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We use the density matrix renormalization group method to study a one-dimensional chain with Peierls
electron-phonon coupling, which describes the modulation of the electron hopping by lattice distortions. We
demonstrate that this system is stable against phase separation in the dilute density limit. We only find phase
separation numerically for large couplings for which the linear approximation for the electron-phonon coupling
becomes invalid; this behavior can be stabilized in a narrow sliver of the physical parameter space if the
dispersion of the phonons is carefully tuned. These results indicate that in the dilute electron density limit,
Peierls bipolaron liquids are generically stable, unlike in other models of electron-phonon coupling. We show
that this behavior extends to finite carrier concentrations of up to quarter filling. This stability of low-density,
light-mass bipolaron liquids in the Peierls model opens a path to high-Tc superconductivity based on a bipolaronic
mechanism, in higher dimensions.
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Introduction. A primary goal in condensed matter physics
targets the discovery and understanding of unusual phases
of matter that arise from strong correlations. Correlated
electron-lattice systems manifest in fascinating ways in many
experimentally relevant situations, such as polaronic phenom-
ena in the dilute electron density limit [1–5], and charge
order and superconductivity at finite electron concentrations
[6–8]. In particular, the search for alternative microscopic
mechanisms for high-Tc superconductivity has stimulated a
renewed interest in the study of bipolarons—bound states
of two polarons, where a polaron is an electron dressed by
a cloud of phonons—in the presence of different forms of
electron-lattice coupling.

Recent work [4] has in fact demonstrated that the Peierls
electron-phonon coupling [9–11], which describes the mod-
ulation of the electron hopping due to lattice distortions,
gives rise to strongly bound but light-mass bipolarons.
As a result, these should remain phase coherent up to
high temperatures, opening a possible route to phonon-
mediated high-Tc superconductivity whose fingerprints may
have already been observed experimentally in the material
Ba1−xKxBiO3 [12,13]. A possible hindrance to this scenario
are competing instabilities that could favor a different or-
der. For example, for the more studied generalized Holstein
[14,15] and Fröhlich [16,17] models in which the lattice
distortion modulates the electron’s on-site energy, phase sep-
aration sets in at fairly weak electron-phonon couplings for
low carrier concentrations [18–20]. This is because bipolarons
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in these models become increasingly heavy at stronger cou-
plings [21–23] and experience a phonon-mediated long-range
electron-electron attraction. The latter favors clustering of
bipolarons in order to minimize the total energy, thus inducing
phase separation. This phenomenon presents a major obstacle
to bipolaronic superconductivity (at any temperature) in these
models. In contrast, as stated earlier, the Peierls coupling
favors light bipolarons even at very large couplings because
it mediates effective pair-hopping interactions that enhance
the kinetic energy of bipolarons [4]. As such, it is unclear
whether phase separation occurs in the Peierls model at finite
electronic densities. In this regime, the lack of controllable
analytical approaches calls for the use of unbiased numerical
techniques.

In this Letter, we use the density matrix renormalization
group (DMRG) method [24] to show that in one dimension
(1D), a dilute liquid of bipolarons is stable against phase
separation up to strong Peierls electron-phonon couplings.
Phase separation occurs only when lattice distortions are so
large such that the linear approximation breaks down and the
model becomes unphysical. Refinements such as the inclusion
of a finite phonon dispersion may render phase separation
possible for sufficiently large couplings, but also pushes the
critical coupling to larger values. We illustrate this main re-
sult in Fig. 1 where we contrast the stability of a liquid of
Peierls bipolarons with the behavior of a generalized extended
Holstein model in which phase separation sets in at very low
couplings. We also confirm that this phenomenology extends
to finite electron concentrations up to quarter filling (see
Fig. 4).

Instability of polarons or bipolarons to phase separation
operates more effectively in lower dimensions. Therefore,
given our results in 1D, we expect the stability of a liquid of

2469-9950/2021/104(20)/L201109(5) L201109-1 ©2021 American Physical Society

https://orcid.org/0000-0001-9722-6388
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.L201109&domain=pdf&date_stamp=2021-11-17
https://doi.org/10.1103/PhysRevB.104.L201109


NOCERA, SOUS, FEIGUIN, AND BERCIU PHYSICAL REVIEW B 104, L201109 (2021)

unphysical

1 2 4 6 80.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ω[t]

λ

Peierls (δ = 0.02)
Extended Holstein

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

λ

D
Ω

λ
/2

t

Ω = 1 Ω = 2
Ω = 4 Ω = 6
Ω = 8

FIG. 1. Main panel: Phase diagram of the 1D Peierls model
contrasted against that of the extended Holstein (EH) model in the
dilute electron density limit. The latter represents a lattice model that
mimics the physics of the Fröhlich coupling, see Ref. [18], for which
λ = g2/(2�t ). The phase boundary defined by λc(�) separates a
stable liquid of bipolarons from phase separation. For the Peierls
model, the bipolaron liquid is stable for λ < λc (orange region),
becomes unstable to phase separation for λc < λ < λs (grey region),
and the latter quickly gives way to an unphysical regime for λ > λs

(white region), see text for details. For the EH model, the dashed
line labels critical values λc(�) separating a stable liquid of bipo-
larons for λ < λc (red-orange region) from the phase separation for
λ > λc (all regions above). In clear contrast to the EH model, in the
Peierls model the bipolaron liquid is stable up to much larger λ, with
λc → ∞ as � → ∞. These DMRG results are for a system with
L = 32 sites, N = 6 electrons and using a finite dispersion parameter
δ = 0.02. Inset: Staggered displacement amplitude D, defined in
Eq. (1), as a function of λ for different values of � in the Peierls
model. The horizontal dashed line at 1/2 defines the limit beyond
which phonon displacements become unphysical.

Peierls bipolarons to extend to higher dimensions. This, cou-
pled with the arguments of Ref. [4] showing that the Peierls
model realizes light-mass bipolarons, further supports the pos-
sibility of high-Tc superconductivity based on a bipolaronic
mechanism in physically relevant dimensions [25,26].

Model. We consider the one-dimensional Peierls model of
electron-phonon coupling [9–11,27,28]

H = He + Hph + Ve−ph.

Here

He = −t
∑
i,σ

c†
i,σ ci+1,σ + H.c.

describes nearest-neighbor hopping of electrons of spin σ ∈
{↑,↓} in a single electronic band with creation operator c†

i,σ
at site i ∈ {1, .., L}, and number operator n̂i = ∑

σ n̂i,σ . The
Peierls electron-phonon coupling describes the modulation of
the hopping integral due to lattice distortions in the linear
approximation:

Ve−ph = g
∑
i,σ

(c†
i,σ ci+1,σ + H.c.)(b†

i + bi − b†
i+1 − bi+1).

Phonons belong to an optical Einstein mode of frequency �

(we set h̄ = 1) with

Hph = �
∑

i

b†
i bi + δ

�

4

∑
i

(b†
i + bi − b†

i+1 − bi+1)2.

Here, a phonon is described by a boson creation operator b†
i at

site i ∈ {1, .., L}. The δ term gives a dispersion to the optical
phonons (we set the lattice spacing a = 1 and oscillator mass
M = 1): �q = �

√
1 + 4δ sin2(q/2) shows hardening at the

zone boundary q = ±π if δ �= 0. We characterize the strength
of Peierls electron-phonon coupling via the dimensionless
coupling λ = 2g2/(�t ).

Methods. We study N � 16 electrons in the zero mag-
netization sector Sz

Tot = 0 of the Peierls model on chains of
lengths L � 48. We use DMRG to compute the ground state,
utilizing up to nphmax

+ 1 = 20 phonon states to represent the
local phonon Hilbert space. In the literature, DMRG has been
often used to study one dimensional correlated Hamiltoni-
ans with Holstein electron-phonon coupling, seldomly with
Peierls electron-phonon coupling [29–43]. Our numerical re-
sults were converged with respect to the bond dimension m. A
maximum m = 600 provides convergence with a truncation
error smaller than 5 × 10−7 for open boundary conditions
(OBC) and 5 × 10−6 for periodic boundary conditions (PBC),
see the Supplemental Materials for more information [44].

Note that unlike in quantum Monte Carlo approaches,
where an explicit cutoff on the amplitude of the lattice distor-
tions is introduced to avoid unphysical changes in the sign of
the hopping term [45,46] or a restricted interval of interaction
strengths is explored, in DMRG simulations one may use the
δ phonon term as a Lagrange multiplier that energetically
penalizes unphysical changes in the sign of the hopping, i.e.,
as a physical constraint on the length of the bonds.

Dilute electron density limit. Previous work showed that
Peierls bipolarons are stable against dissociation into single
polarons for all λ, unless an extremely large Hubbard repul-
sion is present (a possibility ignored in this paper) [4]. We
first analyze the stability of a dilute liquid of these Peierls
bipolarons. We use DMRG to find the ground-state (GS) en-
ergies EN for N = 1, 2, 4, 6 electrons on a chain with L = 32
sites shown in Fig. 2. We define �2 = 2E1 − E2,�4 = 2E2 −
E4,�6 = E2 + E4 − E6 and study their dependence on λ in
Fig. 2(a). In the thermodynamic limit, all �N � 0: �N = 0
indicates that smaller complexes, each composed of fewer
than N particles, are energetically favorable (e.g., �4 = 0
means that the N = 4 GS consists of two bipolarons), while
�N > 0 implies that bound state of the N carriers is more
stable. Figure 2(a) shows that �2 > 0 for all λ, confirming
that the N = 2 GS always corresponds to a bipolaron, in
agreement with [4]. Both �4 and �6 only become positive
above roughly the same λc � 0.8, showing the tendency of all
carriers present in the system to coalesce if λ � λc. [We note
that negative �2,�4 values for λ < λc are due to finite-size
effects, see the inset of Fig. 2(a).] (Additional analysis based
on Maxwell construction is presented in the Supplemental
Material [44]). Note that below λc we find E2N = NE2, and
E2 agrees with the single bipolaron energy of Ref. [4]. This
confirms that this dilute bipolaron liquid is formed of es-
sentially isolated bipolarons whose properties follow from
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FIG. 2. (a) Main panel: Energies �2 = 2E1 − E2, �4 = 2E2 −
E4, �6 = E2 + E4 − E6 against λ for � = 2t , where EN is the GS
energy for N electrons on a chain of infinite length. For λ > λc ≈
0.8, �4 > 0 and �6 > 0 signal that the N = 4, 6 carriers bind, in-
dicating phase separation (see text for more details). Inset: Scaling
of �4 with system size L proves that for λ < λc ≈ 0.8, �4 → 0 as
L → ∞. The scaling was performed using data up to L = 64 (not
shown) and assuming �4(L) = a0 + a2

L2 + a4
L4 for λ < λc ≈ 0.8 and

�4(L) = a0 + a2
L for λ > λc ≈ 0.8. (b) �4 as a function of λ for

various values of the phonon frequency �, at δ = 0.02. (c) �4 as
a function of λ for various values of δ of the phonon dispersion, at
� = 2t .

Ref. [4]; in other words they continue to be of light-mass and
strongly bound in the dilute liquid phase.

Figure 2(b) shows the evolution of λc with �, which we
use to identify the location of the phase boundary between the
bipolaron liquid and phase separation in the phase diagram of
Fig. 1. Figure 2(c) shows that λc drifts to larger values with
increasing δ, indicating that the instability of bipolarons to
clumping (phase separation) is unlikely in realistic systems
(see Supplemental Material [44] for an extended discussion).
This drift occurs due to a competition before the onset of
phase separation between the δ term, which disfavors dimer-
ization, and the electron-phonon interaction, which drives
dimerization at large couplings. Special combinations of δ

and λ render phase separation possible within the domain of
physicality of the model, as we discuss next.

In the linear approximation, t (xi − x j ) ≈ t − g
√

2�(xi −
x j ), where xi ≡

√
1

2�
(b†

i + bi ). This approximation is only

valid for small distortions 〈xi − x j〉  t/g
√

2�. As we show
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FIG. 3. GS expectation values of the average occupation number
〈n̂i〉 [(a),(c)], lattice distortion 〈bi + b†

i 〉 [(b),(d)]. The results were
obtained for a chain with L = 48 and OBC and with N = 6 elec-
trons (ρ = 0.125) and at phonon frequency � = 2t . Panels (a) and
(b) show results for various λ for dispersionless phonons δ = 0.
Panels (c) and (d) show results for various δ at strong coupling
λ = 1 corresponding to the unphysical regime. Inset of (d) shows
the staggered displacement amplitude [Eq. (1)] as a function of
δ; the horizontal red dashed line at 1/2 sets the limit of physicality
for the phonon displacements.

next, we always find evidence for lattice dimerization at the
onset of phase separation: 〈xi〉 ∼ (−1)i〈x〉. Thus, here the

model remains physical iff |〈b†
i + bi〉|  t

2g = 1
2

√
2t
�λ

. We de-
fine the staggered dimerization amplitude

D = 1

S

S∑
j=1

|〈b†
j + b j〉|, (1)

computed over the typical size S ≡ S(ρ,�, λ) of the dimer-
ized region characterized by finite displacements (width at
half-maximum of the displacement profile) as a proxy for the
viability of the linear model: results are physical only when

D
√

�λ
2t < 1

2 . The inset of Fig. 1 shows that this quantity is
very small at small λ, but increases very sharply at larger

λ. D
√

�λ
2t crosses the physicality limit of 1/2 (gray dots in

inset) marking the limits in the phase diagram (gray dots in
main figure) beyond which the model become definitively
unphysical due to the breakdown of the linear approximation.
This means phase separation exists only within a narrow sliver
of the phase diagram whose width would be further reduced if

a more stringent criterion D
√

�λ
2t  1

2 is used. Unraveling the
physics at very large electron-phonon couplings requires in-
clusion of nonlinear corrections to the coupling in the model,
which is beyond the scope of this work.

Figure 3 presents evidence that coalescing of bipolarons
at λ > λc represents a signature of true phase separation.
Figures 3(a)–3(c) show the average electron density 〈n̂i〉 as
a function of position i for a chain with OBC and L = 48
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FIG. 4. Main panel: Phase diagram of the 1D Peierls model as
a function of the carrier filling ρ = N/L (ρ = 0.5 corresponds to
quarter filling) and λ from DMRG for a system with L = 32 sites
and � = 2t . Inset (a): Staggered displacement amplitude [Eq. (1)] as
a function of λ for various ρ. The horizontal dashed line at 1/2 sets
the limit of physicality for the phonon displacements. Inset (b): Size
of the dimerized region in the phase separated phase as a function
of ρ.

sites and N = 6 electrons (nominal density ρ = 0.125) and
� = 2t . In the δ = 0 limit, depicted in Fig. 3(a), we observe
for λ < λc a density profile with N/2 peaks characteristic of a
liquid of bipolarons; as λ grows and crosses λc, the electrons
clump into an electron-rich region forming a Gaussian-like
droplet with a maximum density n = 0.5, surrounded by
electron-free regions, a behavior characteristic of phase sep-
aration [47]. We emphasize that due to the use of OBC,
the electron-rich, phase-separated region is centered at L/2.
Simulations with PBC (see Supplemental Material [44]) give
identical results at strong coupling, but with the center of the
electron-rich region not pinned to a specific site. Figure 3(c)
establishes that even at strong coupling, e.g., λ = 1, a suf-
ficiently large δ melts the electron-rich region re-instating
the bipolaronic liquid phase. Figures 3(b)–3(d) demonstrates
that the lattice indeed dimerizes: (−1)i〈bi + b†

i 〉 > 0 in the
core of the electron-rich region; for λ > λc. In particular,
Fig. 3(b) shows that for λ = 1 > λc the phonon displace-
ment amplitude within the electron-rich region far exceeds
the physically allowed limit D

√
�λ/2t = 1/2. Figure 3(d)

shows that δ can be fine tuned so that an electron-rich region
is accompanied by lattice dimerization within the stability
limits of the model. We have also verified (not shown) that
double occupancy in the core of the electron-rich region is
very small 〈n̂i↑n̂i↓〉 � 0.125, which implies that a moderate
repulsive Hubbard U will not affect these results significantly,
see, e.g., [48].

Small but finite electron concentrations. Having established
the stability of bipolarons in the extremely dilute limit, we

also confirm the stability of the bipolaron liquid for finite
densities ρ = 0.125 − 0.5. We construct the phase diagram
as a function of ρ in Fig. 4 for δ = 0.04. We find, as before, a
robust bipolaronic liquid that is stable up to very large values
of λ, almost everywhere the linear approximation is valid. The
critical value λc above which phase separation is energetically
favorable decreases with electronic filling. In the Supplemen-
tal Material [44], we determine the critical δ at strong coupling
λ = 1 such that the dimerized phonon displacement amplitude
falls within the physical limit, finding that δc increases nearly
linearly from the dilute density limit up to quarter filling.
These results conclusively demonstrate the robustness of the
bipolaron liquid phase in the Peierls model beyond the ex-
tremely dilute density limit. This is particularly relevant for
commensurate densities such as quarter filling ρ = 0.5, where
instabilities to orders other than phase separation might have
been anticipated.

Conclusions. We have numerically studied a model with
linear Peierls electron-phonon coupling on a 1D chain, and
proved that a dilute bipolaron liquid is stable against phase
separation up to large couplings λ < λc. For λ > λc we
present evidence for a new type of phase separation, with
several interesting properties including lattice dimerization
within the electron-rich region surrounded by electron poor,
undimerized regions. The region of validity of the linear ap-
proximation terminates close to λc, so that whether phase
separation occurs in the model upon inclusion of higher-order,
nonlinear couplings, remains an open question. Furthermore,
we have confirmed the stability of bipolaron liquids in most
of the physical parameter space for small carrier densi-
ties extending up to quarter filling. In contrast, in more
studied models of electron-phonon coupling like in the ex-
tended Holstein model, phase separation sets in at a much
smaller λc. These results reinforce the possibility of bipo-
laronic high-temperature superconductivity in models with
Peierls-like coupling at low carrier densities, a scenario be-
lieved to be impossible for other forms of electron-phonon
coupling [49].
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[11] S. Barišić, Phys. Rev. B 5, 941 (1972).
[12] M. Naamneh, M. Yao, J. Jandke, J. Ma, Z. Ristić, J. Teyssier,
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