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Relevance of Cu-3d multiplet structure in models of high-Tc cuprates
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We revisit the problem of the spectra of two holes in a CuO2 layer, modeled as a Cu-3d8 impurity with
full multiplet structure coupled to a full O-2p band as an approximation to the local electronic structure of a
hole-doped cuprate. Unlike previous studies that treated the O band as a featureless bath, we describe it with
a realistic tight-binding model. While our results are in qualitative agreement with previous work, we find
considerable quantitative changes when using the proper O-2p band structure. We also find that (i) the ligand
O-2p orbitals play an essential role, within this impurity model; (ii) the three-orbital Emery model provides an
accurate description for the subspace with 1A1 symmetry, which includes the ground state in the relevant region
of the phase diagram; (iii) this ground state has only ∼50% overlap with a Zhang-Rice singlet; (iv) there are
other low-energy states, in subspaces with different symmetries, that are absent from the three-orbital Emery
model and its one-band descendants. These states play an important role in describing the elementary excitations
of doped cuprates.
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I. INTRODUCTION

A central issue still under debate in the study of high-Tc

cuprate superconductors is the proper minimal model that
correctly captures the low-energy properties, specifically the
precise nature of the states closest to the Fermi level. Histor-
ically, Anderson proposed that the essential physics can be
understood based on the single-band Hubbard model, where
the band is identified as the antibonding band of Cu-3dx2−y2

and O-2p orbitals [1]. The even simpler t-J model additionally
discards all doubly occupied states and describes a square
lattice where charge carriers move in a spin background. This
model has been extensively studied and is believed to provide
a good description of the Hubbard model in the strong cou-
pling limit J/t = 4t/U � 1. However, their common intrinsic
assumption is that the cuprate parents compounds, which
are charge-transfer insulators [2], can instead be modeled as
effective Mott-Hubbard insulators.

The need to understand the importance of explicitly includ-
ing the O ions hosting the doped holes motivated the study of
the three-band Emery model [3], which includes the Cu-dx2−y2

and the two ligand O-2pσ orbitals in the nonmagnetic unit
cell. The key idea underlying the expected equivalence of the
one- and three-orbital scenarios was proposed by Zhang and
Rice, who argued that the doped holes occupy the 1A1 linear
combination of O orbitals, and are locked into a Zhang-Rice
singlet (ZRS) with the hole (spin) residing on the central Cu
site. Projecting onto these ZRS then allows one to map the
three-band Emery model onto a single-band t-J model [4],
although a more careful treatment reveals the existence of
additional terms ignored by the t-J Hamiltonian [5,6].

Although various analytical approximations and exten-
sive numerical studies of these model Hamiltonians have
revealed many insights in the past decades, the validity of
the ZRS concept [7,8] and more generally the equivalence,

or lack thereof, between the low-energy properties of one-
and three-orbital models are still under debate. On one hand,
the existence and stability of states with ZRS-like character
have been confirmed in previous photoemission experiments
[9–11]. On the other hand, recent calculations contrasting the
dynamics of a single doped hole in the one-band vs the three-
band model revealed qualitative differences [12–14], such as
the essential vs the minor role played by the background
spin fluctuations, respectively. Moreover, a recent high-energy
optical conductivity study questioned the ZRS argument by
revealing a strong mixture of singlet and triplet configurations
in the lightly hole-doped Zn-LSCO single crystal [7]. Further-
more, this system exhibits strong ferromagnetic correlations
between Cu spins near the doped holes, as predicted by the
three-band model [12].

During the same period when the ZRS was proposed,
Eskes et al. carried out a more general study that included
the multiplet structure of the Cu, i.e., all singlet and triplet
irreducible representations in the D4h point group spanned by
two d holes (d8-type configurations) and their corresponding
Coulomb and exchange interactions [15–17], aside from ex-
plicitly considering the O band. This was achieved at the cost
of simplifying the model to consist of a single Cu impurity
hybridizing with a broad O band described in terms of a
featureless, semielliptical density of states.

This work confirmed that the first ionization state starting
from a Cu-d9 state and a full O-2p band, which ends with
the two hole eigenstates involving d8 multiplets and various
continuum states, is indeed in the 1A1 symmetry channel
consistent with the symmetry of the ZRS, but also found that
the energy difference between the lowest ionization states for
various symmetry channels is rather small. Moreover, these
differences are strongly dependent on the electronic structure,
which in turn is likely to depend quite strongly on doping
levels. These results cast doubt on whether it suffices to

2469-9950/2020/101(3)/035151(10) 035151-1 ©2020 American Physical Society

https://orcid.org/0000-0002-9500-202X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.035151&domain=pdf&date_stamp=2020-01-31
https://doi.org/10.1103/PhysRevB.101.035151


JIANG, MOELLER, BERCIU, AND SAWATZKY PHYSICAL REVIEW B 101, 035151 (2020)

include only the dx2−y2 orbital instead of the full 3d multiplet
structure of the Cu-d8, when modeling these materials.

Most members of our community believe that the Cu-dx2−y2

orbital is the only d orbital needed to account for the essential
physics of cuprates, explaining why there are so few studies
on the effects of the multiplet structure, compared to the very
extensive investigations of the one- and three-band models
involving only Cu-dx2−y2 orbital and/or its ZRS daughter.
However, there are both theoretical and experimental results
pointing out the importance of nonplanar orbitals like Cu-
3d3z2−r2 and/or O-2pz [18–30]. In particular, the importance
of Cu-3d3z2−r2 is revealed by the recent discovery [30] of the
cuprate superconductor Ba2CuO4−δ with critical temperature
Tc ∼ 70 K, where based on the compressed c-axis bond
length, it is claimed that some doped holes are likely in the
d3z2−r2 orbital. Early Auger spectroscopic experiments [31]
clearly demonstrated strong multiplet effects ranging over a
large energy scale in Cu compounds such as CuO and Cu2O.
In fact, in Cu2O the lowest-energy Cu-d8 state is a triplet state
consistent with the Hund’s rule expectations. As pointed out
by Eskes [15,16], the crossing of the singlet and triplet states
in the cuprate parent compounds is a result of the strong O
character in these states due to the strong Cu-O hybridization
and the fact that bound states with Cu-d8 character are pushed
out of the top of the O-2p band, resulting in the lowest-energy
singlet bound state [9,10,31].

More important evidence for the role of the multiplets
comes from x-ray absorption (XAS) experiments that have
shown, upon increased doping, a strong change from purely
x, y polarized absorption to one including a large contribution
of z polarized intensity for the O and Cu core-to-valence
transition [19]. This implies that there are doped holes whose
wave functions have a considerable component in the Cu-
d3z2−r2 or O-pz orbitals. These results point to the breakdown
of the single-band or even three-band (Cu-dx2−y2 based) ap-
proaches to the description of the phase diagram of cuprate
superconductors.

This motivates us to revisit the importance of the full
Cu-3d multiplet structure and explore its effects on the low-
energy properties of cuprate models. In order to obtain nu-
merically exact results, we follow Eskes et al. and study a
single Cu impurity with all its 3d orbitals included. In contrast
to this earlier work, however, we properly embed this Cu
impurity in a square lattice of O-2p orbitals, with a realistic
band structure. This allows us to contrast models containing
only the O-2p ligand orbitals vs those also including the
other in-plane orbital, and also the pz orbital. It is important
to note that the linear combination of O-2p orbitals that
hybridize with the various Cu-3d states live in different energy
regions of the realistic O-2p band structure and this strongly
influences the importance of this hybridization. For example,
the dxz orbital hybridizes with the O-pz and px π -bonding
orbitals while the dx2−y2 orbital hybridizes with the O-2p
σ -bonding orbitals. Besides, the linear combination of the
O-2p orbitals that hybridize with dx2−y2 orbital is different in
their relative phases than with the d3z2−r2 orbital. We show
below that this strongly influences the stability and relative
energies of the bound states pushed out of the O band for
the various symmetries. Our results reveal the importance of
the realistic modeling of the O bath, and which O-2p play an

essential role. This is a lesson of broad relevance to the field,
given the increased use of impurity-based calculations such
as dynamical mean-field theory (DMFT) for the modeling
of materials. Clearly, realistic descriptions of the baths are
essential for obtaining accurate results.

Furthermore, by calculating the Cu-3d electron removal
spectra in various symmetry channels of the D4h point group,
we are able to identify the character (symmetry, spin, and
orbital composition) of the first ionization state, and to gauge
its similarity to a ZRS. Finally, our results reveal strong
similarities between the model including all multiplets and
the conventional three-orbital Emery model if we restrict our-
selves to the lowest-energy electron removal states, although
open issues still remain. However, if one wants to describe
spectroscopies like ARPES going up to one or more eV below
the Fermi energy as, for example, in descriptions of the so-
called “waterfall” feature [32], it is essential to include all of
the multiplets since they all have appreciable spectral weights
extending to energies well above 1 eV.

This paper is organized as follows. In Sec. II, we define
our model and the variational method employed to study
its single-doped hole eigenstates. Section III discusses the
resulting spectra for various cases considered. The summary
and future issues to be addressed are presented in Sec. IV.

II. MODELS AND METHODS

Multiorbital models with a single Cu impurity

We simplify the description of a CuO2 plane by replacing
the Cu lattice with a single Cu impurity properly embed-
ded in a square lattice of O orbitals; the resulting problem
can be solved exactly, unlike the corresponding one for the
full CuO2 lattice. The central part of the system, consisting
of the Cu impurity and its four nearest-neighbor (NN) O
ions, is depicted in Fig. 1. The Hamiltonian describing this
system is

H = Es + Kpd + Kpp + Vdd + Vpp,

Es =
∑

mσ

εd (m)d†
mσ dmσ +

∑

jnσ

εp p†
jnσ p jnσ ,

Kpd =
∑

〈 j〉mnσ

(
T pd

mn d†
mσ p jnσ + H.c.

)
,

Kpp =
∑

〈 j j′〉nn′σ

(
T pp

nn′ p†
jnσ p j′n′σ + H.c.

)
,

Vdd =
∑

m̄1m̄2m̄3m̄4

U (m̄1m̄2m̄3m̄4)d†
m̄1

dm̄2
d†

m̄3
dm̄4

. (1)

In Vdd we use the shorthand notation m̄x ≡ mxσx, with x =
1, . . . , 4 denoting spin orbitals. Es are the onsite energies,
where d†

mσ (dmσ ) creates (destroys) a hole in the Cu-3d orbital
m with onsite energy εd (m) and spin σ , while p†

jnσ (p jnσ )
creates (destroys) a hole at the O lattice site j, in its 2p orbital
n with energy εp and spin σ . The Cu-3d orbitals indexed by m
are b1(dx2−y2 ), a1(d3z2−r2 ), b2(dxy), ex(dxz ), ey(dyz ), and the
O-2p orbitals indexed by n are px, py, pz or a subset of them,
as indicated below. All other core levels and the Cu-4s and
-4p orbitals are neglected because of their high energy, which
allows for their influence via hybridization to be accounted
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FIG. 1. Schematic view of the orbitals involved in our model
calculations, adapted from Eskes’s previous related work [16]. The
Cu-dxz, dyz and the O-pz orbitals are not shown. Note that only the
four O that are adjacent to the Cu impurity are depicted, however, we
consider the full O square lattice.

for by the renormalization of the effective parameters. Finally,
the onsite single d-hole energies εd (m) = 0 are assumed to
be independent of m, thus omitting the point-charge crystal
splitting. This is expected to be a good approximation because
it is the hybridization with the O orbitals, included in our
model, that accounts for most of the difference between the
effective onsite energies of the 3d levels. As a result, the
charge-transfer energy � = εp.

Kpd and Kpp describe the Cu-O and O-O hoppings, re-
spectively. The labels j, j′ run over the positions of the
O atoms, 〈 j〉 is a sum over the four O adjacent to the jth Cu
site, and only NN pp hopping is included. Following Slater
and Koster [33], the Cu-O and O-O hopping integrals T pd

mn and
T pp

nn′ are listed in Table I of Appendix A. Throughout the paper,
energies are measured in eV.

In the following we focus on four possible models:
(i) N3, where m = b1 and n ∈ {px1 , py2}, i.e., the usual
three-band Emery model where only the ligand orbital is
kept for each O; (ii) N7, where m ∈ {a1, b1, b2, ex, ey} and
n ∈ {px1 , py2}, i.e., multipletlike physics is added to the
Emery model; (iii) N9, where m ∈ {a1, b1, b2, ex, ey} and n ∈
{px1 , py1 , px2 , py2}, i.e., for each O we keep both in-plane
2p orbitals; and (iv) N11, where m ∈ {a1, b1, b2, ex, ey} and
n ∈ {px1 , py1 , pz1 , px2 , py2 , pz2}, i.e., for each O we keep all
three O-2p orbitals.

For the N9 and N11 models we use T pd
b2

= T pd
b1

/2, so that

tpdπ = √
3tpdσ /4. We emphasize that all the Cu-O hybridiza-

tion parameters tpd , tpp, tpdσ , tpdπ , tppσ , tppπ are taken to be
positive, and the signs due to the orbitals’ overlap (see Fig. 1)
are explicitly indicated in Table I of Appendix A.

In this impurity model, the single-electron removal eigen-
states of the undoped Cu-d10 system are due to the hybrization

of various Cu-d9 configurations with the full O band 2p6,
in other words, there is a single hole in the system and the
problem can be solved trivially. As expected, if the bottom
of the oxygen band at � − 4tpp > εd , then the lowest-energy
electron removal state is dominated by an (antibonding) or-
bital of b1 symmetry that has predominantly Cu-d9 character;
this is mixed with ligand hole d10L states which have a low
amplitude of probability. This confirms that if there is a single
hole in the system, it is indeed located primarily on the Cu as
in the ground state of the undoped cuprates.

Photoemission or doping of the system with one hole
from its ground state of mainly d9 character removes another
electron. The resulting two-hole problem is exactly solvable
using the Cini-Sawatzky method [34]. The two-hole problem
requires taking into account the Coulomb and exchange inter-
actions U (m̄1m̄2m̄3m̄4) described by Vdd . These are listed in
Appendix A for all singlet/triplet irreducible representations
of the D4h point group spanned by two d holes, in terms of
the Racah parameters A, B, and C. Throughout the paper, the
free-ion values B = 0.15 eV, C = 0.58 eV are adopted and A
is treated as a variable.

If our focus was on relevance to experiments, we would
need to calculate the d-electron removal spectrum A�

d (ω)
which can be compared to photoemission experiments, and
the d8 partial density of states (PDOS) for the various
two-hole irreducible representations (symmetry channels �)
A�

d8 (ω), linked to the resonant photoemission [16]. They are
defined by

A�
d (ω) = − 1

π

∑

mm′
lim
δ→0

ImGdd (m, m′, ω + iδ; �),

A�
d8 (ω) = − 1

π

∑

mm′
lim
δ→0

ImGd8 (m, m′, ω + iδ; �) (2)

with

Gdd (m, m′, z; �) = 〈ψg.s.|dm′Ĝ(z)d†
m|ψg.s.〉,

Gd8 (m, m′, z; �) = 〈0|dm′dmĜ(z)d†
md†

m′ |0〉,
Ĝ(z) = (z − Ĥ )−1, z = ω + iδ. (3)

Here, |0〉 is the Cu-3d10+ O-2p6 state, i.e., the state with no
holes, while |ψg.s.〉 is the one-hole ground-state.

For our purposes, however, it suffices to obtain their com-
mon part, namely, the component of d8 partial density of states
A� (ω) which assumes that one hole has already occupied the
b1 orbital (remember that d†

b1
|0〉 is the dominant contribution

to |ψg.s.〉):

A� (ω) = − 1

π

∑

m

lim
δ→0

ImGd (m, b1, ω + iδ; �),

Gd (m, z; �) = 〈0|db1
dmĜ(z)d†

md†
b1

|0〉. (4)

We focus primarily on Gd (m, z; �) from now on, but all
other propagators Gdd (m, m′, z; �) and Gd8 (m, m′, z; �) can
be calculated similarly. All the calculations are performed
by employing the variational exact diagonalization method
discussed in Appendix B.
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FIG. 2. The two-hole spectra A� (ω) calculated for various irreducible representations � in the seven-orbital (N7) model. Panels (a) and
(b) are for an isolated Cu-d8 ion with onsite energies εd (m) = 0 (a), and with onsite energies εd (m) given by the additional point charge
crystal fields of Ref. [35] with A = 6.5 eV. Panels (c) and (d) are for the Cu impurity that hybridizes with the O lattice, and depict the two
characteristic cases of two-hole ground state of 1A1 (c) and 3B1 (d) symmetry, respectively. The parameters are (c) � = 2.75 eV, A = 6.5 eV
and (d) � = 6.5 eV, A = 2.5 eV with tpd = 1.5 eV, tpp = 0.55 eV. The chemical potential, taken to be zero energy, is chosen as the lowest
energy of two-hole state.

III. RESULTS

Before we proceed, we note that throughout the paper
we adopt the usual convention of photoemission spectro-
scopies that the electron removal energy, the hole energy,
increases to the left while the energy of the electron addition
states increases to the right. The chemical potential, taken
to be the zero energy, is chosen at the lowest energy of the
two-hole state.

Figure 2 shows the two-hole spectra A� (ω) calculated for
various irreducible representations � in the N7 model. The
first two panels are for an isolated Cu-3d8 when the ligand
field splitting is ignored, εd (m) = 0 [Fig. 2(a)] and when the
point charge crystal fields [35] are included [Fig. 2(b)].

If εd (m) = 0, the two d holes can have 1S, 3P, 1D, 3F ,
1G configurations, with energies listed in Ballhausen [36].
As shown in Fig. 2(a), A�

d8 (ω) indeed consist of one or more
discrete peaks located at these five energies; the number of
peaks and their corresponding spectral weights depend on
the singlet/triplet nature of the irreducible representation �.
The inclusion of the point-charge crystal-field splittings [35]
in Fig. 2(b) only induces modest shifts of the atomic peaks
and modification of their spectral weights. This is why the
point-charge crystal fields are ignored from now on.

Hybridization with the O band, shown in Figs. 2(c) and
2(d), results in a significant spreading of the spectral weights
over a much wider energy range, and a complete reordering
of the low-energy, multipletlike bound states. Indeed, for
this realistic value of tpd = 1.5 eV, there is no significant
correspondence between the bound peak positions and the
multiplets in the atomic limit of tpd = 0; neither the splittings
between the bound peaks, nor even their order, mimic what
is found in the atomic multiplet. Instead, of great importance
is that for a not too large � [Fig. 2(c)], the lowest-energy
state is not the expected triplet according to the Hund’s rule
[Fig. 2(d)] but a singlet state [37].

We first focus on the case illustrated in Fig. 2(c), where
the two-hole ground state is of 1A1 symmetry, like that of the

ZRS. For these parameters, its eigenstate is

|ψ〉 =
√

0.072|b1b1〉 +
√

0.549|b1Lb1〉 +
√

0.054|b1L′
b1

〉
+

√
0.275|d10L2〉 + · · · , (5)

where . . . are contributions with a1a1, b2b2, ee characters,
whose probabilities add up to about 5%. Here, Lb1 denotes
a hole in the linear combination of b1 symmetry of the four
O orbitals nearest to the Cu impurity. We emphasize that
this weight is almost independent of the number of orbitals
included, i.e., whether we use the N3, N7, N9, or N11 models.
This shows that the ground state is only about 55% ZRS like,
i.e., |b1Lb1〉. L′

b1
denotes the configurations where the hole is

on the second, third, etc., rings of O ions, which are discarded
in the ZRS. The strong mixing with the d10L2 state is the
reason for the strong antiferromagnetic exchange interaction
which stabilizes the singlet [38].

This lowest bound state of 1A1 symmetry is separated from
the continuum corresponding to the doped hole in the O-2p
band by about 1 eV, which is close to what is observed by
ARPES experiments in cuprates. In addition to the broadening
and appearance of bound states aside from the continua, the
hybridization also introduces the ligand fieldlike splittings
which will mix the various atomic multiplets. Note that for
these parameters, only the 1A1 peak is clearly below its corre-
sponding continuum, and thus truly a bound state; the other
peaks are inside the lower edge of their continua. At even
higher energies lies the two-hole continuum, with both holes
in the O lattice and the Cu in a d10 state; this is superimposed
over strong resonances where Cu multiplet lines hybridize
with (and are shifted around by) this continuum. All this forms
a very broad structure with mixed character and is basically
the origin of the so-called “waterfall” [32].

Next, we elaborate on the case where the lowest-energy
two-hole ground state is of 3B1 symmetry, as illustrated
in Fig. 2(d). Here we chose A − � = −4 eV, which puts
the system well into the Mott-Hubbard rather than the
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FIG. 3. The comparison of two-hole spectra A� (ω) calculated for various irreducible representations � in the (a), (d) 7-orbital (N7), (b),
(e) 9-orbital (N9), and (c), (f) 11-orbital (N11) models for two characteristic parameter sets corresponding to the low-spin (singlet) (a)–(c) and
high-spin triplet (d)–(f) cases. The spectra of N3 model (black curve) is plotted for comparison as well. The parameters are (a)–(c) � = 2.75 eV,
A = 6.5 eV and (d)–(f) � = 6.5 eV, A = 2.5 eV with (a), (d) tpd = 1.5 eV, tpp = 0.55 eV and (b), (c), (e), (f) tpdσ = √

3 eV, tpdπ = 0.75 eV,
tppσ = 0.9 eV, tppπ = 0.2 eV. For the N3 model, we use Udd = A + 4B + 3C, tpp = 0.55 eV.

charge-transfer insulator region in the Zaanen-Sawatzky-
Allen (ZSA) classification scheme. The major difference from
the case shown in Fig. 2(c) is the order of the lowest peaks,
which changed from 1A1,

3B1,
1B1 to 3B1,

3E , 3A2. Further-
more, it is clear that the conventional three-orbital (N3) model
cannot capture the lowest bound state any more due to the lack
of the involvement of the a1(d3z2−r2 ) orbital.

All these results are qualitatively similar to those reported
in previous work by Eskes et al. [15,16]. The quantitative
differences, especially the differences in the weights of var-
ious continua, are due to how the O band is modeled (realistic
tight-binding model in our work vs featureless semielliptical
DOS in theirs).

To investigate the effects of including more Cu-3d and/or
O-2p orbitals in the model Hamiltonians, Fig. 3 compares the
two-hole spectra A� (ω) calculated for the (a), (d) 7-orbital
(N7), (b), (e) 9-orbital (N9), and (c), (f) 11-orbital (N11)
models for two characteristic parameter sets corresponding

to the low-spin singlet (a)–(c) and high-spin triplet (d)–(f)
cases. The comparison between N7 and N9/N11 models il-
lustrates the impact of including additional π -bonding oxygen
orbitals. The additional hybridization with Cu-b2(dxy) orbital
extends the continua to lower energies for all the symmetries
involving b2, which causes a much smaller difference between
the continuum bottom of various A and B types of symmetries.
This clearly demonstrates the importance of having all the
continua in place correctly in order to decide which is the
lowest-energy state. For example, if the 1A1 continuum would
also be involved in the hybridization with the 3B1 or 1B1 state,
these states would be appreciably closer to the 1A1 lowest-
energy state and even cross it. This could happen if we could
take into account the full lattice of Cu-d9 states in the starting
configuration, for example, as done in the exact diagonaliza-
tion study of a large cluster by Lau et al. [12]. It is important
to note that Lau found a very strong ferromagnetic coupling
between the two Cu’s sandwiching an O hole, suggesting that

035151-5



JIANG, MOELLER, BERCIU, AND SAWATZKY PHYSICAL REVIEW B 101, 035151 (2020)

FIG. 4. (a) N7 one-doped hole phase diagram for � = 2.75 eV
and oxygen bandwidth W = 4.4 eV, i.e., tpp = 0.55 eV. Region I has
no bound state, while in regions II and III and the doped hole is bound
to the Cu hole in a complex with 3B1 and 1A1 symmetry, respectively.
(b) Comparison between N3, N7, and N9 phase diagrams. The
conventional relations tpd ≈ √

3tpdσ /2 = 2tpdπ and tppσ = 0.9 eV,
tppπ = 0.2 eV are adopted in the N9 model. For the N3 model, we
use Udd = A + 4B + 3C, tpp = 0.55 eV. The black line denotes the
boundary for the appearance of the ZRS-like states in the N3 model.
The colored lines indicate the phase boundaries for obtaining a sharp
“boundlike state” at low energy with 1A1 (blue curve) and 3B1 (red
curve) symmetries.

our impurity limit could be different from what happens in
the actual crystal (although experiments do agree with our
classification for the undoped system). Strong hole doping,
however, could strongly modify these conclusions. This also
questions the use of single-site DMFT or single-orbital cluster
DMFT results with regard to the relevance for the full problem
which includes both O and Cu states explicitly.

In the isolated Cu atom, the two-hole ground state has
3B1 symmetry (Hund’s rule) [see Fig. 2(a)]. As shown in
Fig. 2(c), a strong enough hybridization with the O bands
favors a ground state with 1A1 symmetry, i.e., there is a
high-spin to low-spin transition. In Fig. 4 we show the ground-
state symmetry in the full parameter space. In Fig. 4(a), we

plot a A − � vs 2tpd phase diagram, which can be directly
compared against that shown in Ref. [15] (a three-dimensional
phase diagram is shown in the Appendix). It shows the phase
boundaries for obtaining the lowest peak with 1A1 (blue
curve) and with 3B1 (red curve) symmetries, respectively, for
an O bandwidth W = 4.4 eV (tpp = 0.55 eV). Furthermore,
the green curve shows the phase boundary separating the
ground state of 1A1 (low-spin) and 3B1 (high-spin) character.
The three different types of ground states are filled by different
colors: region I denotes the absence of a bound ground-state
state, i.e., the doped hole moves freely in the O lattice. In
regions II and III there is a bound ground state with 3B1 and
1A1 symmetry, respectively. Clearly, region III is physically
relevant to cuprates.

While this phase diagram is qualitatively similar to Es-
kes’s corresponding phase diagram [15], there is a shift of
the critical value of the pd hybridization needed to ob-
tain a bound state with 1A1 symmetry from their value
T (B1g) = 2tpd ≈ 1.6 eV to our value of ≈1.0 eV. In addition,
the lines separating the various regions have quite different
slopes. These nontrivial quantitative differences are due to
the difference in how the O bath is modeled. In Eskes’s
approach [15], the ligand hole states are all spread equally
over the hemispherical band while in our tight-binding band
structure, the b1 symmetry hole states are concentrated at the
bottom of the (hole) band, which makes the appearance of a
two-hole 1A1 bound state possible at even lower tpd . Another
important difference caused by the same effect is that we find
a larger splitting between the 1A1 and the 3B1 peaks (it is even
larger for the 1B1 case). This results in a stabilization of the
1A1 state to even more negative A − �, extending even fur-
ther into the Mott-Hubbard regime of the ZSA classification
scheme.

For cuprates, the fact that our accurate modeling of the O
band leads to a shift in the location of the boundary separating
ground states with 1A1 (low spin S = 0) vs 3B1 (high spin
S = 1) is irrelevant, as they lie deeply within the charge-
transfer insulator regime. However, for materials that fall in
the crossover regime, accurate modeling is important. Using
a simplified featureless O band may result in the wrong iden-
tification of the nature of the ground state. In this crossover
region, the choice as to whether the first electron removal
state favors the high- or the low-spin ground state depends
sensitively on parameters, which themselves depend on the
details of the lattice structure. The tpd hopping integrals, in
particular, are very sensitive to the interatomic distances so
applying pressure could lead to a switch from one type of
ground state to the other. Such behavior will be completely
missed by too simplistic modeling.

Figure 4(b) illustrates the impact of the number of
O-2p orbitals kept in the model on the phase bound-
aries. The conventional relations tpd ≈ √

3tpdσ /2 = 2tpdπ and
tppσ = 0.9 eV, tppπ = 0.2 eV are used for the N9 model.
Clearly, adding the second in-plane O-2p orbital in the model
does not have significant effects, except to slightly shift the
I-III boundary. The same is true if the pz orbitals are also
included, in N11 (not shown). For comparison, the black line
denotes the critical A − � for the appearance of low-energy
bound state of Zhang-Rice singlet nature in the N3 model.
At larger tpd this agrees well with the 1A1 boundary for N7
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FIG. 5. Variation of the ground-state weights of the dominant
components versus A, for fixed tpd = 1.5 eV, � = 3.5 eV. The
vertical line denotes the critical value A = 0.1 eV separating the
two phases.

model, suggesting minor differences there between the N3 and
N7 models.

To further characterize the evolution of the ground state
from region II ( 3B1) to III ( 1A1), Fig. 5 plots how the weights
of the dominant components to the ground state change with
A, for realistic values of tpd = 1.5 eV, � = 3.5 eV. As ex-
pected [see also Eq. (5)], in region III the ground state is
dominated by the b1Lb1 singlet, which is the equivalent of the
ZRS. In region II, the high-spin ground state is dominated by
the a1b1 triplet. However, in both cases there are significant
contributions from other configurations with the correct sym-
metry. This shows that overly simplistic models, which project
out everything but the largest probability component, may be
qualitatively correct but will certainly not be quantitatively
accurate for realistic values of the parameters.

Finally, we provide the detailed comparison between the
results of the conventional three-orbital Emery model (N3
in our notation) against the N7 and N9 results to see if the
multiplet physics plays any essential role at values of the
parameters believed to be reasonable for cuprates. To achieve
this, we performed the N3 calculation with the same Cu-O
hybridization, O-2p hopping integrals, and charge-transfer
energy � in region III of the phase diagram as in the N7
model, but keeping only the b1(dx2−y2 ) orbital with a Hubbard-
type Udd = A + 4B + 3C (see Table II of Appendix A).

Figure 6(a) compares the spectral weight of 1A1 symme-
try for the three models. Clearly, the ground-state peak and
the intermediate energy continua due to Cu-O hybridization
are in good agreement. However, the high-energy regions
(ω ≈ 10.0 eV) of the N7 and N9 models differ from that
of the N3 model, as the latter has a double-occupancy peak
at about Udd instead of the full multiplet spectrum of the
former. Figures 6(b) and 6(c) focus on the ground-state energy
and peak weight, respectively. The models are in very good
agreement, suggesting that multiplet physics and/or inclusion
of nonligand O-2p orbitals has little relevance for the nature of
the ground state. These results appear to confirm the validity
of the conventional three-orbital Emery model for describing
the low-energy physics of the cuprates.

FIG. 6. (a) Comparison of two-hole spectra for the N3, N7, and
N9 models. Parameters are � = 3.0 eV, A = 6.5 eV, Udd = A +
4B + 3C = 8.84 and tpd = 1.3 eV, tpp = 0.65 eV, tpdσ = 2.6/

√
3 eV,

pdπ = 0.65 eV, tppσ = 1.0 eV, tppπ = 0.3 eV; (b), (c) the ground-
state energy and the weight of its corresponding peak as functions of
the Cu-O hybridization tpd and charge-transfer energy �.

IV. CONCLUSION

In summary, we used variational exact diagonalization to
revisit the problem of the spectra of two holes doped into
an otherwise full CuO2 layer, modeled as a Cu-d10 impurity
properly embedded into a square lattice of O-2p6. While the
relevance of the full Cu multiplet structure was considered
before, with results in qualitative agreement with ours, we
use a realistic tight-binding band structure for the O band
and consider the implications of adding nonligand 2p orbitals
as well.
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Using a realistic O-2p band structure does not change
qualitatively the two-hole spectra, compared to those obtained
with a semielliptic one. However, there are significant quanti-
tative changes: the region favoring a bound ground state with
1A1 symmetry is enlarged significantly and extends well into
the Mott-Hubbard region of the ZSA classification sheme.
This proves that using a realistic band structure has nontriv-
ial quantitative consequences, which are relevant if detailed
modeling and comparison to experiments is desired. This is
an important lesson for impurity-type calculations, including
DMFT studies (if they use semielliptical bath densities of
states instead of the correct bands).

Furthermore, we find that the three-band Emery model
reproduces well the low-energy results obtained in the 1A1

symmetry channel of the N7 and N9 models. Its ground
state is consistent with the ZRS, but the overlap with the
ZRS wave function is only around 50% for reasonable values
of the parameters. This raises questions about the accuracy
of projecting the Emery model onto ZRS, to obtain simple
one-band Hamiltonians [14]. We point out again the impor-
tance of including all the multiplets when discussing energy
scales larger than about 1 eV, as in many of the optical
and photoemission spectroscopies. An obvious example is
the appearance of the so-called “waterfall” feature [32] at
energies of about 1 eV above the lowest-energy electron
removal state. This can trivially be explained by taking into
account all the multiplets and their hybridization with the
oxygen bands, forming a broad region in energy where a
huge number of bands cross and overlap so that a broad
continuum sets in a momentum distribution plot of ARPES
spectroscopy.

We also find that adding more O-2p orbitals (in the N9 and
N11 models) has essentially no consequences on the 1A1 sym-
metry low-energy spectra. All these results seem to confirm
the validity of the conventional three-orbital Emery model
for describing the low-energy physics. However, more care
is needed before drawing that conclusion, as the Emery model
completely misses the low-energy peaks of other symmetries
that are revealed by the full calculation, and which may be
relevant to various properties of the cuprates.

It is worth emphasizing that the projection onto different
irreducible representations is only possible because we treat
a single Cu impurity, as opposed to a lattice of Cu sites.
To lowest order, these impurity bound states can be treated
as electronic polarons and will attain a band structure, each
with a small band width due to the large “effective mass”
caused by the electronic dressing. This is similar to the
dispersion of the ZR singlet states as obtained in the t-J or
the t-t ′-t ′′-J models [4]. In a fuller treatment of the full lattice,
however, these various symmetries will mix everywhere in
the Brillouin zone except at high-symmetry points, and thus
it is questionable whether these states with other symmetries
are truly irrelevant. In fact, the study by Lau [12] clearly
demonstrates a strong ferromagnetic ordering of the two Cu
spins sandwiching an oxygen hole. This is a strong indication
that more extended cluster models need to be studied to check
whether the influence of the magnetic order and of the hole
or electron doping on the stability of the ZRS in single-band
Hubbard model scenario is indeed valid in the doping region
where superconductivity arises.

The lower symmetry of the lattice (as opposed to an impu-
rity) may also explain how the z-axis polarization, discussed
in the Introduction, may be accounted for. The d3z2−r2 , dxz and
dyz orbitals have very little contribution to the 1A1 ground
state, but they contribute significantly to the low-energy peaks
in the other symmetry channels. A lattice calculation that
breaks the D4h point-group symmetry may boost not only their
contribution to the ground state, but also the importance of the
O-2pz orbitals that mostly hybridize with them.

To settle these questions, calculations for the lattice equiv-
alent of the N7 model are needed. Needless to say, an exact
solution is a very hard challenge. Instead, it may be possible
to obtain accurate results using variational approximations
similar to those used here, but extended to a full Cu lattice.
We will investigate this next.
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APPENDIX A: MORE DETAILS OF THE MODEL

Table I lists the Cu-O and O-O hopping integrals.
We use the convention that the hybridization parameters
tpd , tpp, tpdσ , tpdπ , tppσ , tppπ are positive. The signs due to the
orbitals’ overlap (see Fig. 1) are explicitly indicated.

Table II lists the interaction matrices for all singlet/triplet
irreducible representations of the D4h point group spanned by
two d holes, in terms of the Racah parameters A, B, and C.
As noted in the main text, the free-ion values B = 0.15 eV,
C = 0.58 eV are adopted and A is treated as a variable in this
work.

TABLE I. The Cu-O and O-O hopping integrals T pd
mn and T pp

nn′
with m ∈ {b1(dx2−y2 ), a1(d3z2−r2 ), b2(dxy ), ex (dxz ), ey(dyz )} for vari-
ous models. The hoppings involving px3 , py3 , px4 , py4 follow the sign
convention illustrated in Fig. 1.

N3 N7 N9

m T pd
mx1

T pd
my2

T pd
mx1

T pd
my2

T pd
mx1

T pd
my1

T pd
mx2

T pd
my2

b1 −tpd tpd −tpd tpd −√
3tpdσ /2 0 0

√
3tpdσ /2

a1 tpd/
√

3 tpd/
√

3 −tpdσ /2 0 0 −tpdσ /2
b2 0 tpdπ tpdπ 0

N11

m T pd
mx1

T pd
my1

T pd
mz1

T pd
mx2

T pd
my2

T pd
mz2

b1 −√
3tpdσ /2 0 0 0

√
3tpdσ /2 0

a1 −tpdσ /2 0 0 0 −tpdσ /2 0
b2 0 tpdπ 0 tpdπ 0 0
ex 0 0 tpdπ 0 0 0
ey 0 0 0 0 0 tpdπ

N3/N7 N9/N11

T pp
x1y2

2T pp
x1x2

2T pp
x1y2

2T pp
x2y1

2T pp
y1y2

tpp tppπ − tppσ tppπ + tppσ tppπ + tppσ tppπ − tppσ
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TABLE II. Irreducible representations spanned by two d holes (d8) and corresponding Coulomb and exchange matrix el-
ements in terms of Racah parameters A, B,C. The basis functions are based on the single-hole irreducible representations:
b1(dx2−y2 ), a1(d3z2−r2 ), b2(dxy ), ex (dxz ), ey(dyz ). Throughout the paper, the free-ion values B = 0.15 eV, C = 0.58 eV are adopted and A
as a variable is also often referred to as Hubbard U , whose value varies in different materials.

1A1 a2
1 b2

1 b2
2 (e2

x + e2
y )/

√
2

a2
1 A + 4B + 3C 4B + C 4B + C

√
2(B + C)

b2
1 4B + C A + 4B + 3C C

√
2(3B + C)

b2
2 4B + C C A + 4B + 3C

√
2(3B + C)

(e2
x + e2

y )/
√

2
√

2(B + C)
√

2(3B + C)
√

2(3B + C) A + 7B + 4C

1A2 b1b2
3B1 a1b1

3B2 a1b2

b1b2 A + 4B + 2C a1b1 A − 8B a1b2 A − 8B

3A2 b1b2 exey
1B1 a1b1 (e2

x − e2
y )/

√
2 1B2 a1b2 exey

b1b2 A + 4B 6B a1b1 A + 2C 2
√

3B a1b2 A + 2C 2
√

3B
exey 6B A − 5B (e2

x − e2
y )/

√
2 2

√
3B A + B + 2C exey 2

√
3B A + B + 2C

1E exb1 exa1 eyb2
1E eyb1 eya1 exb2

exb1 A + B + 2C −√
3B −3B eyb1 A + B + 2C

√
3B 3B

exa1 −√
3B A + 3B + 2C −√

3B eya1

√
3B A + 3B + 2C −√

3B
eyb2 −3B −√

3B A + B + 2C exb2 3B −√
3B A + B + 2C

3E exb1 exa1 eyb2
3E eyb1 eya1 exb2

exb1 A − 5B −3
√

3B 3B eyb1 A − 5B 3
√

3B −3B
exa1 −3

√
3B A + B −3

√
3B eya1 3

√
3B A + B −3

√
3B

eyb2 3B −3
√

3B A − 5B exb2 −3B −3
√

3B A − 5B

APPENDIX B: VARIATIONAL EXACT DIAGONALIZATION

We summarize here our implementation of the variational
exact diagonalization method that we use to calculate the
propagator Gd (m, z; �). The two-hole states in the variational
space are of three possible types: (a) both holes are on the
Cu; (b) one hole is on the Cu and one on an O; and (c)
both holes are on O sites. All states in (a) are included in
the variational space. For the (b) and (c) states, we impose
a cutoff Rc between the O hosting the hole(s) and the Cu.
Obviously, Rc → ∞ recovers the full Hilbert space. We typ-
ically set Rc = 20 for the results shown below. This suffices
for convergence to be reached for all the bound states. Unless
we use a very large δ, the continua are not yet fully converged
for this Rc, instead they look like a collection of peaks whose
number increases with Rc. The upper and lower band edges
are already converged, however, and that is all the information
relevant for our analysis.

Within this variational space, we set up the Hamiltonian
matrix for each irreducible representation and use standard ex-
act diagonalization to calculate the corresponding propagators
via Lanczos diagonalization.

APPENDIX C: WEAK DEPENDENCE OF PHASE
DIAGRAM ON CHARGE-TRANSFER ENERGY �

Two-dimensional phase diagrams like those of Fig. 4 may
be expected to change depending on whether the A − �

axis is spanned by changing A while keeping � constant,

or by changing � while keeping A constant, or by some
other protocol. In Fig. 7 we show how the phase diagram
evolves with the charge-transfer energy �. The rather weak
dependence of the A − � vs tpd phase boundaries upon �

confirms the importance of the energy separation between
A and �. Specifically, as � governs the energy difference
between the d9 and d10L states, A − � governs the average
energy difference between d8 and d9L. If A is less than �, we
are closer to a Mott-Hubbard limit than a charge-transfer gap

FIG. 7. Weak dependence of the phase boundaries of N7 phase
diagram showed in Fig. 4(a) (with the same color conventions) on
the charge-transfer energy �.
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limit. In that case, the d8 triplet is the lowest-energy electron
removal state as clearly seen in Fig. 4, although the singlet

lowest-energy state extends well into this negative A − �

region.
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