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Polaron and bipolaron tendencies in a semiclassical model for hole-doped bismuthates
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Bismuth perovskites ABiO3 (A = Sr, Ba) host a variety of peculiar phenomena including bond-
disproportionated insulating phases and high-temperature superconductivity upon hole doping. While the
mechanisms underlying these phenomena are still debated, off-diagonal electron-phonon (e-ph) coupling orig-
inating from the modulation of the orbital overlaps has emerged as a promising candidate. Here, we employ
classical Monte Carlo simulations to study a semiclassical three-orbital model with off-diagonal e-ph interac-
tions. We demonstrate the existence of (bi)polaron correlations that persists in the model at high temperatures
and for hole doping away from the bond-disproportionated insulating phase. Using a spatiotemporal regression
analysis between various local quantities and the lattice degrees of freedom, we also identify the similarity
between heating- and doping-induced melting of a bond-disproportionated insulator at a microscopic level.
Our results imply that (bi)polaron physics can be a unifying concept that helps us understand the rich bismuth
perovskite phase diagram.
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I. INTRODUCTION

Bond-disproportionated or “dimerized” insulating phases
have been found in several families of quantum materials in-
cluding the bismuth perovskites ABiO3 (A = Sr, Ba) [1–4] and
the rare-earth-metal nickelates RNiO3 [5–9]. In this phase, the
oxygen octahedra surrounding the perovskite cations exhibit a
long-range alternating in and out “breathing” distortion along
the three cubic crystallographic directions. In the case of bar-
ium bismuthate, subsequent doping with Pb or K suppresses
the insulating phase, relaxes the bond-disproportionated struc-
ture, and ultimately results in high-temperature (high-Tc)
superconductivity. The rare-earth-metal nickelates, on the
other hand, cannot be hole doped. Still, they do undergo an
insulator-to-metal transition at high temperature, with a simi-
lar relaxation of the bond-disproportionated structure.

The literature invokes two main mechanisms—charge dis-
proportionation and bond disproportionation—as the potential
driving force behind these transitions. Here, we focus on the
bismuthates, but these concepts also apply to the rare-earth-
metal nickelates with some caveats.

The charge disproportionation scenario is built on the idea
that the nominal Bi 4+ valence state of the valence-skipped
Bi ions is not energetically favorable. Instead, charge trans-
fer occurs that produces alternating Bi3+ and Bi5+ ions on
interpenetrating sublattices.1 Short Bi5+-O and long Bi3+-O

*Corresponding author: sjohn145@utk.edu
1In the case of the rare-earth-metal nickelates, the charge dispro-

portionation mechanism is facilitated by the Ni 3d Hund’s coupling,
which offsets the substantial Coulombic cost of the charge density
modulation [10].

bonds form as a consequence, creating a dimerized structure.
Once it forms, the would-be Bi 6s1 electrons then prefer-
entially occupy one sublattice, giving rise to an insulating
charge-density-wave (CDW) state [1–3,11–14]. This scenario
is, however, at odds with the the highly covalent nature of
the Bi-O bond and any local Coulomb repulsion active in
the system [15,16]. Various spectroscopic techniques also
find evidence for small charge differences between the two
inequivalent bismuth ions [17–19], which speaks against this
scenario.

Bond disproportionation is an alternative to charge dispro-
portionation. This scenario derives from the notion that the
bismuthates belong to the so-called negative charge transfer
family of materials [20–23], where holes self-dope from the
cation to the ligand oxygen atoms due to a low or negative
value of the charge transfer energy �. In the bismuthates,
this process converts the energetically unfavorable Bi 4+ ion
into a Bi3+L configuration, where L denotes a hole on the
ligand oxygen atoms. The energy of this configuration can
be lowered further by coupling to a coherent breathing dis-
tortion of the lattice, thus forming a bond-disproportionated
structure [7–9,24]. In this scenario, all of the oxygen atoms
are identical in terms of their orbital occupations, and pairs
of holes occupy a molecular orbital of A1g symmetry. The
resulting nominal valence of the Bi ions are all close to being
6s2 (i.e., 2Bi3+L → Bi3+L2 + Bi3+) [24]. The relevance of
this scenario for the bismuthates has also been supported by
more recent density-functional theory (DFT) [4,22,25,26] and
model quantum Monte Carlo (QMC) [27] calculations.

Charge and bond disproportionation are not mutually ex-
clusive, of course, and it is possible that both a charge ordering
on the Bi ions and lattice distortions contribute to the forma-
tion of the charge density wave gap in bismuth perovskites. In
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fact, these scenarios can be viewed as opposite ends of a range
of possibilities controlled by the charge transfer energy and
the size of the Bi-O overlap integral [28]. For large positive
�, the holes would localize on the Bi sites, and the charge
disproportionation mechanism would dominate. In this limit,
one can describe the low-energy physics of the system using
an effective single-band model with a negative U [11,12].
Conversely, as � decreases, the Bi holes will delocalize and
transfer entirely to the oxygen orbitals once � becomes small
enough. The charge disproportionation scenario dominates
in this limit, and retaining the oxygen degrees of freedom
becomes essential to describe the physics of the system.

Determining where the nickelates and bismuthates lay on
this spectrum has implications for our understanding of their
metallic phases and potentially of superconductivity in the
bismuthates [3,29–32]. The absence of magnetism in the bis-
muthate phase diagram implies that a nonmagnetic pairing
mechanism is at work in these materials. Indeed, many ideas
have been advanced, ranging from effective negative-U cen-
ters arising from charge disproportionation [12,33] to strong
electron-phonon (e-ph) coupling [11,34] (possibly enhanced
by correlations [35,36]) to high-energy charge excitations
[37].

Angle-resolved photoemission spectroscopy (ARPES) ex-
periments on bismuthate single crystals (films) have recently
become available, and have provided some insights into these
questions. The first ARPES study on the parent compound
BaBiO3 found that its band structure was well described by
DFT within the local density approximation (LDA) and was
fully consistent with the negative charge transfer/bond dispro-
portionate view [22]. A later study on Ba1−xKxBiO3 (BKBO)
with x = 0.49 observed an increased bandwidth [38] consis-
tent with the theoretical prediction [35] that the long-range
Coulomb interaction increases the bandwidth and enhances
the e-ph coupling to generate a high Tc. Another ARPES study
on BKBO films interpreted the normal state spectra in terms of
nanoscale phase separation and a polaron-liquid-like metallic
phase [39]. This latter result is consistent with the experimen-
tal observations of local short-range Ni-O bond distortions in
the metallic phase of the related rare-earth-metal nickelates
[40,41].

This progress has motivated extensive theoretical inves-
tigations aimed at extracting the relevant minimal models
[11–14,26,27,40]. A recent DFT investigation supporting
the bond disproportionation scenario [4] has also motivated
the derivation of several tight-binding models to describe the
low-energy electronic excitations of the bismuthates and their
possible simplifications as a function of structural distortions
in two and three dimensions [26]. The most significant in-
gredient in these simplified models are the molecular orbital
states straddling the Fermi energy. In the bismuthates, these
molecular orbitals are of A1g symmetry relative to the central
Bi ion.2 The formation of these molecular orbitals provides
a natural framework for the bond disproportionation scenario

2The molecular orbital viewpoint seems to be quite general in high
oxidation state oxides, e.g., nickelates with a linear combination
of O-2p atomic orbitals of Eg symmetry [8,9], cuprates with the
formation of the Zhang-Rice singlets [42].

and polaron physics. Here, molecular orbitals with a bonding
symmetry will hybridize with the valence orbitals on cen-
tral cation sites, and the subsequent breathing motion of the
oxygen couples strongly to the carriers via the modulation
of the cation-anion overlap integrals. In this framework, one
expects that pairs of holes will be bound to local compres-
sions of the oxygen octahedra forming small polarons [27,40].
The undoped bond-disproportionated insulating phase is then
a frozen bipolaronic crystal state, which is melted by hole
doping, eventually leading to a metallic bipolaron liquid char-
acterized by fluctuating patches of local distortions.

The microscopic e-ph coupling needed to capture the
situation described is a generalization of the Su-Schrieffer-
Heeger (SSH) interaction, where the motion of the oxygen
atoms modulates the Bi-O overlap integrals.3 This coupling
mechanism leads to an e-ph interaction that is off-diagonal
in orbital space, and is difficult to treat using exact non-
perturbative methods on extended two-dimensional (2D) and
three-dimensional (3D) lattices with finite carrier concen-
trations. Only recently have quantum Monte Carlo (QMC)
calculations been possible for single- and multiorbital mod-
els with SSH-like couplings in 2D [27,43]. Relevant to our
discussion is the recent determinant quantum Monte Carlo
(DQMC) simulations of a 2D three-orbital SSH model, which
examined the problem in the negative charge transfer limit
[27]. There, the authors inferred a phase diagram qualitatively
consistent with BKBO, with a dimerized insulating phase
near half-filling and significant superconducting correlations
appearing at larger hole concentrations. Importantly, they also
found that the metallic phase was characterized by fluctuating
patches of local distortions, consistent with a (bi)polaron-
liquid-like state. That study was limited to a 4 × 4 cluster
and large phonon energies, however, due to the long auto-
correlation time associated with DQMC simulations of e-ph
models [44] and the high computational costs of treating the
SSH interaction.

In this paper, we present a study complementary to that in
Ref. [27]. Specifically, our toy models for the bismuthates are
essentially the same; however, here we treat the lattice degrees
of freedom semiclassically using a combined exact diago-
nalization and classical Monte Carlo approach. This method
allows us to overcome the system size limitations discussed
above and examine the phonons in the adiabatic regime. We
study the polaron and bipolaron correlations in the model as
a function of doping and temperature and confirm that the
model’s insulator-to-metal transition is essentially a melting
of a bipolaron crystal into a bipolaron liquid. It is important to
note that we are still restricted to studying a 2D system instead
of the actual 3D perovskite lattice because of computational
requirements. For this reason, our focus is to characterize and
understand the resulting physics from a qualitative point of
view and to verify that it agrees with the picture inferred in
Ref. [27] using different methods, a different phonon energy,
and smaller lattices. The consistency in the results found with

3Interactions of this type are also sometimes referred to as “Peierls”
couplings. For brevity, we will refer to them as SSH-like in-
teractions, even though the original SSH model was derived for
one-dimensional chains with hoping between identical orbitals.
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FIG. 1. A sketch of the two-dimensional BiO2 model. The unit
cell (indicated by the dashed box) includes the Bi 6s orbital and the
O 2px and O 2py orbitals oriented along the Bi-Bi bonds. The phase
convention for the nearest-neighbor Bi-O and O-O hopping integrals
is also indicated.

both approaches supports the idea that this physics is inherent
to the model and will survive for parameters appropriate to
describe the actual 3D materials.

This paper is organized as follows. Section II describes our
model and the combined exact diagonalization + classical
Monte Carlo method used in this work. Section III presents
our results. First, Sec. III A establishes that the model has
insulating properties at low temperature when there is on av-
erage one hole/Bi ion (i.e., at “half-filling”). Next, Sec. III B
examines the formation of the bond-disproportionate state at
and close to half-filling. Section III C discusses the evidence
for bipolaron formation in the model as a function of doping
and temperature, as seen from the perspective of several local
quantities. This section also discusses our results in compari-
son to those obtained from the DQMC treatment of a similar
model [27]. Sections III D and III E present a histogram anal-
ysis of our Monte Carlo configurations, which provides a
clearer picture of the spatiotemporal correlations between the
electronic and lattice degrees of freedom as a function of
doping and temperature. Finally, we close in Sec. IV with
some additional discussion of our results and our conclusions.

II. MODEL AND METHODS

A. The model

We consider a three-orbital model consisting of a Bi 6s or-
bital and two O 2pσ orbitals on a two-dimensional (2D) Lieb
lattice, as sketched in Fig. 1. The equilibrium positions of the
atoms are given by r + τα , where r = rxax + ryay is a lattice
vector, rx, ry ∈ Z, ax = (a, 0) and ay = (0, a) are primitive
lattice vectors, a is the equilibrium Bi-Bi bond distance, and
τs = (0, 0), τx = ( a

2 , 0), and τy = (0, a
2 ) are basis vectors for

the 6s, 2px, and 2py orbitals, respectively. Following Ref. [27],
the heavier Bi atoms are held stationary while the lighter O
atoms are allowed to displace by an amount Xrδ (δ = x, y)

along the Bi-Bi bond directions and the motion of the oxygen
is coupled to the carriers through bond-length dependent Bi-
O hopping integrals. We also neglect the kinetic energy of
the oxygen vibrations and treat the oxygen displacements as
classical variables.

We emphasize that our treatment is different from conven-
tional frozen phonon approaches in that it captures thermal
and spatial fluctuations of lattice displacements. By allowing
for both kinds of fluctuations, our model can describe physics
beyond Hartree-Fock mean-field theory. For example, this
approach correctly captures the nonmonotonic dependence
of the Néel temperature for the three-dimensional half-filled
single-band Hubbard model [45].

The model’s Hamiltonian is H = Hel + Hlat , where

Hel =
∑
〈rδ〉
σ

[t (Xrδ )s†
rσ prδσ + H.c.] + tpp

∑
〈rδδ′〉

σ

Pδδ′ p
†
rδσ prδ′σ

+
∑
rσ

[
(εs − μ)n̂s

rσ + (εp − μ)
(
n̂px

rσ + n̂
py
rσ

)]
(1)

describes the electron motion through the lattice for a given
set of oxygen displacements, and

Hlat =
∑

r

1

2
K

[
X 2

rx + X 2
ry

] +
∑

r

1

4
α
[
X 4

rx + X 4
ry

]
(2)

describes the potential energy of the ions and contains both
harmonic K and anharmonic α contributions. (The anhar-
monic terms are needed in this case to ensure that reasonable
magnitudes for the displacements are obtained for realistic
parameter choices.) The operators s†

rσ (srσ ) and p†
rδσ (prδσ )

create (annihilate) spin-σ holes on the Bi 6s and O 2pδ

orbitals, respectively; Xrδ is the displacement of O atom δ

measured relative to its equilibrium position; 〈...〉 denotes a
sum over the nearest-neighbor orbitals so that δ, δ′ = ±x,±y
index the four O atoms surrounding each Bi; εs and εp are
the Bi and O site energies, respectively; μ is the chemical
potential; and tsp(Xrδ ) and tpp are the Bi-O and O-O nearest
neighbor hopping integrals, respectively. Here, we neglect the
distance dependence of the latter (the magnitude of tpp is
small), while the former are determined according to Harri-
son’s rule [8,46]

t (Xrx ) = −tsp(1 + Xrx )−2,

t (Xry) = −tsp(1 + Xry)−2,

t (Xr,−x ) = tsp(1 − Xr,−x )−2,

t (Xr,−y) = tsp(1 − Xr,−y )−2, (3)

where tsp and tpp are the Bi-O and O-O hopping integrals in
the absence of O displacements. In Eq. (3) we have introduced
the shorthand notation Xr,−x ≡ Xr−ax,x and Xr,−y ≡ Xr−ay,y.
The phase factors for O-O hopping are P±x,±y = P±y,±x =
−P±x,∓y = −P∓y,±x = 1, as sketched in Fig. 1. We empha-
size that our model invokes neither the linear approximation
for the electron-lattice interaction [47,48] nor the harmonic
approximation for the lattice potential but treats the lattice
displacements in the adiabatic limit.

Throughout, we work on an N = Nx × Ny lattice (3N
orbitals in total) and in the context of BaBiO3 with a =
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4.34 Å as the unit length. We also fix the phonon energy to
h̄� = h̄

√
K/Ma2 = 30 meV so that K ≈ 65 eV for a realistic

oxygen mass M. The energy of the bond-stretching phonons
in bulk BaBiO3 is approximately two times larger; however,
we have found that larger values of � suppress bipolaron
formation in our semiclassical model and underestimate the
average lattice displacements deep in the bond dispropor-
tionate state in comparison to experiments. (This discrepancy
may be related to neglecting the kinetic energy of the atomic
displacements.) To ensure that the average displacements are
consistent with the lattice structure of BaBiO3 [3], we set α

by imposing |Xrδ| ≈ 0.03a (or 0.13 Å) at half-filling and at
low temperatures. For the remaining parameters, we adopt
tsp = 2.08, tpp = 0.056, εs = 6.42, and εp = 2.42 (in units of
eV) to facilitate comparisons with Ref. [27].4 This choice of
parameters places the model firmly in the negative charge
transfer regime, where the holes preferentially occupy the
oxygen sublattice. Finally, we note that we hold the strength
of the e-ph coupling constant fixed as a function of doping for
simplicity. Electronic structure calculations suggest that this
quantity can vary as the system undergoes several doping-
induced structural transitions [49], which one will need to
account for in realistic treatments of BKBO.

B. Classical Monte Carlo method

We studied the model using a combined exact diagonaliza-
tion (ED) and classical Monte Carlo (MC) method (ED+MC),
which is useful for simulating Hamiltonians where classi-
cal degree of freedoms (the lattice displacements) couple to
quantum ones (the fermions). This approach is very similar
to the one used recently to study single- and multiorbital
spin-fermion models for the cuprates [45,50] and Fe-based
[51] superconductors.

For our classical phonon displacements, the expectation
value of an observable Ô in the grand canonical ensemble is
given by

〈Ô〉 = 1

Z Tr[e−βH Ô]

= 1

Z

∫
dX

∑
m

e−βEm ({Xrδ})〈m|Ô|m〉, (4)

where Z is the partition function, β ≡ 1/T (kB = 1) is the
inverse temperature,

∫
dX is shorthand for a 2N-dimensional

integral over the atomic displacements, and |m〉 are the
eigenstates of H , computed for a given configuration of dis-
placements {Xrδ}.

In the ED+MC method, the multidimensional integral in
Eq. (4) is evaluated using the conventional Metropolis MC
algorithm [52]. Specifically, in each MC step, updates of
the type Xrδ → X ′

rδ = Xrδ + �X are proposed at each site,
where �X is drawn from a uniform probability distribution.

4DFT estimates [26] for the value of tpp place it at ≈0.3–0.35 eV for
the three-dimensional BKBO crystal structure. We have found that
increasing tpp to this range can alter the locations of phase boundaries
but does not change the qualitative picture of the physics discussed
here.

These updates are accepted or rejected with a probability
PX→X ′ = exp(−β�E ), where �E is the change in the total
energy of the system. Each MC sweep consists of repeating
this process at all lattice sites either serially or randomly. Note
that diagonalizing H has a computational cost of O(N3) so
that the computational complexity to perform one full MC
sweep scales as O(N4).

To compute each observable, the desired physical quanti-
ties are measured periodically after the sampling procedure
has obtained thermal equilibrium. Because of the O(N4) scal-
ing in ED+MC, we are limited to lattices up to N = 10 × 10
in size, and most of our results will be for this lattice size;
however, we also simulated larger lattices by employing the
traveling cluster approximation (TCA), which improves the
scaling.

The TCA reduces the computational complexity of stan-
dard ED+MC simulations from O(N4) to O(N ) [53]. TCA
scheme relies on an appropriately defined cluster of linear
dimension Lc around a particular lattice site where the MC
update is attempted. The proposed MC update is accepted
or rejected depending on the energy difference obtained by
diagonalizing the problem only within the cluster, rather than
for the full lattice. Typically, the cluster geometry is chosen
to be the same as the full lattice (as done in this work). In
a two-dimensional square lattice, for instance, the number
of sites in the cluster is Nc = L2

c . Consequently, each update
can be accepted or rejected with an computational cost of
O(N3

c ) as opposed to O(N3), where typically Nc 
 N . In addi-
tion, periodic boundary conditions are imposed on the cluster.
Thereby, the cluster acts as an independent ensemble whose
equilibrium with the remainder of the full lattice is main-
tained in a grand canonical framework. Because of the use
of periodic boundary conditions, any site within the cluster
can be equivalently chosen as the “update site,” regardless of
the location of the origin within the cluster. The TCA scheme
has been extensively tested and utilized in various contexts
[53–56]. While more advanced implementations such as the
parallelized TCA exist [55], we employ the simplest version
of TCA in this paper.

C. Observables

Our focus is on lattice (bi)polaron correlations and their
evolution upon heating and hole doping. The (bi)polarons,
where the holes are bound to local breathing distortions of
the oxygen sublattice, can be described by the polaron Sp =
1
N

∑
r〈p̂(r)〉 and bipolaron Bp = 1

N

∑
r〈ĝ(r)〉 number opera-

tors, where

p̂(r) = XrLs (n̂r↑ + n̂r↓ − 2n̂r↑n̂r↓) (5)

and

ĝ(r) = XrLs n̂r↑n̂r↓. (6)

Here, n̂rσ = n̂s
rσ + n̂Ls

rσ and n̂Lm
rσ = ∑

σ L†
mrσ Lmrσ are local

number operators. The operators Lmrσ (L†
mrσ ) with m =

s, d, x, y define molecular orbitals from linear combinations
of ligand oxygen orbitals surrounding each Bi site [27]. They
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are given by

Lsrσ = 1

2
(pr,−xσ + pr,−yσ − prxσ − pryσ ),

Ldrσ = 1

2
(pr,−xσ − pr,−yσ − prxσ + pryσ ),

Lxrσ = 1√
2

(pr,xσ + pr,−xσ ),

Lyrσ = 1√
2

(pr,yσ + pr,−yσ ). (7)

One can also perform a similar transformation for the oxygen
displacements

XrLs = 1

2
(Xr,−x + Xr,−y − Xrx − Xry),

XrLd = 1

2
(Xr,−x − Xr,−y − Xrx + Xry),

XrLx = 1√
2

(Xr,x + Xr,−x ),

XrLy = 1√
2

(Xr,y + Xr,−y). (8)

Note that the Ls and Ld operators correspond to the A1g and
Eg orbitals in Ref. [4]. Accordingly, in the molecular orbital
basis, the optical phonon operator Xr,Ls defines the bond dis-
proportionated mode of A1g symmetry, which couples strongly
to the carriers in the bismuthates according to DFT calcula-
tions [26,28]. The operator p̂(r) thus measures the combined
presence of a single hole on the Bi or A1g molecular orbital
located at r and a local compression of the four surrounding
oxygen atoms. The operator ĝ(r) measures a similar correla-
tion but involving two holes on the BiO4 complex instead of
one. Also note that we have removed the double occupancy
term in the definition of p̂(r), which is already accounted for
in the definition of the bipolaron number operator ĝ(r).

When the system has significant bond disproportionation
correlations, a two-sublattice structure will appear as the oxy-
gen octahedra collapse and expand about alternating Bi sites.
This phenomenon will be reflected in a given local quantity
Ôr if sublattice averages are performed. In our case, bond
disproportionation leads to a bipartite lattice structure, and so
we define A/B sublattice averages using

〈ÔA(B)r 〉 = 2

N

∑
r

〈
1

2
[1 ± (−1)rx+ry ]Ôr

〉
, (9)

where the + (−) sign corresponds to lattice sites on the A (B)
sublattice.

Finally, the total hole concentration ρ = 1
N

∑
r,α〈nr,α〉 is

determined from a sum over all orbitals in the cluster.

III. RESULTS

A. Insulating behavior at half-filling

Our first task is to establish the existence of a metal-to-
insulator transition at half-filling, which will form the basis
for our discussion in the remainder of the paper.

Figure 2(a) plots the average hole concentration ρ as a
function the chemical potential μ and temperature. At high

FIG. 2. (a) The average fillings of a N = 12 × 12 cluster as a
function of the chemical potential μ for various temperatures. The
values of β in the legend are given in units of eV−1. (b) The variation
of the average filling vs μ for different lattice sizes at β = 20 eV−1.

temperature, ρ varies monotonically with μ, which is in-
dicative of a metallic system with a nonzero compressibility.
As we lower the temperature, however, the filling begins to
form a plateau around ρ = 1 holes/Bi, consistent with the
opening of a gap and the transition to an insulating state. We
also see some hints of a second plateau around μ = 0.075
and ρ ≈ 1.2 holes/Bi, which is most likely due to finite-size
effects. This hypothesis is confirmed in Fig. 2(b), which plots
the filling vs chemical potential as a function of cluster size
and at a fixed β = 20 eV−1. Here, we observe that the slope of
the ρ vs μ curve around μ = 0.075 increases on larger lattices
while the plateau at half-filling is robust. These results confirm
that the half-filled system is an insulator at low temperatures.

B. Temperature and doping evolution of
the local orbital occupations

Next, we examine several of the system’s sublattice orbital
occupations as a function of temperature T and filling. Fig-
ure 3(a) shows results for the average occupancy of the Bi 6s
(ns) and O 2pδ (npδ , δ = x, y) orbitals at half-filling (ρ = 1),
as well as the Ls molecular orbital (nLs ), as a function of
temperature. The doping evolution of the same quantities at
fixed β = 20 eV−1 is shown in Fig. 3(b). The two sublattice
averages are plotted using solid and open symbols, respec-
tively, in both panels.

Figure 3 reveals that there is a significant tendency toward
bond disproportionation approaching half-filling, which is ev-
ident in the bifurcation of ns and nLs at low temperatures.
The bifurcation reflects the fact that the Ls molecular orbital
hybridizes with the central 6s orbital as the O atoms compress

115129-5



JIANG, SAWATZKY, BERCIU, AND JOHNSTON PHYSICAL REVIEW B 103, 115129 (2021)

FIG. 3. Various local quantities obtained by averaging over the
two sublattices vs (a) T at half-filling ρ = 1 and (b) ρ at fixed
β = 20 eV−1. The bifurcation at low temperatures and low doping
levels indicates signals the system’s tendency toward bond dispropor-
tionation. Heating and/or doping both induce the transition from the
bond-disproportionated state toward a uniform phase that can be best
characterized as a (bi)polaron-liquid-like phase (see below). These
results were obtained on an 10 × 10 cluster.

around a Bi atom. The hole occupation on the short-bond
BiO4 plaquette should, therefore, increase at the expense of
hole occupation on the neighboring plaquettes. Increasing
the simulation temperature or hole concentration reduces the
size of the bifurcation, before it ultimately disappears for
T > 0.125 eV or a hole density ρ > 1.15. [The precise values
depend somewhat on the cluster size; see, e.g., Fig. 5(b).]
This behavior reflects a temperature- and/or doping-driven
transition from a bond-disproportionated state to one that
appears uniform once averaged over the cluster. Later, we
will show that the “uniform” phase is, in fact, inhomogeneous
when viewed on smaller lengths scales, consistent with the
DQMC results [27]. We also note that we do not observe any
bifurcation of the O 2px,y occupancy, which is expected since
all of the O orbitals are equivalent in both the “uniform” and
bond-disproportionated phases [8,9].

The bifurcation in the orbital occupations indicates that
strong deviations occur between the compressed and ex-
panded oxygen plaquettes due to the bond disproportionation.
Moreover, the similarity between the behavior of the system
upon either heating or doping implies that the mechanisms
underlying the temperature- or doping-driven transitions from
the bond-disproportionated state to the nondisproportionated
one have a common origin. We will return to this point shortly.

FIG. 4. Doping evolution of the polaron Sp (empty circles) and
bipolaron Bp (full triangles) numbers vs hole density at various
temperatures. Results are shown for (a) a full calculation of an
N = 10 × 10 lattice and (b) for employing the traveling cluster ap-
proximation (TCA) with cluster size Nc = 4 × 4 on an N = 16 ×
16 lattice. The phonon energy in both cases was fixed to � =
30 meV.

C. The formation of lattice (bi)polarons

Several works [14,39,40,57], including the previous
DQMC study of a comparable model [27], have proposed
that the metallic phase of the bismuthates (and other negative
CT systems like the nickelates) can be viewed as a polaron
liquid. With this idea in mind, Fig. 4 presents the temperature
and doping dependence of the average polaron Sp (open sym-
bols) and bipolaron Bp (closed symbols) numbers versus hole
density at varying temperatures. Here, we show results for a
calculation involving the full diagonalization of a N = 10 ×
10 cluster [Fig. 4(a)] and for a calculation employing the TCA
(Nc = 4 × 4) on a larger N = 16 × 16 cluster [Fig. 4(b)]. The
results of both calculations are qualitatively similar; however,
we do observe some quantitative differences, indicating that
some finite-size effects are present. In both cases, we find that
there is a significant number of bipolarons in the system at
half-filling and that their number decreases with increasing
hole concentrations ρ > 1. This behavior is more pronounced
at low temperatures but persists at higher T , albeit with a
smoother ρ dependence. Moreover, at low T , the bipolaron
number decreases steadily as the hole concentration increases
up to a “critical” value ρc, and for ρ > ρc, Bp remains con-
stant. (For example, in Fig. 4(a), ρc ≈ 1.25 for β = 25 eV−1.)
The doping evolution of the single-polaron operator Sp is
qualitatively similar; however, the magnitude of Sp is much
smaller than Bp, which suggests that the holes tend to collect
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FIG. 5. A finite-size scaling analysis of the results obtained in
Fig. 4. Panel (a) shows the scaling of Bp at half-filling as a func-
tion of the total cluster size N = Nx × Ny at various temperatures.
Panel (b) shows the scaling of the critical density ρc at a fixed β =
500 eV−1, which is defined as the doping above which Bp saturates
to a very low value.

on the compressed plaquettes in pairs rather than individually.
This tendency may have implications for superconductivity in
this system.

The results shown in Fig. 4 are qualitatively consistent with
those reported in Ref. [27] but with some notable differences.
The biggest one is that we observe a more rapid decrease
in the (bi)polaron numbers with doping at low temperature.
This discrepancy may be due to differences in the model
parameters, differences in the cluster size, differences arising
from the quantum versus classical treatment of the model, or
some combination thereof. For example, our model parame-
ters and classical MC treatment places our system squarely
in the adiabatic regime �/EF 
 1. By contrast, Ref. [27]
worked in the antiadiabatic regime due to technical issues
related to the autocorrelation time. This difference means that
the polaronic effects are likely more prominent in Ref. [27]
and possibly underpredicted here. Comparative studies of the
two approaches are needed to clarify this issue.

To assess the finite-size effects, Fig. 5(a) plots the evolution
of Bp at half-filling as a function of the cluster size N , obtained
here using full cluster diagonalization. The convergence of
Bp for large N is readily apparent, particularly at lower
temperatures, demonstrating that the bond disproportionation
correlations survives in the thermodynamic limit. The critical
doping ρc above which the bipolaron number remains fixed to
a low value, at low T , also exhibits some cluster size depen-
dence. For example, Fig. 5(b) shows the evolution of ρc with
increasing N , where we find that saturation at ρc ≈ 1.2 only

for N > 60. We have observed comparable finite-size effects
in other quantities of interest, indicating that the quantitative
values of the observable here can depend on the cluster size.
Nevertheless, Fig. 5 assures us that the qualitative physics
discussed here is robust against the system size. These caveats
should be kept in mind when interpreting these results.

We end this subsection with an examination of the real-
space structure of the staggered polaron and bipolaron static
correlations functions, which are defined as CSP(r′ − r) =
〈φ(r′ − r)ρ̂(r′)ρ̂(r)〉 and CBP(r′ − r) = 〈φ(r′ − r)ĝ(r′)ĝ(r)〉,
respectively, where ρ̂(r) and ĝ(r) are defined in Sec. II C and
φ(r) = (−1)(rx+ry ) reflects an underlying checkerboard-like
structure in the correlations. We note here that evaluating
CSP/BP requires four nested loops over the system’s eigen-
states, and is therefore quite expensive to evaluate. We
therefore focus on an N = 6 × 6 cluster and an inverse tem-
perature of β = 25 eV−1. As we will see, this is sufficient to
contrast the behavior of the undoped and doped system but
finite-size effects may be present.

Figure 6 plots our results. Figures 6(a) and 6(c) show
results for the staggered polaron and bipolaron correlation
functions at half-filling, respectively. At this filling, both CSP

and CBP develop a real space structure indicative of a bond dis-
proportionate structure and a density modulation on the Bi 6s
orbitals. In both cases, the staggered correlation functions are
positive at all distances. Both correlation functions also have
a Q = (π, π ) modulation in their numerical values, which
is more pronounced in the case of the bipolaron correlation
function. All of this behavior arises from the compression and
expansion of the ligand O atoms about alternating Bi sites and
a consequent weak charge modulation on the Bi orbitals (see
Fig. 3(a) and Ref. [27]). Both correlation functions approach
large, nonzero values on the longest distances accessible in the
cluster, indicating that these correlations are “long-ranged”
from the perspective of the cluster.

Figures 6(b) and 6(d) show similar results for a high hole
concentration ρ = 1.27. At this doping level, the correlations
are significantly reduced in magnitude and rapidly fall off
at increasing distances. Nevertheless, we observe weak stag-
gered correlations in both CSP and CBP, which suggests that
the carriers and their lattice distortions retain some degree of
correlation on short length scales.

D. Fingerprints of a bipolaron liquid at high-temperatures

The results presented so far suggest that the system tran-
sitions from an insulating bipolaron lattice, characterized by
a bond-disproportionate structure, into a more uniform phase
with weak, short-range correlations via heating or doping. We
have only considered the lattice and sublattice averages of
various quantities to this point, however. To investigate the
melting process and nature of the uniform phase, we now
examine the spatial and temporal correlations in the lattice
displacements. To this end, we present detailed histograms
of various local physical quantities, collected at each Monte
Carlo step of the simulations. These plots provide more de-
tailed snapshots of the correlations present at each Monte
Carlo step and thus supply additional information on the mi-
croscopic relationships between several observable quantities
and the specific lattice configurations.
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FIG. 6. The staggered [(a), (b)] polaron CSP(r′ − r) and [(c), (d)] bipolaron CBP(r′ − r) correlation functions as a function of r′ − r. Results
are plotted here for half-filling (ρ = 1.0, left column) and for a large hole doping (ρ = 1.27, right column). All results were obtained on an
6 × 6 cluster and at an inverse temperature of β = 25 eV−1. The size of the dots is proportional to the value of the correlation function, while a
red (blue) color indicates values larger (smaller) than zero. For reference, the exact numerical values of the correlation functions at each point
are also provided.

We first concentrate on the effects of heating at half-filling.
Figure 7 presents a histogram of the spatiotemporal distribu-
tion of different local densities across 1000 independent MC
samples. Here, we correlate the orbital occupations of the Bi
6s (ns, top row) and ligand oxygen orbitals with s and d sym-
metry (nLs , middle row, and nLd , bottom row, respectively),
with the Xs and Xd displacements. Note that our convention in
Eq. (8) implies that a compressed (expanded) oxygen plaque-
tte correspond to a positive (negative) value of XLs .

The leftmost column of Fig. 7 shows typical distributions at
low temperature (β = 25.0 eV−1). The correlations between
XLs and ns (top row) and nLs (middle row) make it clear that the
compressed plaquettes host more holes while the expanded
plaquettes are hole depleted. At the same time, we observe
far fewer holes occupying the nLd (lower row) and nLx,y (not
shown), molecular orbitals. Moreover, we find no correlation
between occupations of the d , x, and y molecular orbitals and
the sign of the corresponding phonon displacement, as shown
in the bottom row of Fig. 7 for the case of the d orbital.

One issue being debated in the context of the charge- and
bond-disproportionation scenarios is their relationship to the
charge density modulation appearing on the Bi atoms. Our
analysis indicates that the occupations of the Bi orbitals in
the expanded and contracted plaquettes are ≈0.15 and ≈0.45,

respectively, corresponding to a charge transfer of about 0.2
holes/Bi in the bond-disproportioned state. This value is com-
parable to the 0.1 holes/Bi obtained using DQMC for a related
model [27].

The middle and right columns of Fig. 7 shows that the dis-
tributions broaden as the temperature increases, reflecting the
larger thermal motion of the ions. For β = 10 eV−1, we still
observe a bimodal structure in the distributions, albeit with a
reduced distance between the two clouds of data points. This
behavior indicates that the bond-disproportion correlations are
significant but reduced in strength at this temperature.

Upon increasing the temperature further, the two modes
merge into a single distribution as illustrated in the last col-
umn, which corresponds to a relatively high temperature of
β = 5 eV−1. By scanning the intermediate temperature val-
ues, we estimate that the merger occurs around T ≈ 0.125 eV.
All of these observations are consistent with Fig. 3.

The behavior of the distributions shown in the right-hand
panel provides strong indications of the persistence of the
polarons at high temperature. For example, although the bi-
modal distributions have merged into a single mode at these
temperatures, we observe persistent correlations between the
ns and nLs occupations and the sign of the XLs displacements.
Conversely, we do not observe any clear correlation between
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FIG. 7. A regression analysis of various local densities during the Monte Carlo steps indicates the effect of heating on the spatiotemporal
distribution of three molecular orbitals’ occupancies as functions of their corresponding phonon modes at half-filling (from left to right:
β = 25, 10, 5 eV−1). The color scale (going from dark to light) indicates the number of Monte Carlo configurations that have the corresponding
(binned) values of the quantities listed on the two axes. The bin widths are the size of the pixels in each image and small relative to the total
range plotted.

the occupations of the ns orbitals and the XLd displace-
ments, between the nd orbitals and the XLd displacements,
or other combinations (not shown). These observations pro-
vide compelling evidence that the holes with particular orbital
symmetries are strongly attracted to the compressive distor-
tions of the oxygen atoms, consistent with a polaronic view of
the metallic phase.

E. Fingerprints of a bipolaron liquid at high hole concentrations

We now examine the doping-driven transition from the
bond-disproportionate state to the uniform metallic state using
a similar spatiotemporal distribution analysis. To this end,
Fig. 8 plots the evolution of the same distributions shown in
Fig. 7, this time as a function of hole concentration and at
a fixed temperature β = 20 eV−1. (We observe qualitatively
similar results at a fixed β = 10 eV−1 and will therefore focus
exclusively on the lower temperature case.)

The leftmost column of Fig. 8 shows the typical distribu-
tion at half-filling, similar to the leftmost column of Fig. 7.
Because β = 20 eV−1 is lower than Tc = 0.125 eV in Fig. 3,
its two-cloud feature is again consistent with the bond dispro-
portionation.

The middle and right columns illustrate the doping-induced
melting, which is reminiscent of that induced by heating,
shown in Fig. 7. The major difference from the melting by

heating is the global shift upward of the distributions, due to
the doping-induced increase of ns and nLs . Apart from that, the
transition from the two-cloud to the one-cloud distribution is
similar in both cases. All of these results are consistent with
the data shown in Fig. 3. Like in Fig. 7, the persistence of
correlations between hole occupations in the bonding orbital
and the compression of the corresponding plaquette suggests
that the metallic state induced by doping is also consistent
with a melted liquid of (bi)polarons. The associated short-
range spatial correlations are dynamically averaged over time,
so that long-time averages look like those of a homogeneous
system, as shown in Fig. 3.

IV. SUMMARY AND CONCLUSIONS

We have presented a numerical study of a two-dimensional
three-orbital model with SSH-like e-ph interactions, which
was solved using a combined exact diagonalization and clas-
sical Monte Carlo method (ED + MC). Having bismuthates
in mind, we studied the model for concentrations near one
hole per cation site, and in the negative charge transfer regime,
where the holes preferably occupy the oxygen sublattice. Our
key results include the following: (1) the observation of a
bond-disproportionated insulating state at half-filling, which
can be viewed as the frozen bipolaronic crystal state; (2)
the observation of insulator-to-metal transitions with either
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FIG. 8. Doping effect at β = 20 eV−1 (from left to right: 0%, 10%, 20% doped holes approximately): regression analysis of various
densities along the Monte Carlo step for phonon frequency � = 30 meV for N = 10 × 10, tsp = 2.08, tpp = 0.056, εs = 6.42, and εp = 2.42.
The color scale (going from dark to light) indicates the number of Monte Carlo configurations that have the corresponding (binned) values of
the quantities listed on the two axes. The bin widths are the size of the pixels in each image and small relative to the total range plotted.

increasing temperature or hole doping; and (3) the observation
of local bipolaron formation in the resulting metallic phases.

While many of our conclusions agree with a recent DQMC
study of a similar model [27], our work should be seen as
complementary to this study. For example, by using classical
treatment of the lattice degrees of freedom, we accessed much
larger system sizes and smaller phonon energies. This aspect
places our model in the adiabatic regime, which is more
relevant to the real materials, while Ref. [27] considered a
set of antiadiabatic phonon parameters. As such, our results
enlarge the parameter space considerably and provide a more
complete view of the physics of the model. In some instances,
we were even able to perform meaningful extrapolations to the
thermodynamic limit. Moreover, our spatiotemporal analysis
allowed us to examine the correlations between various local
electronic quantities and the lattice degrees of freedom, which
in turn allowed us to identify the similarities in the heating-
and doping-induced melting of the bond-disproportionated
state. Contrary to the previous DQMC study, however, our
analysis of local charge density on Bi ions observed a more

significant charge modulation between the Bi atoms in alter-
nating compressed and expanded octahedra, which is higher
than the values inferred experimentally [17–19,22]. This in-
consistency may be related to the 2D nature of the system
we study, to the classical treatment of the lattice vibrations,
or to the fact that we have neglected a small local Hubbard
repulsion on the Bi sites.
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