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Route to phonon-mediated high-temperature unconventional superconductivity
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We investigate the appearance of superconductivity in a model with Peierls electron-phonon coupling for very
low carrier concentrations. Superconductivity with very high critical temperatures is found to occur at all carrier
concentrations if the electron-phonon coupling is not too weak, with a gap of s + s∗ symmetry that closes on the
Fermi surface for appropriate parameters. The possibility of finding the elusive p-type superconductivity is also
revealed, although this turns out not to be stable within the approximations we use.
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I. INTRODUCTION

Over a century after its discovery [1], superconductivity
(SC) remains a central theme in condensed matter and ma-
terials research. The main reason for this sustained interest
is the challenge of finding whether room-temperature SC at
ambient pressure is possible, and if yes, the mechanism(s) that
enable it and the materials that exhibit it. A positive resolution
to this challenge would result in revolutionary changes in most
technology-driven aspects of our lives.

To date, the only universally accepted mechanism for SC
is the Bardeen, Cooper, and Schrieffer (BCS) theory [2],
according to which the conventional, s-wave, low-TC SC
found in most elemental metals and simple alloys is due to
weak electron-phonon coupling that overscreens the electron-
electron repulsion, turning it into an effective attraction at
low energies. In the presence of a large Fermi sea, this weak
attraction suffices to bind electrons into Cooper pairs below a
low TC , opening a small uniform gap in the density of states at
the Fermi energy EF . Given the large density of Cooper pairs
and their low mass, they are phase-coherent for all T < TC ,
and hence they superconduct. An upper limit TC ∼ 30 K was
proposed for BCS SC [3], although this upper limit keeps
being revised because of possible loopholes in various argu-
ments [4].

Ever since the BCS theory was published, theorists have
considered ways to boost TC , e.g., by using excitons as the
glue [5,6] or by including dynamical effects [7,8]. This field
exploded after the experimental discovery of high-TC su-
perconductivity in the cuprate family [9] and then in the
iron-based families [10], which are classified as unconven-
tional (non-BCS, not s-wave) superconductors. These are
joined by other potentially unconventional (not yet fully un-
derstood) superconductors such as Sr2RuO4 [11] and other
heavy-fermion materials [12], KxBa1−xBiO3 [13], and weakly
doped SrTiO3 [14]. Several of these are believed to have a
nonphononic glue, although this issue is still under vigorous
debate [15].

These findings suggest that nonphononic mechanisms
leading to higher-TC superconductivity at ambient pressure
may well exist [16], but they certainly need to be deciphered
first before we can attempt to figure out whether they allow
for room-temperature TC .

Instead of speculating about new glues, in this article we
revisit the old question of whether a phonon glue can mediate
high-TC SC. As mentioned, a lot of work was already dedi-
cated to this issue, however virtually always using a so-called
g(q) type of electron-phonon coupling, like in the Holstein
and Fröhlich models [17,18]. For the strong couplings needed
to mediate the strong effective attractions that would increase
the temperature below which pairs are stable, these models
predict very heavy polarons. This substantial increase in the
carriers’ effective mass lowers the phase-coherence temper-
ature of the condensate, and thus limits its TC to low values
[19].

A possible way to circumvent this phenomenology was
suggested by recent studies of so-called g(k, q) electron-
phonon couplings like the Peierls model [also known as
the BLF-SSH (Barisic-Labbe-Friedel–Su-Schrieffer-Heeger)
coupling] [20–23]. These showed that such couplings may
promote very light single polarons [28] and bipolarons [29]
even at very strong electron-phonon couplings. The reason for
this qualitative difference is easily uncovered: g(q) couplings
are due to the modulation of the potential energy of the carrier
by the lattice distortion in its vicinity. A larger distortion
(at stronger coupling) results in a deeper potential well for
the carrier, which makes it harder for it to tunnel to another
site, hence the increased effective mass. By contrast, g(k, q)
electron-phonon couplings arise from the modulation of the
hopping integrals because of lattice vibrations. As a result,
the lattice distortion associated with the polaron cloud may
actually increase the hopping and thus the polaron’s mobility
(more discussion is presented below).

In this work, we investigate the possibility of supercon-
ductivity in the presence of Peierls electron-phonon coupling.
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We provide proof-of-principle arguments that this type of
coupling mediates unconventional, very high-TC supercon-
ductivity when the effective electron-phonon coupling is not
too weak, λ � 0.5, even for extremely small carrier con-
centrations. For technical reasons detailed below, here we
investigate only the antiadiabatic limit � � EF , where �

is the characteristic phonon frequency (however, we expect
similar physics to be found for lower values of � as well, for
reasons discussed below). Thus, our work paves the way for
investigation of couplings and regimes that were not studied
in previous work [24–27] on bipolaronic mechanisms of SC,
which were focused entirely on the simpler, g(q) couplings,
and primarily in the Migdal-Eliashberg limit: EF � � and
λ � 1. In particular, the g(k, q) coupling is the key ingredient
driving the unusual SC phenomenology uncovered below.

The paper is organized as follows: Section II describes the
model we use, and Sec. III briefly reviews the BCS approx-
imation when applied to our model. Section IV presents our
key results. Section V contains a summary and a discussion of
our work.

II. MODEL

We study a simple-cubic lattice with Peierls-type electron
phonon coupling arising from the modulation of the hopping
integral between neighbor sites as the distance between them
varies. Our starting point is a three-dimensional (3D) general-
ization of the 1D Su-Schrieffer-Heeger (SSH) model, but with
optical phonons:

Ĥ = Ĥel + Ĥph + V̂el-ph,

where

Ĥel = −t
∑

〈i, j〉,σ
(c†

i,σ c j,σ + H.c.) − μ
∑

i

n̂i

describes nearest-neighbor (nn) hopping, μ is the chemical
potential, and n̂i = ∑

σ c†
i,σ ci,σ . Here, c†

i,σ creates an electron
with spin σ at lattice site i.

The second term describes three independent Einstein
modes for oscillations of the lattice sites along γ = x, y, z
axes:

Ĥph = �
∑
i,γ

b†
i,γ bi,γ ,

where b†
i,γ creates a γ -mode phonon at site i (h̄ = 1).

Finally, the Peierls electron-phonon coupling is

V̂el-ph = g
∑
i,σ,γ

(c†
i,σ ci+γ ,σ + H.c.)(b†

i+γ ,γ + bi+γ ,γ − b†
i,γ − bi,γ ).

Here and in the rest of the paper, we use the short-hand
notation i ± x for the site located at Ri ± x, etc., with the
lattice constant set to a = 1.

We define the dimensionless parameter λ = 2g2/(�t ) to
characterize the strength of the electron-phonon coupling.
This is identical to the 1D definition [28] because the tripling
of the free-electron bandwidth in three dimensions is com-
pensated for by the existence of three phonon modes, which
triple the polaron energy. However, we emphasize that within
the approximations used below, a carrier only couples to one

phonon mode at a time, so λ/3 might be a more appropriate
measure of the actual electron-phonon coupling strength.

In the antiadiabatic limit � � t, g, we can derive the
analytical form of the effective polaron Hamiltonian by inte-
grating out high-energy manifolds with one or more phonons.
For a system with just two electrons of opposite spin, this
leads to an effective low-energy Hamiltonian that is a direct
generalization of that obtained in one dimension [29]:

Ĥ → Ĥ = T̂eff + Ûeff + O

(
1

�2

)
. (1)

Here, the effective polaron dispersion

T̂eff = Ĥel + t3
∑
i,γ ,σ

(c†
i,σ ci+2γ,σ + H.c.) + ε0

∑
i

n̂i

now includes the polaron formation energy ε0 = −12g2/�,
and the bare nn hopping is supplemented by the phonon-
mediated, third-nn hopping with t3 = g2/�, giving rise to
an unusual polaron dispersion at stronger couplings, as dis-
cussed further below [28]. Note that in three dimensions,
next-nearest-neighbor (nnn) hopping cannot arise from emis-
sion and absorption of one phonon, because hopping along
different axes is modulated by different phonons; such pro-
cesses can arise only at higher orders.

The effective, phonon-mediated interaction between po-
larons is given by Ûeff = Û0,2 + Û1 [29], where

Û0,2 = − T0

∑
i,γ

[c†
i−γ,↑c†

i−γ,↓ci,↓ci,↑ + H.c.]

+ T2

∑
i,γ

[(c†
i+γ,↑c†

i−γ,↓ − c†
i+γ,↓c†

i−γ,↑)ci,↓ci,↑ + H.c.]

describes nn pair hopping of an on-site pair, with T0 = 4g2/�,
and hybridization between an on-site and a third-nn singlet
pair, with T2 = 2g2/�, respectively, while

Û1 = T1

∑
i,γ ,σ

[c†
i+γ,σ c†

i+2γ,−σ ci+γ,−σ ci,σ + H.c.]

− J
∑
i,γ ,σ

c†
i+γ,σ c†

i,−σ ci+γ,−σ ci,σ

describes directional (parallel to its backbone) pair hopping of
a nn singlet pair, with T1 = 2g2/�, and a nn antiferromagnetic
exchange with J = 4g2/�, respectively.

The unusual form of this effective interaction is a direct
consequence of the g(k, q) Peierls coupling. Ûeff is attractive
because polarons can lower their kinetic energy if they are
bound into singlet bipolarons that move together, hence re-
maining light; more discussion of this phenomenology can be
found in Ref. [29].

Hereafter, this two-polaron effective Hamiltonian Ĥ of
Eq. (1), corresponding to zero density for an infinite lattice,
is assumed to be a good model for systems with low but
finite carrier concentrations. This is because even though the
phonon-induced renormalizations of the quasiparticle disper-
sion and of their effective interactions also depend on the
carrier concentration, in the limit of very low concentrations
their values must be close to those obtained in the zero-
concentration limit. Furthermore, as we show below, small
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quantitative changes in the values of these effective param-
eters will not change our conclusions.

III. METHODS

The effect of this unusual Ûeff pair-hopping effective at-
traction on SC was not analyzed before, to the best of our
knowledge. We do this in the most straightforward way: we
switch to momentum space and keep in the interaction only
terms scattering pairs of polarons between (k ↑,−k ↓) states,
as is done in the standard BCS approach [2]. This reduces the
Hamiltonian of Eq. (1) to

HSC =
∑
k,σ

ξkc†
kσ

ckσ +
∑
k,k′

Ueff (k, k′)
N3

c†
k↑c†

−k↓c−k′↓ck′↑,

where N3 → ∞ is the number of lattice sites, ξk = εk − μ

is the single polaron dispersion εk = ε0 − 2t
∑

γ cos(kγ ) +
2t3

∑
γ cos(2kγ ) measured from the Fermi energy, and the

scattering vertex for pairs with ktot = 0 is

Ueff (k, k′) = − 6T0 + 2T2

∑
γ

[cos(2kγ ) + cos(2k′
γ )]

+ 4T1

∑
γ

cos(kγ − k′
γ ) − 2J

∑
γ

cos(kγ + k′
γ ).

Note that this vertex depends not just on k − k′, as for regular,
density-density interactions, but also on k + k′. This is a direct
consequence of the pair-hopping terms.

We use the Bogoliubov-Valatin transformation

γk↑ = ukck↑ − vkc†
−k↓, (2)

γ−k↓ = ukc−k↓ + vkc†
k↑ (3)

to find the usual mean-field approximation:

HSC ≈ EGS +
∑
kσ

Ekγ
†
kσ

γkσ ,

where the quasiparticle energies are

Ek =
√

ξ 2
k + �2

k

and the SC gap is given by the standard gap equation:

�k = − 1

2N3

∑
k′

Ueff (k, k′)�k′

Ek′
tanh

Ek′

2kT
. (4)

The chemical potential determines the T = 0 carrier concen-
tration: n = 2

N3

∑
k |vk|2 = 1

N3

∑
k [1 − ξk

Ek
].

For our Ueff (k, k′), the SC gap has the general form

�k = �s + �s∗
∑

γ

cos(2kγ ) + �p

∑
γ

sin(kγ ), (5)

where

�s = 1

N3

∑
k′,γ

[T0 − T2 cos(2k′
γ )]

�k′

Ek′
tanh

Ek′

2kT
,

�s∗ = − T2

N3

∑
k′

�k′

Ek′
tanh

Ek′

2kT
,
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FIG. 1. Magnitudes of the superconducting gaps �s/t (black
squares) and �s∗/t (red circles) vs μ/εGS, where εGS is the corre-
sponding polaron GS energy. The blue full line shows the average
carrier concentration n (right-side scale). Panels correspond to effec-
tive couplings λ = 0.5, 0.75, 1.0, and 1.5, respectively.

�p = −2T1 + J

N3

∑
k′,γ

sin k′
γ

�k′

Ek′
tanh

Ek′

2kT
. (6)

We note that another term with extended s∗ symmetry, ∝∑
γ cos kγ , vanishes because its prefactor 2T1 − J = 0 in this

asymptotic antiadiabatic limit, however it could contribute to
�k if higher-order terms further renormalize the values of T1

and J in the limit of lower �.
We solved these equations iteratively on a lattice with

N3 = 303 sites, with an accuracy below 10−6t , for values of μ

near the bottom of the polaron band so that the average carrier
concentration n < 0.20 is small.

As expected, we find that s and p symmetries do not coex-
ist, and moreover, �p = 0 because of the overall minus sign
in its gap equation (6) (we comment more on this below). As
a result, we find that within these approximations, the SC gap
has s + s∗ contributions.

IV. RESULTS

We begin at T = 0. For small λ we find no SC for
small carrier concentrations n → 0: both �s and �s∗ vanish.
This does not contradict the BCS theory, which is valid in
the limit EF � �, λ � 1. In that case, the phonon-mediated
scattering—within an energy shell of width � from the
Fermi surface—is effectively a 2D problem, and bound so-
lutions (Cooper pairs) form for arbitrarily weak attractive
interactions. Our calculation, however, is in the opposite
limit � � EF where the scattering is 3D and a bound so-
lution is expected only if the attractive potential is strong
enough.

As we increase λ, we find finite �s, �s∗ if the carrier
concentration goes above a threshold value n � nc. This is
shown in Fig. 1(a), where for λ = 0.5 we plot the evolution
of �s and �s∗ (left-hand vertical axis) with μ; superimposed
is the evolution of n (right-hand vertical axis) with μ. When
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FIG. 2. Polaron energy εk (solid black line), quasiparticle energy
Ek (red circles), and SC gap �k (dot-dashed blue line) along high-
symmetry lines in the Brillouin zone. All energies are in units of t ,
and μ is chosen such that n = 0.1 for the values λ = 0.5, 0.75, 1.0,
and 1.5 shown.

μ is at the bottom of the polaron band so that n → 0, the
gaps vanish. However, for n > nc ≈ 0.07, SC appears and the
magnitudes of �s and �s∗ increase fast with n. The value of nc

decreases with increasing λ. We do not try to pinpoint it here
because even for λ = 0.5 there are still finite N size effects
(small oscillations) in the results, and these become worse as
λ decreases. Moreover, our focus here is on larger λ, where
nc → 0, as we show next. For reference, we mention that for
λ = 0.25, we find nc ∼ 0.2, which is probably above the low
carrier concentrations for which our model is quantitatively
accurate.

Figures 1(b)–1(d) show results for λ = 0.75, 1.0, and 1.5,
respectively. We now find robust values for �s and �s∗ at
all n � 0. For a fixed λ, the magnitudes of the gaps increase
monotonically with n. At a fixed n, they increase fast with λ

so that for λ ∼ 1, both �s and �s∗ are of order t , which is an
extremely large energy scale for SC.

To clarify the origin of this unusual behavior, in Fig. 2 we
plot together the polaron dispersion εk = ξk + μ (solid black
line), the quasiparticle energy Ek (red circles), and the gap
�k (dot-dashed blue line) along various lines in the Brillouin
zone. The chemical potential is chosen so that n = 0.1. Con-
sider first the evolution of εk with λ: for λ < 0.5, the polaron
ground state is at the 	 point, however for λ > 0.5 there are
eight degenerate ground states at finite momentum ±kGS lying
along the 	-R line and its symmetric counterparts. This is
because at small λ the polaron dispersion is dominated by the
nn hopping t term that favors a GS at the 	 point, while for
λ � 0.5 the polaron dispersion is dominated by the third-nn
hoping term t3, which favors a GS at the R point [28]. As a
result, for μ near the bottom of the band, the system evolves
from having a single, quasispherical Fermi sea when λ is
small, to having eight Fermi pockets when λ is larger (these
become connected if μ is further increased).
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FIG. 3. Superconducting gaps �s/t (full symbols) and �s∗/t
(empty symbols) vs kT/t . The three sets of lines correspond to
n = 0.05 (black circles), 0.10 (red squares), and 0.20 (blue triangles),
respectively.

This significant change in the polaron dispersion results
in the very different nature of the SC gap at small λ versus
large λ: in panel (a) we see a BCS-like picture, with a tiny
and nearly constant gap opening at the Fermi energy. As λ

increases, so does the gap magnitude. Because of the opposite
signs of �s and �s∗ , the gap is negative near the 	 point
but switches sign and becomes positive and is maximum on
the “outer” side of the Fermi pockets, on the 	-R lines. For
λ = 0.75 and this μ, the smallest gap magnitude is close to
the 	 point, on the “inner” side of the Fermi pockets, and its
sign is negative, whereas the “outer” side has a significant,
positive gap. This shows that by adjusting the parameters, one
can find an unconventional gap that closes on the Fermi pocket
surface.

The more typical behavior, however, is found for larger μ

and/or λ, with the Fermi pockets significantly gapped, the gap
being positive. Interestingly, we see that the gap is consid-
erable also in the regions lying between two Fermi pockets,
on the 	-M and 	-X lines, even when these regions lie well
above μ in the absence of SC.

The results in Fig. 2 suggest that the SC gap is considerable
at T = 0 if λ > 0.5. This is confirmed in Fig. 3, where we plot
�s and �s∗ versus T for n = 0.05, 0.1, and 0.2. For λ = 0.5
there is no SC if n = 0.05, and TC for larger n appears small
(although if t is in the 100 meV range, even these TC could be
at room temperature). For larger λ we find a significant TC ∼ t
even for n = 0.05, suggesting that even narrowband materials
with a t of tens of meV would sustain room-temperature SC.

The appearance of these large values of TC , comparable to
the bare carrier hopping t , are the main result of this work.

V. SUMMARY AND DISCUSSION

We used the BCS approximation to study the appearance
of superconductivity in a model with Peierls electron-phonon
coupling, at low carrier concentrations, and we showed that
it promotes very high TC (comparable with the free-carrier
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hopping) if the electron-phonon coupling is not too weak.
The fact that for larger λ we find SC to occur for all carrier
concentrations n shows that it must have BEC nature. The key
ingredient is the effective attraction Ueff (k, k′) that strongly
binds very light bipolarons at all λ, so that both the pair bind-
ing energy and their coherence energy are large. Bipolarons
are light because Ueff promotes their mobility by acting on
pairs of carriers that hop together. This is a direct consequence
of the g(k, q) electron-phonon coupling. In one dimension,
stable bipolarons form for any λ [29]; in three dimensions,
there is a finite threshold for binding, hence different behavior
at small versus large λ.

Regarding our methodology, we emphasize that these re-
sults are in the antiadiabatic limit simply because this is where
we can obtain the analytical form of the effective polaron
Hamiltonian (1), which allows us to carry out the calculations
relatively easily. In one dimension, the bipolaron behavior
remains qualitatively similar to that found in the antiadia-
batic limit, even for much lower phonon frequencies down
to � ∼ 0.5t [30], and we expect the same to be true in three
dimensions (what happens in the adiabatic limit �/t → 0 is
not yet clear). This is why we expect robust SC to appear
for most phonon frequencies, and not just in the antiadiabatic
limit considered here.

Similarly, we used the BCS variational solution because
of its simplicity. It may overestimate TC , as is typical for
mean-field methods, but the predicted TC values are so large
that we expect significant values to be found by more accurate
methods. We hope that this work will provide a strong moti-
vation for the implementation of costly numerical methods to

study such models in the whole parameter space, so as to gain
an accurate quantitative understanding of the upper limit for
their TC .

Beside high-TC SC, another very exciting result is the
possibility of p-wave SC. It does not occur within our approx-
imations due to the lack of a p∗ term to interplay with the p
term of Eq. (6), the way the s and s∗ terms do. A p∗ term
may arise in a more accurate treatment and/or for different
g(k, q) couplings. Studying such possibilities opens another
essential area of investigations, given the need for p-type SC
in the topological context.

The last question is for which materials may this be rel-
evant. We believe that it is premature to attempt to answer
this, given that our work is only a proof-of-principle check
that exciting SC physics is expected in materials with g(k, q)
couplings. Nevertheless, we note that both doped SrTiO3 and
BaBiO3 exhibit “high”-TC SC (however in relative, not in ab-
solute terms), believed to arise from g(k, q) electron-phonon
couplings [31]. This is pointing roughly in the same direction
as our findings, and it further supports our call for accurate
studies of such models.
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