
that measured in experiments: the shape does not include a
large enough contribution from the continuum, and the ZPL
line in Fig. 6 represents 87% of the total spectral weight
of the emission spectrum, substantially larger than the 16%
observed in experiment (this outcome is not significantly
changed by varying ζ ). Both of these deficiencies suggest
that the electron-phonon coupling strength is likely larger
than can be accounted for with the current approximations.
Clearly a better model for J (ω) and a numerical evalua-
tion of the various integrals will be necessary to obtain a
more accurate agreement, however we can conclude that the
current model Hamiltonian that includes both diagonal and
off-diagonal coupling provides a semiquantitative description
of the experimental sideband spectral shape, and the relative
ZPL spectral weight.

V. SUMMARY AND CONCLUSIONS

We have analyzed a model that studies the
emission/absorption properties of a dipole optical transition
subject to both Holstein (diagonal) and Peierls (nondiagonal)
electron-phonon coupling. Our analysis was performed
entirely analytically, using the powerful non-Markovian
method of NIBA, which retains feedback mechanisms from
the phonon bath.

Our results demonstrate the sensitivity of the characteris-
tics of these optical transitions not only to the strength of the
electron-phonon coupling—especially the Peierls coupling—
but also to parameters pertaining to the distribution of phonon
modes in the environment. We find that both forms of coupling
enhance phonon sideband formation in the emission spectra,
however only the Peierls coupling also leads to linewidth
broadening of the ZPL, in contrast to the infinite lifetime
obtained for Holstein-only coupling. This demonstrates the
importance of including Peierls couplings for realistic stud-
ies of these systems. The resulting excited state lifetimes
are found to depend strongly on the distribution of phonon
modes in the environment, with phonon spectral densities
favoring a low-frequency distribution of modes producing
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much longer lifetimes than those peaked towards higher
frequencies.

It is important to note that these calculations were per-
formed at zero temperature, so this Peierls induced broadening
is entirely due to quantum fluctuations. At finite tempera-
tures we expect to see an additional temperature dependent
broadening.

Both the simplified analytic form of the spectral density
function assumed in these calculation, and the limitations
on the diagonal and off-diagonal coupling strengths imposed
by the model approximations, limit the extent to which di-
rect comparisons with experimental results can be made.
Nevertheless, in the case of the ZPL linewidth of P, it ap-
pears a Peierls parameter on the order of 5% is required for
the model to reproduce experimental results. In the case of
the Se emission spectrum in silicon, the results suggest that the
model likely has to be extended to allow for at least one order
higher (third order) in the Holstein phonon coupling strength.

Further work will therefore include extending the ap-
proximations to higher order in the coupling strengths,
and using more realistic spectral density functions. The
results should help guide the search for materials and de-
fect centers that offer the desired optical properties to
complement long spin-coherence lifetimes, for high-fidelity
spin-photon interface applications in quantum information
applications.
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APPENDIX A: ELECTRON-PHONON COUPLING
TO A DEFECT DIPOLE TRANSITION

Defect spin qubits are generally associated with an elec-
tronic spin degree of freedom and are not usually affected
by electron-phonon coupling. However, in order to exper-
imentally access the spin qubit state, an optical transition
associated with some other levels within the ground and ex-
cited state manifolds of the defect atom are often utilized. See
Ref. [1] for the specific case of selenium atoms in silicon.
The dipole transition is however subject to electron-phonon
coupling and we briefly outline the physical origin of this
coupling below.

Donor atoms placed inside a semiconductor host lattice
like silicon are pointlike defects in the lattice, whereas the
bound electron wave function extends across many lattice
sites. As a result, the energy level structure of the donor
atom is significantly modified by the host lattice. In the case
of silicon for example, the sixfold valley degeneracy leads
to valley-orbit splitting and the excited states of the donor
atom will become linear combinations of wave functions
associated with the six equivalent valleys [36], specifically:
φσ (r) = ∑6

λ=1 χσ,λuλ(r). Here σ = 1, 2 is the pseudospin in-
dex, λ = 1 − 6 are the valleys, and uλ(r) are their individual

contributions, while χσ,λ = ±1 define the symmetry of the
linear combination.

Coupling to phonons arises from modulations of the
electron-ion interaction

∑
n V (r − Rn) = ∑

n V (r − R(0)
n ) −∑

n un∇V (r − R(0)
n ). Here n indexes ions, R(0)

n are their
equilibrium positions, and un are their displacements from
equilibrium which can be expanded in terms of phonon opera-
tors. Finite off-diagonal coupling arises if the matrix elements
〈φ↑|∇V (r − R(0)

n )|φ↓〉 �= 0. Up to (noncanceling) signs aris-
ing from the product of the various χ , these matrix elements
have contributions similar to those for the diagonal coupling
〈φ↑|∇V (r − R(0)

n )|φ↑〉 − 〈φ↓|∇V (r − R(0)
n )|φ↓〉 �= 0.

This is the origin of electron-phonon interactions for defect
atoms in semiconductor environments, however it should be
noted that the Hamiltonian we consider in this work is quite
general and is not necessarily restricted to this situation.

APPENDIX B: FLUORESCENCE EMISSION SPECTRUM
IN THE POLARON FRAME AND INTERACTION PICTURE

The fluorescence spectrum of emitted radiation by an oscil-
lating dipole source in a thermal equilibrium state at t = 0 is
given by Eq. (9) in the main text. Performing the trace over the
spin degrees of freedom, one is left with the matrix element

S(ξ ′) = Re
∫ ∞

0
dte−iξ ′t 〈〈1| σ−(t ) |2〉〉ph (B1)

as the spin space is restricted to {|1〉 = |↓〉 , |2〉 = |↑〉} and the
system is initializsed in the state |2〉 = σ+(0) |1〉, and we need
to perform the trace over the phonon bath 〈· · · 〉ph = trph(· · · ).

Transforming to the polaron frame we insert the identity
1 = ŨŨ †, see Eq. (2):

S(ξ ′) = Re
∫ ∞

0
dte−iξ ′t 〈〈1| Ũ σ̃−(t )Ũ † |2〉〉ph, (B2)

where σ̃−(t ) = Ũ †σ−Ũ is now in the polaron frame.
Expanding Ũ = 1 − (σz + ζσx )

∑
q uq(bq − b†

q) +
1
2! (1 + ζ 2σx )

∑
q u2

q(bq − b†
q)2 + · · · and collecting

terms, we find: 〈1| σ̃−(t ) |2〉 = 〈1| eφ̂0 σ̃−(t )e−φ̂0 |2〉 +
〈1| eφ̂0 σ̃−(t )(e−ζ φ̂0 − 1) |1〉 + 〈2| (eζ φ̂0 − 1)σ̃−(t )e−φ̂0 |2〉 +
〈2| (eζ φ̂0 − 1)σ̃−(t )(e−ζ φ̂0 − 1) |1〉, where φ̂0 = φ̂(ζ = 0)
are as defined in the main text. For convenience, we define
˜|α〉 = e−φ̂0 |α〉 , ˜|α〉ζ = (e−ζ φ̂0 − 1) |α〉 to represent the

polaron wave functions.
Next, we move to the interaction picture. Until here, the

spin operators in S(ξ ) evolve in the Heisenberg picture ac-
cording to σ±(t ) = U †

H (t )σ±UH (t ) where UH (t ) = e−iH̃t and
the Hamiltonian H̃ = H̃0 + H̃ ′ is the full Hamiltonian in the
polaron frame including its static part H̃0 and time-dependent
part H̃ ′, as defined in the main text.

Consider now the first term in the equation above.
In the interaction picture, it becomes ˜〈1|σ̃−(t ) ˜|2〉 =
˜〈1|eiH̃ ′t σ̃ ′

−(t )e−iH̃ ′t ˜|2〉 = ∑
α,β G̃†

α1(t ) ˜〈α|σ ′
−(t ) ˜|β〉G̃β2(t ),

where the spin operators are now in the interaction picture:
σ ′

±(t ) = eiH̃0tσ±e−iH̃0t and we use matrix elements of the
propagators G̃αβ = ˜〈α|e−iH̃ ′t ˜|β〉.
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Treating all other terms similarly, we arrive at the expres-
sion for the full emission spectrum:

S(ξ ′) = Re
∫ ∞

0
dte−i(ξ ′−εζ )t [〈G̃†

11G̃22〉ph + 〈G̃†
11G̃21ζ

〉ph

+ 〈G̃†
2ζ 1G̃22〉ph + 〈G̃†

2ζ 1G̃11ζ
〉ph]. (B3)

.
Performing the time series expansion of the Green’s func-

tions, see Eq. (12), reveals that the last three terms in Eq. (B3)
produce imaginary first order terms and all subsequent terms
are of order O(ζ 3) → 0 or higher. Therefore, to this order, the
emission spectrum equals

S(ξ ) ≈ Re
∫ ∞

0
dte−iξ t 〈G̃†

11(t )G̃22(t )〉ph. (B4)

APPENDIX C: PHONON SPECTRAL DENSITY FUNCTION

Here we describe in more detail the derivation of the cubic
form of the acoustic phonon spectral density function, used in
the text.

We use the Debye approximation for the acoustic phonon
dispersion: ωs,q ≈ vs|q| where the index s runs over longitu-
dinal and transverse branches and v is the sound velocity. The
spectral density function, defined as J (ω) = ∑

s,q λ2
s,qδ(ω −

ωs,q ), contains a summation over each branch and all the mo-
menta in the Brillouin zone, which is taken to be a sphere of
radius qD. In the thermodynamic limit we replace

∑
s,q · · · →∑

s

∫ qD

0 dq q2 · · · (up to normalization factors). Finally, we
consider the deformation potential for electron scattering by
acoustic phonons, where the coupling is found to be [32,37]

λs,q = 2κsq√
2V ρωs,q

, (C1)

where κ is the deformation potential, V is the sample volume,
and ρ its mass density.

Inserting everything into J (ω), performing the integrals,
and summing over two transverse and one longitudinal

acoustic phonon branches produces [38,39]

Jac(ω) =
(

κ2
l

v5
l

+ 2κ2
t

v5
t

)
ω3

2πρ
, (C2)

where the material constants are customarily grouped into
γac/ω

2
c .

APPENDIX D: THE TWO-POINT PHONON CLOUD
CORRELATION FUNCTION

In truncating the number of long-range (in time) phonon
cloud processes according to NIBA we are left with calculat-
ing a two-point correlation function that describes interacting
successive bath displacements:

〈K̂+(t )K̂−(t ′)〉ph

=
〈

(ζ ε)2

4(1 + ζ 2)2

(
cosh[φ̂ζ (t )] − 1

)(
cosh[φ̂ζ (t ′)] − 1

)

− (ζ ε)2

4(1 + ζ 2)
sinh[φ̂ζ (t )]sinh[φ̂ζ (t ′)]

− (ζ ε)2

4(1 + ζ 2)
3
2

(
cosh[φ̂ζ (t )] − 1

)
sinh[φ̂ζ (t ′)]

+ (ζ ε)2

4(1 + ζ 2)
3
2

(
cosh[φ̂ζ (t ′)] − 1

)
sinh[φ̂ζ (t )]

〉
ph

. (D1)

Expanding the hyperbolic functions in terms of the bath
displacement operators eφ̂ζ (t ) and e−φ̂ζ (t ), we obtain a
combination of two-point correlation functions of the form
〈B̂±(t )B̂∓(t ′)〉ph = B2〈e±φ̂ζ (t )e∓φ̂ζ (t ′ )〉ph, 〈B̂±(t )B̂±(t ′)〉ph =
B2〈e±φ̂ζ (t )e±φ̂ζ (t ′ )〉ph, as well as Debye-Waller factors B given
by Eq. (16).

For Holstein (diagonal) coupling, the two-point phonon
cloud correlation functions are well know [29,32]:

〈B̂±(t )B̂∓(t ′)〉ph = B2exp[ϕ(t − t ′)] (D2)

with ϕ(t ) defined in the main text in both its discrete and
continuous forms, see Eqs. (15) and (19).

It remains to calculate the Fourier transform of the Peierls
contribution to the phonon cloud correlation function ϒ(ξ ) =
υ(ξ ) + ϒac(ξ ) + ϒop(ξ ) + ϒmix(ξ ) defined in Eq. (17). To
facilitate this we expand to second order in the phase ϕ(t ) to
find

υ(εζ − iη) = (ζ ε)2B2
0(1 − 2B)η

2(1 + ζ 2)2(ε2
ζ + η2)

, (D3)

ϒac(εζ − iη) = − γac(ζ ε)2εζ

2ω2
c (1 + ζ 2)

B2
0B2exp

[−εζ

ωc

]
cos(η/ωc)θ (εζ ) + (ζ ε)2

2(1 + ζ 2)2
B2

0B2

×
[

η

ε2
ζ + η2

+ γ 2
acεζ

6ω4
c

exp
[−εζ

ωc

]
cos(η/ωc)3η2(1 − ε2

ζ )θ (εζ )

]
,

ϒop(εζ − iη) = − γopB2
0B2(ζ ε)2�

(1 + ζ 2)[(ω0 − εζ )2 + �2]
,

ϒmix(εζ − iη) =
γacγop(ζ ε)2B2

0B2exp
[

ω0−εζ

ωc

]
ω2

c (1 + ζ 2)2
θ (εζ )

[
(εζ − ω0) cos

(
�+η

ωc

) + (� + η) sin
(

�+η

ωc

)]
, (D4)
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FIG. 7. Comparison of emission spectrum predicted by formal-
ism used in the main text (blue solid line) and perturbation theory
(pink dashed line) for a pure Holstein-coupling (ζ = 0) model with
acoustic phonons. Inset shows percentage difference between model
and perturbation theory results. Parameters are ε = 1, γac = 0.1,
ωc = 0.1, η = 0.0001.

where the real part has been retained only as required by
Eq. (10).

APPENDIX E: PERTURBATION THEORY CALCULATION
OF ZPL LINEWIDTH AND SIDEBAND

If we set ζ = 0 in Eq. (1), we recover the well-known IB
model. It is exactly solvable and produces two manifolds of

eigenstates |σ, {nq}〉 ≡ |σ 〉 ⊗ ∏
q

(B†
qσ )nq

√
nq! |σu〉, where σ = ±

labels the spin’s eigenstates, the dressed phonon operators
are Bqσ = bq − σuq/2, and their corresponding vacuum states
are |σu〉 = ∏

q e−u2
q/2+σuqb†

q |0〉. Their corresponding eigenen-
ergies are Eσ,{nq} = σ ε

2 − ∑
q λ2

q/4ωq + ∑
q ωqnq.

Using perturbation theory, we calculate the corresponding
emission spectrum to be

S(ξ ) = e−γac [πδ(ε − ξ ) + γac

ω2
c

(ε − ξ )e−(ε−ξ )/ωc ], (E1)

where the first term is the infinite lifetime ZPL and the second
one is the phonon sideband. In Fig. 7 we compare S(ξ ) cal-
culated using the polaron transformation technique outlined
in the main text (for ζ = 0), to this first order PT result in
Eq. (E1). For low-phonon frequencies both methods agree

FIG. 8. Comparison of ZPL FWHM for model (blue solid line)
and perturbation theory (PT) results (yellow dashed line) for γ = 0.1
(a). Difference between FWHM calculated from S(ξ ) and PT (b).
Measured relative to η = 0.001 (in units of ε).

well, as expected, but begin to diverge for higher frequencies
as higher order processes (underestimated by first order PT
theory) come into effect. The inset shows the percent differ-
ence between S(ξ ) for both methods.

We can also calculate the transition probability for a system
prepared initially in the state |σ = |2〉 , {0}〉, to decay into the
continuum of states |σ = |1〉 , {nq}〉, through Peierls coupling.
Using FGR, the rate of decay (proportional to the inverse
lifetime τ ) is

1

τ
= γacζ

2 πε3

2ω2
c

e−2γac−ε/ωc . (E2)

The corresponding FWHM = 2/τ is compared in Fig. 8 to the
linewidths extracted from S(ξ ) using the fitting procedure out-
lined in the main text. We find very good agreement between
the two methods, comparing their functional dependencies on
ωc [Fig. 8(a)] and calculating the difference � between the
two methods in Fig. 8(b).
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