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Magnon-mediated attraction between two holes doped in a CuO2 layer
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Using a realistic multiband model for two holes doped into a CuO2 layer, we devise a method to turn off the
magnon-mediated interaction between the holes. This allows us to verify that this interaction is attractive, and
therefore could indeed be (part of) the superconducting glue. We derive its analytical expression and show that
it consists of pair-hopping + spin-exchange terms. Its coupling constant is fitted from the ground state energy
obtained with variational exact diagonalization, and it faithfully reproduces the effect of the magnon-mediated
attraction in the entire Brillouin zone. For realistic parameter values, this effective interaction is borderline strong
enough to bind the holes into preformed pairs.
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I. INTRODUCTION

Despite sustained efforts, more than thirty years after the
discovery of high-temperature superconductivity in cuprates
[1], the nature of the glue that binds its Cooper pairs is still
unclear [2]. This binding is not through the phonon-mediated
Bardeen-Cooper-Schrieffer (BCS) mechanism responsible for
low-Tc, conventional superconductivity [3], although phonons
have been proposed as the glue for bipolaron superconduc-
tivity [4–6]. The current leading contender appears to be a
magnon glue [7–11] due to the proximity of antiferromag-
netism in the phase diagram of these strongly correlated
materials, and also because of the existence of several other
nonconventional superconductors with an adjacent magnet-
ically ordered phase [12,13]. Other, more exotic proposed
glues include loop currents [14], orbital relaxation [15], or
hidden fermions [16]. A mix of several glues is certainly also
possible [17,18].

Part of the reason for the absence of a definitive theoretical
answer is the fact that most such work is based on effective
models or on phenomenological considerations, with parame-
ters extracted from fits of various experimental measurements.
Such approaches are a priori guaranteed to reproduce some
experimental aspects, but it is not clear if the values of
the fitted parameters are reasonable, nor how they should
depend on the microscopic structure or on external parame-
ters such as pressure, doping, etc. Such theories are hard to
falsify.

What is needed, instead, is to extract the form and the
strength of the effective attraction mediated by various glues,
starting from well-established microscopic models. In a sec-
ond stage, these effective interactions should then be investi-
gated to see if they can explain the high-TC superconductivity
(and hopefully many other aspects of the complex cuprate
phenomenology) on their own, or if combinations of several
such terms are necessary. Clearly, this would make the process
of validating or falsifying various mechanisms more straight-
forward. The problem, however, is that extracting these

effective attractions from microscopic models is very diffi-
cult, for two reasons: (i) Perturbative methods are unsuitable
whether one believes the cuprates to be strongly correlated
electron systems and/or to have the strong electron-phonon
coupling that could enable a high TC value. Moreover, one
cannot appeal (only) to numerical methods to obtain the
needed analytical expressions for these effective attractions.
Instead, accurate (semi)analytical formalisms are needed, and
those are hard to come by. (ii) More fundamental is a prob-
lem stemming from the indistinguishability of electrons. The
effective interactions arise from processes where one particle
emits a boson, which is then absorbed by another particle. If
one could turn off this process “by hand” and thus compare
results where this exchange is allowed vs forbidden, one could
infer the form and magnitude of this effective boson-mediated
interaction from its effects on the many-body spectrum and
wave functions. The problem is that for indistinguishable
particles it is impossible to tell which is “particle 1” and
which is “particle 2,” in other words to distinguish whether a
boson has been exchanged or whether it has been reabsorbed
by the same particle that emitted it (thereby contributing to
renormalizing it into a quasiparticle, instead of to the boson-
mediated interaction).

In this work we propose an elegant solution for these
challenges that allows us to verify that magnon exchange
indeed mediates an effective attraction between two holes
doped into a cuprate layer. Moreover, we find the analyt-
ical expression of this effective attraction. Our expression
describes processes that are conceptually simple, namely pair-
hopping + exchange terms where both holes hop while also
exchanging their spins. To the best of our knowledge, this type
of effective interaction has not been considered before in this
context. We extract its energy scale by fitting the ground-state
energy, specifically we ask that the ground-state energy of the
system with magnon exchange allowed be reproduced by that
of the system where the magnon exchange is turned off but
this additional effective attraction is added instead. We then
show that our effective interaction reproduces well the effects
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FIG. 1. (a) Sketch of three-band model which includes the Cu
3dx2−y2 and the O ligand 2px/y orbitals (left half). In the strongly-
correlated limit, there are spin degrees of freedom at Cu sites while
the doped holes move on the O sublattice, as sketched in the right
half; (b) A Tsw process which results in effective hopping of the hole
while its spin is swapped with that of the neighbour Cu.

of the magnon exchange throughout the Brillouin zone (BZ),
thus validating its expression and magnitude.

The paper is organized as follows. Section II presents
the model and describes its two-hole spectrum. Section III
discusses how we prove the existence of a magnon-mediated
attraction between the holes and how we quantify its form and
magnitude. Section IV analyzes the role of the background
spin fluctuations, while Sec. V speculates on the possible
existence of preformed pairs. Finally, Sec. VI contains a
short summary and conclusions. Various technical details are
relegated to the three Appendixes.

II. THE MODEL AND ITS TWO-HOLE SPECTRUM

It is well known that in doped cuprates the doped holes
reside in the O 2p band, thus a reasonable starting point
for an accurate description is the three-band Emery model
[19,20], which includes both the Cu 3dx2−y2 orbitals that host
the strongly correlated holes responsible for the long-range
antiferromagnetic (AFM) order in the parent compounds and
also the ligand O 2p orbitals hosting the additional doped
holes responsible for superconductivity.

We study the Udd → ∞ limit of the three-band Emery
model. This is justified physically because Udd is by far the
largest energy scale, and is necessary computationally to make
the Hilbert space manageable. The Udd → ∞ limit implies
that single-hole occupancy is enforced for the Cu 3dx2−y2

orbitals, so there are spins 1
2 at these sites. Additional (doped)

holes occupy states in the O 2p band derived from the ligand
2p orbitals, as sketched on the right-hand side of Fig. 1(a).

We believe this to be a more suitable starting point than
the more studied one-band t-J and Hubbard models because
the one-band models make the additional assumption that the
doped holes are locked into Zhang-Rice singlets (ZRSs)
[21,22] and perform a further projection onto those states.
Even if the ZRS provides a good description of a single quasi-
particle (qp), it would not necessarily follow that modeling
the many-hole system in terms of ZRS is valid. Nearby holes
may modify the magnetic background and exchange magnons
in a way not allowed if each hole is locked in a ZRS [23].
Our approach has fewer constraints as it does not impose the
formation of ZRS, although it allows it to occur if it turns
out to be the most energetically favorable option. By being
more general, our model allows for, and tests, more possible
scenarios.

Moreover, in previous work [24,25] we showed a qualita-
tive difference between the quasiparticle (qp) of our model
and that of the optimized t-t ′-t ′′-J model: while both models
predict a qp dispersion in agreement with that measured
experimentally, the dispersion in the one-band models is
significantly impacted by background spin fluctuations, unlike
that of our model. The physical origin of this difference is
discussed below in detail. Here we note that its existence
suggests that these models do not describe the same physics
even in the single-qp sector, so there is no reason to expect
them to describe the same magnon-mediated exchange in the
two-hole sector.

To obtain the many-hole Hamiltonian, we start from the
Emery model and take its Udd → ∞ limit by straightforward
generalization of the method used for one hole in Ref. [26].
The resulting Hamiltonian is

H = Tpp + Upp + Tsw + HJpd + HJdd . (1)

Briefly, Tpp includes first and second nearest-neighbor (NN)
hopping of the doped holes between ligand O 2p orbitals,
while Upp is the corresponding on-site repulsion. Tsw describes
effective hopping of doped holes mediated by the Cu spin,
whereby the Cu hole hops onto a neighbor O followed by the
doped hole filling the Cu orbital, as sketched in Fig. 1(b); this
leads to a swap of the spins of the hole and the Cu. HJpd is
the AFM exchange between the spins of the doped holes and
those of their neighboring Cu. Finally, HJdd is the NN AFM
superexchange between adjacent Cu spins, apart from bonds
occupied by holes. Setting Jdd ≈ 150 meV as the energy unit,
we find tpp = 4.13, t ′

pp = 2.40, Udd = 25.40, tsw = 2.98, and
Jpd = 2.83, respectively [24–26]. Note that the value of tsw

is changed if a second hole is on either O involved, because
Upp shifts the energy of the intermediary states. This is taken
into account in our calculations, although we found it to have
essentially no consequences. The detailed description of all
these terms and several other relevant technical details are
given in Appendix A.

In the undoped system, only the AFM superexchange
HJdd acts between neighbor Cu spins. This Heisenberg-type
exchange results in a very complicated undoped ground state
(GS), which has strong short-range AFM fluctuations but no
long-range order. This is unlike the real materials, which
acquire long-range AFM order due to coupling to neighboring
layers.

To make progress, we begin by simplifying HJdd to an Ising
form, so that the undoped ground state is a Neél state without
spin fluctuations. At first sight, it may seem counterintuitive
that this is a reasonable approximation (even though it pro-
duces a GS with long-range order, much more similar to that
of the actual material than is the GS of the Heisenberg model).
In fact, this turns out to be an excellent approximation for this
model, so far as the behavior of doped holes is concerned,
at least in the extremely underdoped limit we study here.
Indeed, as shown in Refs. [24,25] for a single doped hole,
this approximation is justified because Jdd is significantly
smaller than all other energy scales. Physically, this means
that the timescale over which the background spin fluctuations
occur is significantly longer than that over which the holes
move around and modify their local magnetic environment
and exchange magnons through the spin-off-diagonal parts
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of Tsw and HJpd . Because spin fluctuations are so slow, their
influence on these fast processes involving the holes is mi-
nor. Below, we verify explicitly that this holds true for the
magnon-mediated interaction between the holes, by allowing
background spin fluctuations to occur in the vicinity of the
holes. As discussed later, we find that their presence changes
the magnitude of the magnon-mediated interactions by only
a few percent, so indeed they are negligible. As mentioned,
this is in sharp contrast to what happens in one-hole models,
where the spin-fluctuations occur on timescales comparable
to those relevant for processes involving the doped holes, so
they significantly influence their dispersion (and presumably
the effective interations, too) [25].

In the absence of background spin fluctuations, only the
holes emit and absorb magnons of the Cu magnetic back-
ground. For the Ising HJdd , magnons are static flipped Cu
spins. The absence of dispersion as compared to a Heisenberg
HJdd may seem problematic, but again it is the small Jdd

that controls the magnon speed. Because this speed is small
compared to that of other relevant processes, it can be safely
set to zero: a magnon emitted by a hole is simply too slow to
move away before it is absorbed either by the same hole or by
a different one. Another way to think about this is that what
matters here are real-space configurations, i.e., how far is a
magnon from a hole. A local (in space) magnon is a linear
superposition of all �q-momentum magnons. For symmetry
reasons, the coupling of small-�q magnons to holes vanishes,
so the holes interact mostly with the large-�q magnons, whose
dispersion is rather flat and which, therefore, can be safely
treated as being immobile.

If only the holes create and absorb magnons, we can
meaningfully classify variational spaces in terms of their
magnon numbers: the more magnons, the higher their Ising
energy cost, and the less likely it is to find such configu-
rations contributing significantly to low-energy eigenstates.
In this work, we limit the variational space to have up to
two magnons, and moreover require that any magnon be
within a distance mC from a hole; the reason being that we
are interested in the low-energy states where the magnons
belong to qp clouds and therefore are never too far from
holes. This variational space suffice to allow us to characterize
the magnon exchange between holes, which is our goal. It
is also sufficient to quantitatively capture the dispersion of
a single quasiparticle [24,25]. For two holes, this space is
too limited and overestimates the quasiparticles’ bandwidth,
but this aspect can be mitigated (see discussion below). The
alternative of increasing the variational space (and thus run
times and memory resources) by allowing more magnons is
less palatable considering that we are already dealing with up
to 106 configurations. This is because for two-hole configura-
tions we need a second cutoff MC for the maximum allowed
distance between any two objects (holes and/or magnons); to
study unbound states properly, this cutoff can run to many
tens of lattice constants. More technical details regarding the
variational space, as well as the single-qp dispersion, are
presented in Appendix B.

Diagonalizing Hamiltonian (1) in this variational space
reveals that the lowest feature of the two-hole spectrum is
the continuum describing two unbound qps, shown in Fig. 2
as the grayscale contour plot. To verify this, we use our knowl-

Y G M Y X
k

−44
−42
−40
−38
−36
−34
−32
−30
−28
−26

ω

FIG. 2. Contour plot of the two-hole spectral function A(k, ω)
along the high symmetry lines of the BZ. This spectral weight is for
states where one hole is on the px and the other is on the py orbital
adjacent to the same Cu. Clearly, the lowest-energy feature in the
two-hole spectrum is a continuum. The blue and red lines indicate
the expected continuum boundaries obtained from the convolution
of single-qp dispersions when nm = 1 and nm = 2, respectively, i.e.,
when each qp is allowed to have up to 1 or up to 2 magnons in its
cloud, respectively. The other cutoffs are Mc = 40 and mc = 3.

edge of the single-qp dispersion εsp(k) (shown in Appendix B)
to find the expected location of the two-hole continuum. This
corresponds to the convolution of two single-qp spectra, and
for a total momentum k it spans {εsp(k − q) + εsp(q)}q∈BZ.
The blue (top) set of lines show the expected location of
the continuum if each qp cloud is constrained to have up to
nm = 1 magnons, while the red (bottom) set of lines is the
answer if each qp cloud is constrained to have up to nm = 2
magnons.

As expected, our answer lies in between the two limits, be-
cause in the two-hole variational space that we use, with some
probability each qp can have more than one magnon; however,
the space is not large enough so that both holes can have two
magnons each at the same time. We verified that if we impose
the additional restriction for the two-hole variational space
that when two magnons are present each hole has a magnon
within mc of it, we recover perfect agreement between the
two-hole continuum and the nm = 1 single-hole prediction
(not shown). We can also artificially increase Jdd leading to
a higher energy cost for magnons and thus less weight on
the two-magnon states. For very large Jdd , the red and blue
lines in Fig. 2 fall on top of each other and coincide with the
continuum edge of the two-hole calculation (not shown).

We are thus confident that this lowest-energy continuum
is indeed the two-qp continuum, which is always a part of
the two-hole spectrum. Unfortunately, this result gives no clue
about the effective interaction between the qps, as the contin-
uum would be present whether the two qps are noninteracting
or whether they experience attraction or repulsion. All we can
say is that if there is magnon-mediated attraction between the
two qps, it does not appear to be strong enough to bind them
into a “preformed” pair, which would be a discrete state lying
below this two-qp continuum (we revisit this point below).
However, from this result we cannot even infer whether there
is a magnon-mediated interaction.

To do that, we need to find a way to turn off magnon-
exchange processes, in order to gauge their effect on the
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FIG. 3. (a) Original variational space, consisting of no-magnon
(top line), one-magnon (middle line), and two-magnon (bottom
line) configurations. The holes and/or magnons can be at any sites
consistent with the cutoffs, but for simplicity we do not label their
positions. (b) Variational space when the holes are given flavors
a or b. This can be mapped exactly onto the original variational
space of (a) using antisymmetric combinations of the two flavors.
(c) Extended variational space where magnons also have a flavor.
This allows us to turn off the exchange of magnons between holes.

two-qp eigenstates. We describe how we achieve this goal in
the next section.

III. QUANTIFYING THE EFFECTIVE
MAGNON-MEDIATED INTERACTION

As already mentioned in the Introduction, the key difficulty
with turning off magnon-exchange processes is in figuring out
when a magnon has actually been exchanged. This can be seen
by considering the configurations of the variational space,
sketched in Fig. 3(a). The top line indicates configurations
with a spin-up and a spin-down hole plus the AFM back-
ground (the holes are at various locations but for simplicity
we do not label these). Either hole can create a magnon in the
appropriate magnetic sublattice; this leads to the one-magnon
configurations from the second line. Either hole can emit a
second magnon, resulting in two-magnon configurations like
those in the third line. In principle, any number of magnons
can be emitted, so this hierarchy of configurations is infinite,
but as mentioned we keep only up to two-magnon configura-
tions in our variational space.

In the zero- and two-magnon configurations, the holes are
distinguishable through their spins (no term in Hamiltonian
(1) allows direct hole-hole spin exchange). However, in the
one-magnon configurations both holes have identical spin and
thus are indistinguishable. This is why, when considering the
magnon absorption from such a configuration, it is impossible
to know which of the two holes flipped its spin to emit
the magnon in the first place. As a result, we cannot forbid
magnon-exchange processes at this level, as this requires us
to be able to distinguish between the indistinguishable holes.

We therefore must assign different flavors a and b to the
holes, so that they are distinguishable even when they have
the same spin. This results in the configurations of Fig. 3(b).
Interestingly, these two variational spaces map exactly onto

each other if we use the correspondence c†
σ c†

σ ′ ↔ (a†
σ b†

σ ′ −
a†

σ ′b†
σ )/

√
2, which is necessary to enforce Pauli’s principle.

However, for these antisymmetrized, physical states, it is still
impossible to know which particle emitted the magnon, just
like for the original states onto which they map. For instance,
if the system is in a a†

↓b†
↓S+ type of configuration, it may

have arrived there either by starting in the a†
↑b†

↓ sector of the
physical state with the a-type hole emitting the magnon, or by
starting in the a†

↓b†
↑ sector with the b-type hole emitting the

magnon. The two scenarios cannot be distinguished, therefore
we still cannot know which hole emitted the magnon so we
cannot decide if a magnon-absorption process is of magnon-
exchange type or of quasiparticle renormalization type.

This is why we need to also label the magnons as a or b,
according to which hole emitted them. This leads to the varia-
tional space sketched in Fig. 3(c), which we call the “enlarged
variational space.” In this enlarged space we can turn off the
magnon exchange by requiring that an a/b magnon can only
be absorbed by an a/b hole. Its states are divided into two
families that do not mix if the magnon exchange is turned off,
which is the situation sketched in Fig. 3(c). Again, the phys-
ical states are the antisymmetrized combinations originating
from (a†

σ b†
σ ′ − a†

σ ′b†
σ )/

√
2 zero-magnon configurations, but

now for the situation sketched in Fig. 3(c) we know that to
arrive at a a†

↓b†
↓S+

a configuration, the a-type of hole emitted
the magnon. If only the a-type hole can absorb it, then magnon
exchange is turned off, and we can contrast the results in its
absence to those obtained when magnon exchange is allowed.
From such comparisons we ought to be able to infer the effects
of the magnon exchange, in particular whether they result in
an effective attraction between the qps.

Before continuing, we must note that the mapping of the
antisymmetrized, physical states from the extended varia-
tional space onto their counterparts in the original basis is
no longer one to one, because of the increased number of
one- and two-magnon configurations. Instead, the enlarged
variational space can be thought of as corresponding to the
tensor product of the variational spaces for single spin-up
and spin-down holes, respectively, but with the physical con-
straints imposed, e.g., two magnons cannot be at the same Cu
site, etc. This is meaningful because in the low-energy state
magnons are bound to their hole’s cloud and therefore need
not be treated as free particles.

Figure 4 shows GS results for the case when the magnon
exchange is allowed (top panel) vs forbidden (bottom panel).
The red arrows are at the positions of Cu sites and indicate the
direction of their spins in the undoped ground state. Of course,
the spin order is modified by the presence of the holes, but
showing that in a meaningful way on this scale is impossible,
which is why we show the magnetic order before the holes
were introduced. The O locations are indicated by circles.
Their blue shading indicates the probability of finding a hole
on that O, if the other hole is located on the central px orbital
marked by the green cross.

Clearly, when the magnon exchange is allowed, the holes
are closer than when the magnon exchange is turned off. This
clearly proves that magnon exchange mediates an effective
attraction between the two holes. This is one of the main
results of this study.
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FIG. 4. Contour plots (shades of blue) for the GS probability of
finding a hole on various O sites (shown by circles), if the other hole
is at the central px O site marked with the green cross. The red arrows
are at the positions of Cu and indicate the direction of the spins in
the undoped ground state, i.e., before the holes were added. The top
panel shows the result when magnon exchange is allowed, while the
bottom panel shows the result when magnon exchange is turned off.

Before trying to quantify how strong is this attraction, we
point out two important facts. First, this GS is at the bottom
of the two-qp continuum, so these two holes are not bound.
The reason why there is finite probability for them to be close
to one another is the existence of the constraint Mc on the
largest relative distance allowed between them. This imposes
a “finite-box” type of restriction on the relative motion of
the two holes, so they cannot move infinitely far apart. We
have checked that the tendency of holes to be closer when
magnon exchange is allowed is independent of the size of
the Mc cutoff, as indeed expected for an interaction with
a finite range. This is shown in Fig. 5, where we plot the cu-
mulative probability P(r) = 1

N

∑
i

∑
| j|<r〈GS|n̂in̂i+ j |GS〉 to

FIG. 5. GS cumulative probability P(r) of finding the two holes
within a distance r/Mc of each other, when magnon exchange is
allowed/forbidden (full/dashed lines). The results are essentially
independent of the values of the cutoffs Mc, mc.

find the holes within a distance | j| � r (measured using
the L1 norm) versus the scaled separation r/MC , for several
values of the maximum allowed relative distance MC . Curves
with different MC overlap, showing that these are indeed
unbound states: the holes move further apart if MC is larger.
The full/dashed lines show the results with/without magnon
exchange. In its presence the holes are closer to each other,
therefore magnon exchange mediates an effective attraction
between holes.

The second note is that the GS is doubly degenerate. The
contour plots of Fig. 4 will look somewhat different depending
on which linear combination of the two eigenstates is chosen
for calculating the probability. The choice we made in Fig. 4
is to use the eigenstate that is even to reflections about the
x-y diagonal. Irrespective of which choice is made, the holes
are always closer to one another when magnon exchange is
allowed.

Next, we identify the Heff that describes this magnon-
mediated attraction. This is achieved by adding various pos-
sible candidates for Heff to the calculation in the enlarged
space without magnon exchange, and adjusting until the re-
sults match those with magnon exchange allowed. We use
perturbation theory (PT) to suggest possible forms: Heff ∼
P̂0V̂

1−P̂0
E0−H0

V̂ P̂0, where P̂0 projects onto the zero-magnon
subspace, H0 contains terms that conserve the number of
magnons, and V̂ = H − H0 contains terms that create or
annihilate magnons.

Clearly, V̂ has contributions from Tsw and HJpd . These
are further divided into direct processes, where holes
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FIG. 6. Sketch of one of the terms in Heff . Both holes hop through
Tsw processes, exchanging a magnon through the common Cu spin.
All possible such processes are included in Heff , with the same
magnitude but signs depending on pd overlaps.

create/remove magnons of their own flavor, vs exchange ones,
where they interact with magnons of the other flavor (only
direct processes are allowed when the magnon exchange is
turned off). To mimic the effect of the magnon exchange, Heff

must contain the product between a direct and an exchange
term; e.g., a hole emits a magnon of its own flavor (direct pro-
cess) which the other hole then absorbs (exchange process).

Generating all such terms suggested by PT and enforcing
hermiticity, we find four possible contributions to Heff (the
details are provided in Appendix C). We then investigate each
term separately, treating its magnitude as a free parameter,
fitted to get the same GS energy as for the full calculation
with magnon exchange allowed. This approach allows us to
account for the renormalization of this energy scale due to
higher order terms in the perturbative expansion.

We find that the dominant term has both the magnon emis-
sion and absorption due to Tsw. This finding is consistent with
the independent check that turning off the magnon exchange
due to this term accounts for nearly all the difference between
the cumulative probabilities of Fig. 5 (not shown).

Keeping only this dominant term, we find Heff =∑
j (H

j↑
eff + H j↓

eff ), where the two terms correspond to having
both holes adjacent to the up/down Cu spin in the unit cell j,
and

H j↑
eff = tpair

∑
α,β,ηα

ηβ �=uα−uβ

ζαβc†
j−uβ−ηβ ,↑c†

j−uα−ηα,↓c j−uβ ,↓c j−uα,↑,

H j↓
eff = tpair

∑
α,β,ηβ

ηα �=uβ −uα

ζαβc†
j+uβ+ηβ ,↑c†

j+uα+ηα,↓c j+uβ ,↓c j+uα,↑.

In units of a
2 , the vectors u = ±(1, 0),±(0, 1) show the

locations of O neighboring the Cu spin, while the vectors η =
±(1, 1),±(1,−1),±(2, 0),±(0, 2) link O sites adjacent to
the same Cu. Finally, ζαβ = −2s(ηα )s(ηβ ), where s(η) = +1
if ηx + ηy = 0, otherwise s(η) = −1.

This Hamiltonian is the main result of this work. It contains
conceptually simple processes like that sketched in Fig. 6:
First, the hole with spin antiparallel to the common Cu
spin undergoes a Tsw process and moves to another O while
swapping its spin with the Cu. This amounts to the emission
of a magnon at that Cu site, subsequently absorbed when the
second hole undergoes a Tsw process involving the same Cu.
Thus, Heff describes both holes hopping as a pair but also

FIG. 7. (a) GS cumulative probability P(r) of finding the two
holes within a distance r/Mc of each other, when magnon exchange
is allowed/forbidden (full/dashed lines). These are the same results
as in Fig. 5. In addition, the symbols show P(r) when the magnon
exchange is turned off but Heff is added instead, with tpair = −1.525.
(b) Same as in (a) but for Upp = 0. In this case, tpair = −1.156.

exchanging their spins. The relative signs ζαβ are due to the
product of appropriate Tsw signs, which in turn are controlled
by the overlaps between the O 2p and Cu 3d orbitals involved
[26].

We find that adding this Heff to the calculation with magnon
exchange forbidden produces the same GS energy as the
full calculation with the magnon exchange allowed if we
set tpair = −1.525. To validate it, in Fig. 7(a) we show that
the GS cumulative probability in the enlarged space with-
out magnon exchange but with this Heff included (symbols)
matches perfectly that obtained when magnon exchange is
allowed (full line). This shows that this Heff reproduces the
GS wave function accurately. Furthermore, we find that it
gives a faithful description of the effects of magnon ex-
change in the entire Brillouin zone: Fig. 8 compares the
differences 	Eno−ex = Eno−ex − Eex and 	EHeff = EHeff − Eex

between the lowest eigenenergies without and with magnon
exchange (dashed line) vs the same difference but with Heff

included if magnon exchange is forbidden (symbols). Note
that Eex is shown in Fig. 2 as the lowest energy for each
momentum in the Brillouin zone.

Clearly, Heff reproduces very well the effect of the magnon
exchange in the full Brillouin zone, even though tpair is fitted
only for agreement at the 
 point. Note that these energy

Y Γ M Y X

0.00

0.01

ΔE

FIG. 8. Differences between the lowest eigenenergies without
and with magnon exchange (dashed line) versus the same difference
but with Heff included when the magnon exchange is turned off
(symbols).
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variations are again due to the finite Mc constraint. While the
size of the energy differences depends on the value of Mc, we
verified that adding this Heff works well for any value of Mc.

We therefore conclude that this Heff indeed reproduces very
well the effect of the magnon-mediated attraction between the
two holes. This is a nontrivial result, as there is no a priori
reason to expect that Heff contains a single class of processes.
As mentioned, second-order PT suggests three other possible
candidates, involving HJpd in the magnon emission and/or
absorption. Although HJpd and Tsw have comparable energy
scales, these other processes turn out to have little effect, in
other words higher order PT terms seem to renormalize them
to become vanishingly small. We do not currently have a good
understanding of why this happens.

Of course, higher order PT terms also generate other
possible exchange scenarios, involving more magnons. That
these do not contribute much is less surprising because all
their magnons have to be exchanged, i.e. created by a hole
and absorbed by the other in a way that is not just a sequence
of independent Heff processes. This is rather difficult given
the structure of the CuO2 planes, which makes it easy for two
holes to be neighbors of the same Cu spin, but impossible for
them to be simultaneously neighbors of two or more different
Cu spins.

The expression of this effective, magnon-mediated attrac-
tion Heff is the central result of this work. It is very different
from the more customary density-density or exchange type
of effective interactions previously used in the literature. As
such, it is likely to drive different behavior at higher con-
centrations; investigation of these differences is left for future
work.

Before concluding this section, we briefly address the
dependence of tpair on the various parameters. Mostly it is
as expected, e.g., monotonic increase with both tsw and Jpd ,
shown in the top and middle panels of Fig. 9, respectively.
The surprise is that |tpair| increases with Upp; see bottom panel
of Fig. 9. A larger Upp disfavors configurations with both
holes on the same O, thus fewer pair-hopping + exchange
processes are effectively allowed. Thus, it is not obvious
whether the larger |tpair| value really means stronger attraction
because, at the same time, some terms in Heff are effectively
blocked. Indeed, the change in the cumulative probability with
and without magnon exchange is much more significant for
Upp = 0 than that shown in Fig. 7(b), suggesting that the
magnon-mediated attraction is stronger for smaller Upp. This
serves to illustrate the fact that interactions like this Heff have
not been thoroughly studied and we lack intuition about their
effects.

IV. THE ROLE OF BACKGROUND SPIN FLUCTUATIONS

We have repeated the analysis described above in the
case when spin fluctuations (which allow any two adjacent,
antiparallel Cu spins to simultaneously flip their spins) are
allowed within mC of the holes. This restriction is sensible
because spin fluctuations which occur far from the holes can
be thought of as “vacuum fluctuations” with which the holes
do not interact and which, therefore, will have no effect either
on the holes’ dynamics or on the effective interaction between
them.

0 5 10 15 20 25
Upp

-1.5

-1.4

-1.3

-1.2

t pa
ir

FIG. 9. Dependence of tpair on tsw (top), Jpd (middle) and Upp

(bottom). In each case, all other parameters are held fixed at their
stated values.

In Ref. [25] we proved that in the one-hole sector this ap-
proach provides excellent agreement with exact diagonaliza-
tion (which fully includes the effects of spin fluctuations) both
for our three-band model and for t-t ′-t ′′-J one-band models.
We also showed that spin fluctuations have no influence on
the quasiparticle (spin-polaron) dynamics in the three-band
model, even though they play an essential role in the one-
band models. This is because, as mentioned, in the three-band
model Jdd (which defines the characteristic timescale for spin
fluctuations) is significantly smaller than the other energy
scales, whereas its counterpart J in the one-band models is
comparable to t ′, t ′′ (for more analysis, see Ref. [25]).

Redoing the two-hole calculation in the presence of local
spin fluctuations reveals results very similar to those already
discussed (not shown). In particular, the value of the best
fit for |tpair| varies by less that 5%. This clearly shows that
the spin fluctuations play little role in the effective attraction
mediated by magnon exchange, and validates our assertion
that we can indeed ignore them.
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This result is not surprising. As already mentioned several
times, Jdd is the smallest energy scale, meaning that spin
fluctuations happen on a very long (slow) timescale. Roughly
put, a magnon will be exchanged between holes much faster
than the timescale over which spin fluctuations occur, which
is why we can ignore them.

The same conclusion is reached if one tries to infer how
spin fluctuations might affect the magnon-exchange process.
Suppose, for instance, that one of the holes flips its spin
through either HJpd or Tsw and creates a magnon at the Cu site
denoted as “1”. If this is the first magnon, then spin “1” is now
parallel to its four Cu neighbors and spin fluctuations cannot
directly act on it. Spin fluctuations could flip another pair of
neighboring spins (called “2” and “3”) and then another spin
fluctuation could flip two of them (e.g., “1” and “2”) back to
their original orientations, leaving the magnon at site “3” (this
sequence of events basically mimics magnon dispersion). The
magnon can now be absorbed by the second hole. Clearly, this
is a lot more complicated and less likely (for a small Jdd ) than
the simple process where one hole creates the magnon and the
second absorbs it without further complications.

A simpler scenario is when there already exists a magnon
on a Cu site neighbor to site “1”, enabling a spin fluctuation
involving spin “1” to occur without further complications.
However, this will remove both magnons, so “magnon ex-
change” as normally envisioned would not occur. Neverthe-
less, if the other magnon was emitted by the other hole, then
this process (and its counterpart, wherein a spin fluctuation
creates two magnons, each of which is absorbed by a different
hole) will contribute to the effective hole-hole interaction.
Such processes are included in our calculation when local
spin fluctuations are allowed and, as mentioned, were found
to have only a tiny effect on the value of tpair.

V. ON THE EXISTENCE OF PREFORMED PAIRS

So far, we found that for reasonable values of the param-
eters, the magnon-mediated interaction does not appear to be
strong enough to bind the two holes into a preformed pair.
To see how far away that regime is, we can increase tpair by
hand (thus mimicking a stronger magnon-mediated attraction)
to find when binding occurs. An exact answer is difficult to
obtain because of the finite maximum distance Mc imposed
between holes, which reduces the two-hole continuum to a
fairly dense sequence of discrete levels. The value of tpair

where one state is pushed below this “continuum” changes
somewhat with MC , but we estimate that |tpair| ∼ 2.7 is a safe
upper limit; for this and larger values of |tpair| the energy of
the bound state is independent of Mc, and clearly well below
the continuum.

Thus, the value |tpair| = 1.525 we found is less than a factor
of 2 from this critical value. This is very interesting because
the rather small number of magnons kept in the variational
space means that we overestimate the quasiparticle bandwidth
by about the same factor, as shown in Fig. 2 (the red lines
are essentially converged, and show a significantly narrower
bandwidth than the numerical results). Given that binding
occurs when the lost kinetic energy is compensated by the
increased attraction, this suggests that tpair = −1.525 may, in
fact, be sufficient to weakly bind the two qps if their clouds

are fully converged and they are somewhat slower/heavier. A
definite answer will require significantly more work, as more
magnons will need to be added in the variational space to
fully converge the qps’ clouds when they are far from each
other. We note that exact diagonalization of the same model
on a 32Cu + 64O cluster could not settle this issue either,
because of considerable finite-size effects [27], although those
results also suggested that the system may be close to hosting
preformed pairs.

This issue clearly deserves further, careful study, which
we plan to attempt in the future. For now, we would like to
speculate a bit more on this topic, because what we do know
is already quite interesting.

First, the fact that our parameters seem so close to the
critical region where preformed pairs may form suggests that,
on the BCS-BEC spectrum, superconductivity mediated by
this Heff would be more BEC-like than BCS-like, i.e., with
pairs bound in real space, not in momentum space. Of course,
the possibility of cuprate superconductivity emerging (at least
on the underdoped side) when a liquid of preformed pairs
becomes coherent has long been one of the leading scenarios
[28–33]. More recently, several groups have suggested that
various unusual properties on the underdoped side can be
explained as being due to the scattering of fermionic carriers
on a bosonic liquid of preformed pairs [34–36]. Our work
seems to be consistent with these scenarios.

We leave it for future work to fully establish the symmetry
of the preformed pairs (if they exist) and/or of our effective
attraction. Note that the answer for the latter question is not
trivial, because of the many-band structure and because of the
form of the effective interaction. We can Fourier transform
Heff , but (i) the potential will depend not just on the momen-
tum q exchanged between the holes but also on their total
momentum k + k′. More importantly, (ii) because we have
four different O sites in the magnetic unit cell, this potential is
in fact a 4 × 4 matrix, and its symmetry to rotations is more
complicated to establish than for a scalar.

Even so, we can state that we expect this symmetry to
be d-wave-like. The reason is as follows. We know that for
carriers moving on a square lattice, like that made by the O
ions, any amount of on-site (s-wave symmetry) attraction will
lead to the appearance of a bound state. That we do not find
this bound state when Upp > 0 may be explained by this being
larger than the s-wave component of the effective attraction.
However, we do not find a bound state even when Upp = 0.
This can only mean that our effective interaction does not have
an s-wave component, thus it is likely to be d-wave-like.

VI. SUMMARY AND CONCLUSIONS

To conclude, we showed that magnon exchange between
holes doped in a cuprate layer leads to an effective attraction,
and identified its expression Heff and its energy scale |tpair| ∼
1.5Jdd ∼ 225 meV.

The form of Heff is unusual and requires further study. It is
interesting that it has a “kinetic” nature, as the holes move
while interacting. Evidence that pairing in cuprates comes
through a “kinetic” mechanism was uncovered in optical
experiments [37–40]. As argued above, we also expect Heff

to favor pairs with d-wave symmetry and to be strong enough
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so that the underdoped system either has preformed pairs or
is very close to having them. If preformed pairs exist, they
are very weakly bound, i.e., on a scale much smaller than
|tpair|, consistent with the fact that both TC and the pseudogap
temperature T ∗ are well below |tpair|. Even if preformed pairs
were unstable, the superconductivity promoted by Heff is
likely not BCS-like, but more towards BEC-like and uncon-
ventional.

As a final note, let us comment on why we expect this
specific magnon-mediated effective attraction Heff , derived in
the extremely underdoped limit and in the presence of long-
range AFM order, to be relevant at least in the underdoped
regime. The answer is that this interaction only involves the
two holes and their common Cu spin through which they
exchange the magnon. To first order it makes no difference
whether this Cu spin is part of a magnetically ordered system
or not, especially as all energy scales characterizing hole-spin
interactions are much larger than Jdd . What may happen with
increased hole concentration is that the magnitude |tpair| of
this effective interaction is renormalized, but we expect the
functional form to remain the same.

Clearly, more work needs to be done to fully understand the
consequences of this specific Heff attraction, but we believe
that the results reported here are interesting and intriguing,
and warrant such further work.
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APPENDIX A: HAMILTONIAN DETAILS

We study the model introduced by Lau et al. [26] in the
two-hole sector, for a finite value of Upp (note that in Ref. [26]
double occupancy is forbidden on the O sites). The holes
propagate on the two-dimensional (2D) CuO2 layer depicted
in Fig. 1(a) of the main article. In the Udd → ∞ limit at zero
doping each Cu ion is in a d9 configuration, i.e., it hosts a
single hole which is described by a spin degree of freedom.
Due to the superexchange interaction HJdd (see below), these
Cu-spins tend to align antiferromagnetically. As discussed in
the main text, we first assume that this interaction is of Ising
type and thus, in the absence of doped holes, the lattice of
Cu spins is in the Néel state. The role of the background
spin-fluctuations enabled by the x-y part of HJdd is considered
subsequently.

Starting from a Néel state, the magnetic unit cell comprises
two Cu sites and four oxygen sites. Our choice of unit cell is
depicted in Fig. 10. For the jth unit cell the lattice vector R j

points to the Cu↓ site. The oxygen orbital α is located at rα =
R j + uα and the Cu↑ site at R j + aŷ, where a is the lattice
constant. It is convenient to measure distances in units of a/2,
as we do from here on. Occasionally it will be convenient to
sum over all the Cu↑ sites. We will indicate this by j ∈ Cu↑.
In that case it is assumed that the vector R j points to a Cu↑
site. It then follows (see Fig. 10) that the neighboring oxygen

FIG. 10. The CuO2 lattice. The phase convention for the oxygen
2p orbitals is shown. Red arrows indicate the spins of the Cu holes.
The unit cell consists of the four oxygen sites marked with text and
the two Cu sites marked with asterisks.

orbital of type α is located at R j − uα . If not otherwise stated,
R j is always assumed to point to a Cu↓ site.

The two additional holes are hosted by the ligand oxygen
2p orbitals pointing towards the nearest Cu ions. Their kinetic
energy Tpp is given by a tight-binding Hamiltonian describing
nearest neighbor (NN) and next nearest neighbor (NNN)
hopping across Cu sites:

Tpp = tpp

∑
j,σ,α,δ

s(δ)c†
j+uα+δ,σ c j+uα,σ − t ′

pp

×
∑
j,σ,α

(c†
j+3uα,σ + c†

j−uα,σ )c j+uα,σ + H.c. (A1)

Here c†
j+uα,σ (c j+uα,σ ) creates (annihilates) a hole with spin σ

at site R j + uα . The vectors δ point to the four oxygen NNs
and s(δ) is the sign of the corresponding hopping amplitude,
as listed in Table I. These signs are for holes (not electrons)
and can be inferred from the phases of the oxygen 2p orbitals
depicted in Fig. 10. The positive constants tpp and t ′

pp are the
magnitudes of the NN and NNN hoppings, respectively.

The interaction between holes and Cu spins has two terms.
The first is an exchange interaction:

HJpd =
∑

α

⎛
⎝ ∑

j∈Cu↓

+
∑
j∈Cu↑

⎞
⎠�s j+uα

· �S j, (A2)

TABLE I. Hopping signs for Tpp and Tsw. The vectors δ and η

are given in units of a/2. The first four rows are the NN hopping
directions, while the NNN directions are listed in the rows below.

δ, η Tpp Tsw

(1, 1) + −
(−1, 1) − +
(−1, −1) + −
(1, −1) − +
(2, 0) − −
(−2, 0) − −
(0, 2) − −
(0, −2) − −
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TABLE II. The vectors ηα pointing from orbital α to the oxygen
orbitals which share a Cu↓ neighbor (in units of a/2).

Orbital α ηα

x1 (−1, 1); (−1, −1); (−2, 0)
x2 (1, 1); (1, −1); (2, 0)
y1 (−1, −1); (1,−1); (0, −2)
y2 (−1, 1); (1, 1); (0, 2)

where �s is the spin operator for corresponding O holes and �S
is the spin operator for the Cu spins. The second term involves
hopping of a hole while swapping its spin with the adjac-
ent Cu:

Tsw = tsw

∑
j∈Cu−↓

∑
α,σ

s(ηα )
[
c†

j+uα+ηα,−σ Sσ
j

(
1
2 − Sz

jσ
)

+ c†
j+uα+ηα,σ

(
1
2 + Sz

jσ
)]

c j+uα,σ

+ tsw

∑
j∈Cu−↑

∑
α,σ

s(ηα )
[
c†

j−uα−ηα,−σ Sσ
j

(
1
2 − Sz

jσ
)

+ c†
j−uα−ηα,σ

(
1
2 + Sz

jσ
)]

c j−uα,σ (A3)

Here S±
j are the ladder operators for the Cu spins. The

vectors ηα point from orbital α to the other three oxygen
orbitals adjacent to the same Cu↓ site; see Table II. The
vectors −ηα point to the three O which share a Cu↑ site with
the orbital α. Note, furthermore, that for j ∈ Cu↑, the vector
−uα points to orbital α.

When on-site Coulomb interaction Upp between the holes
is included, the magnitude of tsw for the terms which involve
a doubly -occupied site as either the start or the final state is
renormalized by a factor 	pd +Upp/2

	pd +Upp
, where 	pd is the charge

transfer gap. A derivation of this renormalization can be
obtained using the perturbation theory as in Ref. [41].

In the absence of holes, the Cu-Cu Ising interaction ĤJdd is
given by

HJdd = Jdd

∑
j

∑
α

Sz
jS

z
j+2uα

. (A4)

In the presence of doped holes it vanishes for those Cu pairs
which have one or more holes sitting on the O between them.
In other words, the holes block the magnetic superexchange.

As mentioned, HJdd is in fact of Heisenberg, not Ising type.
The difference is that the former promotes an undoped ground
state which contains background spin fluctuations, while the
later has a Néel ground state without any background spin
fluctuations. In a later section, we will show that these spin
fluctuations have no effect on the magnon-mediated effective
interaction between holes. This is achieved by allowing spin-
fluctuations to occur in the vicinity of holes (effectively restor-
ing HJdd to its full Heisenberg form locally) and seeing if/how
this affects the magnon exchange. The first step, however, is
to assume that there are no spin-fluctuations allowed, which
we do from now on until specified otherwise.

Finally, including an on-site Hubbard interaction Upp be-
tween the holes, we arrive at the total Hamiltonian:

H = Tpp + Upp + Tsw + HJpd + HJdd . (A5)

We use the same parameters as in Ref. [26], which in units
of Jdd are tpp = 4.13, t ′

pp = 0.58tpp, tsw = 2.98 (2.20 for dou-
bly occupied oxygen sites), Jpd = 2.83, Upp = 25.4, 	pd =
22.87.

APPENDIX B: VARIATIONAL SPACE DETAILS

To find the low-energy eigenstates, we use a variational
approach. This means that we restrict the Hilbert space to a
physically meaningful subspace, termed the variational space
(VS). In this variational space we can find the eigenstates,
eigenenergies, and Green’s functions using standard methods
such as the Lanczos algorithm.

The first restriction imposed on the VS is the maximum
number of magnons allowed, nm. We are describing the Cu
spins as having an Ising exchange, so the magnons are dis-
persionless and correspond to Cu spins which are flipped with
respect to the Néel order (see main text discussion). For the
single-hole case it was shown [24,25] that reasonable conver-
gence is already reached at nm = 2, because every magnon
costs a finite energy of order Jdd , yet the magnons move very
slowly compared to the holes, allowing us to neglect their
dispersion.

Considering only states with up to two magnons, we define
the following translationally invariant basis states which span
the VS:

|0, k, R, uα, uβ〉 =
∑

j

eikR j

√
N

c†
j+uα,↑c†

j+R+uβ ,↓|0〉,

|σ, k, rα, rβ〉 =
∑

j

eikR j

√
N

c†
j+rα,−σ c†

j+rβ ,−σ Sσ
j |0〉,

|2, k, R, rα, rβ〉 =
∑

j

eikR j

√
N

c†
j+rα,↑c†

j+rβ ,↓S+
j S−

j+R+2ŷ|0〉.

(B1)

Here |0〉 is the undoped Néel state and N → ∞ denotes the
number of lattice sites. All other quantities were defined in
the preceding section.

For all these states the distance between holes and/or
magnons is well defined. For the zero-magnon and two-
magnon states the holes have opposite spin and are therefore
distinguishable. This is not true for the one-magnon states. In
order to not double count one-magnon states, we require that
rα be lexicographically smaller than rβ .

For the zero-magnon states the reference unit cell is that of
the ↑ hole, for the ↑-magnon and for the two-magnon states it
is that of the ↑ magnon, and for the ↓-magnon states it is that
of the ↓ magnon. These choices are convenient because the
magnons do not move when we ignore the background spin
fluctuations.

To get a numerical solution, we need to further restrict the
size of the VS. This is achieved by introducing two more
cutoffs which are calculated using the L1 norm. The first is
denoted by Mc and restricts the distance between any two par-
ticles (particle refers to both holes and magnons). The second
cutoff mc � Mc restricts the distance between a magnon and
its closest hole. For example, for the zero-magnon states we
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FIG. 11. (a) The dispersion of the single hole along high symme-
try lines of the BZ for cutoffs of nm = 1 and nm = 2. Lines are the
fully converged solution (mc = 20) and circles are results for mc = 3.
(b) A sketch of the cut in the BZ. The magnetic BZ is the small
square.

require that ||R + uβ − uα||1 � Mc. Because no magnons are
present, mc is irrelevant for the zero-magnon states.

A slightly more complicated example is that of the ↑-
magnon states. The restriction ||R2 + uβ − R1 − uα||1 � Mc

is always enforced. Furthermore one of the following sets
of restrictions must also be enforced (i) ||R1 + uα||1 � mc

and ||R2 + uβ ||1 � Mc or (ii) ||R2 + uβ ||1 � mc and ||R1 +
uα||1 � Mc. For the two-magnon states the restrictions are
imposed in the same manner. Note that in this case it is
possible that both magnons are within mc of the same hole.

As discussed in the main text, we turn off the magnon-
mediated interactions by labeling the holes and magnons as
being either flavor a or b, and allowing each flavor of hole
to interact only with its own flavor of magnon. Physical
restrictions such as not allowing two magnons at the same
Cu site are imposed, as further discussed below. The resulting
states can easily be generalized from those in Eq. (B1), as
shown in Figs. 1(d) and 1(e).

For completeness, we now quickly review some aspects of
the single-hole solution. The single-hole results shown here
are identical to those from Refs. [24,25]. The low-energy
quasiparticle (qp) is a spin-polaron, i.e., a state in which the
hole coherently emits and reabsorbs magnons. In Fig. 11 we
show the qp dispersion, εsp(k), along high symmetry lines of
the BZ. Note that, due to the AFM order of the Cu spins, the
BZ is reduced as shown in panel (b) of Fig. 11. As a result the

 and M points are equivalent, as are X and Y .

For the single-hole solution we only need two cutoffs: mc

(the hole-magnon distance) and nm (the maximum number of
magnons). The solid lines in Fig. 11 are fully converged in mc

while the open circles are for mc = 3. The effect of increasing
nm from 1 to 2 is a constant energy shift and a decrease in
bandwidth, while the shape of the dispersion remains similar.
The single-hole calculation is essentially converged at nm = 2
[24,25].

APPENDIX C: DERIVATION OF Heff

As described in the main text, we use second-order per-
turbation theory (PT) to provide guidance for the possible
types of terms that may arise when a magnon is exchanged
between the two holes. To make sure that the magnon is truly
exchanged, we have to work in the enlarged variational space
where the holes and magnons have flavors so that we can
distinguish direct processes (whereby the same hole creates

FIG. 12. Sketch of the terms included in Heff . Solid (dashed)
lines indicate normal (exchange) emission or absorption.

and absorbs the magnon) from the exchange ones (where the
magnon is created by one hole and absorbed by the other). We
then project back to the physical space with c, c† operators by
using the physical antisymmetrical combinations that enforce
Pauli’s principle. For example, the zero-magnon states are
related by [also see Eq. (B1)]

|0, k, R, uα, uβ〉 ↔
∑

j

eikR j

√
2N

(
a†

j+u,α↑b†
j+R+uβ ,↓

− a†
j+R+uβ ,↓b†

j+u,α↑
)|0〉

≡ 1√
2

[|0, k, R, uα↑, uβ↓〉E

− e−ikR|0, k,−R, uβ↓, uα↑〉E ], (C1)

where for convenience, we defined the zero-magnon states in
the extended variational space:

|0, k, R, uασ, uβ − σ 〉E =
∑

j

eikR j

√
N

a†
j+uα,σ b†

j+R+uβ ,−σ
|0〉.

(C2)

Next, we note that Heff must be of the form Heff = H↑
eff +

H↓
eff , where the superscript indicates whether an (originally)

Cu↑ or Cu↓ is mediating the magnon exchange. These terms
are schematically depicted in Fig. 12. Here we only show
the terms which take a state from the a↑b↓ family to the
a↓b↑ family. The other possible terms are just their Hermitian
conjugates.

Finally, as mentioned in the main text, there are four
possible kinds of terms in the full Heff , depending on whether
the magnon is emitted and absorbed through Tsw and/or
Jpd processes (where one process is direct and the other is
exchange). We have derived all these terms and analyzed each
individually, as discussed in the main text. Because the term
where both processes are of Tsw type turns out to dominate
and to provide a faithful description of the magnon-exchange
effects in the full Brillouin zone, in the following we focus on
its derivation. All the other terms can be derived similarly.

1. Derivation of H↓
eff

Due to our choice of unit cell, it is easier to deal with
H↓

eff . The two terms depicted in Fig. 12 only differ by the
magnon label of the intermediate state. They therefore give
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the same result and we only need to consider the first term, which corresponds to first emitting with T d
sw and then reabsorbing

with T e
sw, where d/e labels are for direct/exchange processes. Consequently, the effect of H↓

eff on the state |0, k, R, uα↑, uβ↓〉E

is [see Eq. (A3)]

H↓
eff |0, k, R, uα↑, uβ↓〉E = 2tpairδR,0

∑
ηα �= uβ − uα

∑
ηβ

s(ηα )s(ηβ )|0, k, R, uα + ηα↓, uβ + ηβ↑〉E . (C3)

Here, as discussed in the main text, we leave tpair as a parameter to be fitted, instead of using its PT expression. The restriction
on ηα ensures that, in the intermediate state where the holes have the same spin, they are not on the same site. Furthermore
the holes need to sit on the “cage” surrounding a Cu-↓ ion, which leads to the appearance of δR,0. The result for the state
|0, k,−R, uβ↓, uα↑〉E is derived similarly. Using the relationship of Eq. (C1) between states in the extended variational space
and those in the physical space, we then find

H↓
eff

∑
j

eikR j

√
N

c†
j+uα,↑c†

j+R+uβ ,↓|0〉

= 2tpairδR,0

∑
ηα �=

uβ − uα

∑
ηβ

s(ηα )s(ηβ )
1√
2

[|0, k, R, uα + ηα↓, uβ + ηβ↑〉E − e−ikR|0, k,−R, uβ + ηβ↑, uα + ηα↓〉E ]

= −2tpairδR,0

∑
ηα �=

uβ − uα

∑
ηβ

s(ηα )s(ηβ )
e−ikR

√
2

[|0, k,−R, uβ + ηβ↑, uα + ηα↓〉E − eikR|0, k, R, uα + ηα↓, uβ + ηβ↑〉E ]

= −2tpairδR,0

∑
ηα �=

uβ − uα

∑
ηβ

s(ηα )s(ηβ )e−ikR
∑

j

eikR j

√
N

c†
j+uβ+ηβ ,↑c†

j−R+uα+ηα,↓|0〉. (C4)

This holds for any choice of α and β, therefore we can immediately read off that H↓
eff must have the form listed in the main text:

H↓
eff = −2tpairδR,0

∑
j

∑
α,β

∑
ηα �=

uβ − uα

∑
ηβ

s(ηα )s(ηβ )c†
j+uβ+ηβ ,↑c†

j+uα+ηα,↓c j+uβ ,↓c j+uα,↑. (C5)

2. Derivation of H↑
eff

To obtain an expression for H↑
eff we first rewrite |0, k, R, uα↑, uβ↓〉E 〉 (where the sum is over Cu↓ sites by definition) so that

the sum is over Cu↑ sites instead. The Cu↑ site at R j + 2uα is closest to the “a” hole at R j + uα . Consequently we make the
substitution Rj′ = R j + 2uα , which yields

|0, k, R, uα↑, uβ↓〉E =
∑

j′∈Cu↑

eik(R j′ −2uα )

√
N

φa,↑(R j′ − uα )φb,↓(R j′ + R − 2uα + 2uβ − uβ )|0〉. (C6)

Before we continue, the following observations are helpful. The site R j′ − uα is still the site of an α orbital. Furthermore
the vector 2uα − 2uβ is a lattice vector so that we must have R = 2uα − 2uβ in order for the two holes to share the same Cu↑
neighbor.

To calculate the effect of H↑
eff , we make use of the fact that, from an orbital of type α, the vectors −ηα point to the sites which

can be reached by “hopping over” the NN Cu↑ site. We then obtain

H↑
eff |0, k, R, uα↑, uβ↓〉E = 2tpairδR,2uα−2uβ

∑
ηβ �=

uα − uβ

∑
ηα

s(−ηβ )s(−ηα )
∑

j′∈Cu↑

eik(R j′ −2uα )

√
N

φa,↓(R j′−uα−ηα )φb,↑(R j′−uβ−ηβ )|0〉.

(C7)

We now have to rewrite this back as a sum over Cu↓ sites. To do this we make the substitution R j = R j′ − 2uα − 2ηα . This gives

H↑
eff |0, k, R, uα↑, uβ↓〉E = 2tpairδR,2uα−2uβ

∑
ηβ �=

uα − uβ

∑
ηα

e2ikηα s(−ηβ )s(−ηα )|0, k, R + 2ηα − 2ηβ, uα + ηα↓, uβ + ηβ,↑〉E .

(C8)
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A similar calculation yields

H↑
eff |0, k,−R, uβ↓, uα↑〉E = 2tpairδR,2uα−2uβ

∑
ηβ �=

uα − uβ

∑
ηα

s(−ηβ )s(−ηα )e2ikηβ |0, k,−R + 2ηβ − 2ηα, uβ + ηβ↑, uα + ηα↓〉E .

(C9)

Making use of Eq. (C1), the effect of H↑
eff in the language of the c operators is

H↑
eff

∑
j

eikR j c†
j+uα,↑c†

j+R+uβ ,↓|0〉

= 2tpairδR,2uα−2uβ

∑
ηβ �=

uα − uβ

∑
ηα

s(−ηβ )s(−ηα )
1√
2

[e2ikηα |0, k, R + 2ηα − 2ηβ, uα + ηα↓, uβ + ηβ↑〉E

− e2ikηβ−ikR|0, k,−R + 2ηβ − 2ηα, uβ + ηβ↑, uα + ηα↓〉E ]

= −2tpairδR,2uα−2uβ

∑
ηβ �=

uα − uβ

∑
ηα

s(−ηβ )s(−ηα )
e2ikηβ−ikR

√
2

[|0, k,−R + 2ηβ − 2ηα, uβ + ηβ↑, uα + ηα↓〉E

− eik(R+2ηα−2ηβ )|0, k, R + 2ηα − 2ηβ, uα + ηα↓, uβ + ηβ↑〉E ]

= −2tpairδR,2uα−2uβ

∑
ηβ �=

uα − uβ

∑
ηα

s(−ηβ )s(−ηα )e2ikηβ−ikR
∑

j

eikR j c†
j+uβ+ηβ ,↑c†

j−R+2ηβ−2ηα+uα+ηα,↓|0〉. (C10)

To read off an expression for H↑
eff we transform the sums over j on both sides of the equation so that R j ∈ Cu↑. For the sum

on the left-hand side this is achieved with the substitution R j′ = R j + 2uα . For the sum on the right hand side we substitute
R j′ = R j + 2uβ + 2ηβ :

∑
j′∈Cu↑

H↑
effe

ik(R j′ −2uα )c†
j′−uα,↑c†

j′+R−2uα+2uβ−uβ ,↓|0〉

= −2tpairδR,2uα−2uβ

∑
ηβ �=

uα − uβ

∑
ηα

s(−ηβ )s(−ηα )e2ikηβ−ikR
∑

j′∈Cu↑

eik(R j′ −2uβ−2ηβ )c†
j′−uβ−ηβ ,↑c†

j′−R+2uα−2uβ−uα−ηα,↓|0〉. (C11)

Note that, when we make use of the δ function, R cancels out and the terms in the exponential cancel as well, so that we obtain

∑
j′∈Cu↑

eikR j′

⎡
⎢⎢⎢⎣H↑

effc
†
j′−uα,↑c†

j′−uβ ,↓|0〉 + 2tpair

∑
ηβ �=

uα − uβ

∑
ηα

s(−ηβ )s(−ηα )c†
j′−uβ−ηβ ,↑c†

j′−uα−ηα,↓|0〉

⎤
⎥⎥⎥⎦ = 0. (C12)

Consequently we must have

H↑
eff = 2tpair

∑
j∈Cu↑

∑
α,β

∑
ηβ �=

uα − uβ

∑
ηα

s(−ηβ )s(−ηα )c†
j−uβ−ηβ ,↑c†

j−uα−ηα,↓c j−uβ ,↓c j−uα,↑. (C13)

Note that this expression is essentially the same as for H↓
eff , but with the first sum running over all the Cu↑ sites instead of the

Cu↓ sites. That is in agreement with what is expected by symmetry, validating these derivations.
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