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Spin waves in disordered III-V diluted magnetic semiconductors by a modified RPA approach
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We propose a scheme for numerically computing collective-mode spectra for large-size systems, using a
reformulation of the random-phase approximation. In this study, we apply this method to investigate the
spectrum and nature of the spin-waves of a~III,Mn !V diluted magnetic semiconductor. We use an impurity
band picture to describe the interaction of the charge carriers with the local Mn spins. The spin-wave spectrum
is shown to depend sensitively on the positional disorder of the Mn atoms inside the host semiconductor. Both
localized and extended spin-wave modes are found. Unusual spin and charge transport is implied.
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I. INTRODUCTION

Diluted magnetic semiconductors~DMS’s! based on III-V
semiconductors doped with Mn have attracted a lot of in
est recently, after critical temperatures for the onset of fe
magnetism of the order of 110 K have been found
Ga12xMnxAs, where x50.053.1–3 More recently, critical
temperatures larger than room temperatures have bee
ported in Mn-doped GaN, enhancing the hope for extens
technological applications of these materials.4,5

While there is general agreement that the magnetism
due to charge-carrier-mediated, effectively ferromagnetic,
teractions between the Mn spins, there are various theore
models attempting to understand their detailed behav
DMS’s are alloy systems, with an inherent positional dis
der of the Mn atoms; further, spin-orbit coupling may play
significant role for hole doping. A theoretical treatme
which takes into account all these factors, and their effe
on the magnetic and transport properties of DMS’s, is not
available. Instead, theoretical models have tended to con
trate on different aspects of the problem.

One class of models, where much work has been do
neglects both the disorder and spin-orbit coupling effects
large carrier densities, where Coulomb potentials of the
purity ~Mn! atoms are effectively screened out, and oth
disorder effects~such as those coming from As antisite d
fects which are believed to be the cause of the large com
sation observed experimentally! can be neglected, the forme
at least can be justified. In such a case, holes occupy a F
sea at the top of the valence band.6 Studies of the spin-wave
spectra,7 Monte Carlo studies,8 and dynamical mean-field
theory studies9 have been performed. Overall, their resu
are rather similar to the physics one would expect to hold
a conventional ferromagnet. More recently, it has been p
posed that spin-orbit coupling of the valence band, in
high carrier density~strongly metallic! regime leads to a
RKKY coupling between Mn moments that isanisotropicin
spin space, and where the positional disorder effectiv
leads to random anisotropy.10 This would lead to frustration
effects on the magnetic ordering, and therefore to unus
0163-1829/2002/66~8!/085207~13!/$20.00 66 0852
r-
-

re-
e

is
-
al
r.
-

t
ts
t
n-

e,
t
-
r

n-

mi

n
-

e

ly

al

ferromagnetism. A number of very usefulab initio studies
have also been published.11

In parallel, we have studied effects of positional disord
on the magnetic ordering~in the absence of spin-orbit cou
pling! of an impurity band model,12–15 developed from pre-
vious work done in the context of insulating II-VI DMS
compounds.16,17 Such an approach should be of relevance
low doping concentrationsx, at and below the metal
insulator transition, and possibly even above it. Evidence
the existence of impuritylike states was provided byab initio
studies,11 which found that occupied hole states near t
Fermi level have wave functions mostly concentrated on
near the Mn impurity. More recently, angle-resolved pho
emission spectroscopy revealed the existence of the impu
band in Ga12xMnxAs with x50.035~very close to the metal-
insulator transition!.18 A scanning tunneling microscop
study19 demonstrated the existence of an impurity band
~Ga,Mn!As samples withx50.005. Optical spectroscopy20

also identified the impurity band forx50.0001 and 0.05
samples.

Electron densities in localized states, as well as sta
close to the mobility edge, can be far from homogeneo
unlike Bloch waves. At low Mn concentrations and at a hi
degree of compensation~which comes from charged center
see Ref. 21! seen in DMS’s, short-length-scale density flu
tuations could be significant. This can lead to inhomoge
ities in the local charge densities at different Mn sites, wh
in turn leads to~microscopically! inhomogeneous magnet
zations of the magnetic ions in the ordered phase. Such
inhomogeneity would be expected to alter the nature of
collective magnetic excitations~spin waves! of the magneti-
cally ordered system, which in turn would affect char
transport through the magnetic excitation processes wh
give rise to spin-flip scattering.

In this paper, we develop a numerical scheme to calcu
the spin-wave spectrum for a finite but large size model
coupled fermions and spins, in the presence of quenc
disorder. We show that the method accurately reproduces
results for a lattice model of small size obtained from a st
dard treatment of spin waves via the random-phase appr
©2002 The American Physical Society07-1



el
tic

il
e-
y
P

ca
e
n
l

th
le
n

-
fo
-

n
o

nc
ta
es
-

nd

ly
up
,

f
r
h

a

t
w
d

th
ul
a
e
-io
t

w
th

hus
rrier

to
an
n-
nd

he
c-

s

or-

ny
rbit
.
en-

ef-

g
pa-

e-
o
to
lity
ied

n

e

ti-
ping

f
ar-

er
-

ge
to
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mation ~RPA!.22–24 We then apply the method to the mod
of Ref. 12, and study in detail its collective magne
excitations.25

The plan of the paper is as follows. The model Ham
tonian for DMS’s is described in Sec. II. Section III is d
voted to developing the numerical scheme. The accurac
the scheme is tested by comparing it with the standard R
method in Sec. IV. In particular, we demonstrate that we
use our scheme to study large size systems, beyond th
pability of the standard RPA approach. Section V prese
the results obtained by applying the scheme to the mode
Sec. II, including the density of states and nature of
eigenvectors of the magnetic excitations of the coup
fermion-spin system. We summarize our conclusio
in Sec. VI.

II. MODEL

In the following we develop the formalism for an impu
rity band Hamiltonian that we believe to be appropriate
describing~at least qualitatively! the diluted magnetic semi
conductor Ga12xMnxAs for low dopingx ~in the insulating
phase, or not too far from the metal-insulator transitio!.
However, generalizations of this method for other types
Hamiltonians, crystal structures, parameters, etc., can
done in a straightforward manner.

The III-V host semiconductor is assumed to have the zi
blende structure appropriate for GaAs. Experimen
measurements25,26 suggested that valence-II Mn substitut
for valence-III Ga. As a result, theNd Mn dopants are ran
domly distributed at positionsRW i ,i 51, . . . ,Nd on the N
3N3N fcc Ga sublattice, corresponding tox5Nd/4N3. All
throughout this paper, we assume periodic boundary co
tions.

Due to the valence mismatch, each Mn introduces
charge carrier~hole! in the system. However, experimental
it is found that the hole concentration is considerably s
pressed through compensation processes. As a result
number of holes is only a fractionp510–30 % of the num-
ber of Mn atomsNh5pNd . Each Mn atom also has a52 -spin
SW i from its half-filled 3d level. The magnetic properties o
the doped semiconductor are related to the exchange inte
tion between the Mn spins and the charge carrier spins. T
interaction is known to be antiferromagnetic~AFM!, and
proportional to the probability of finding the charge carrier
the corresponding Mn site.

Recently, we proposed a simple impurity-band model
describe the behavior of the charge carriers for the lo
doping regime.12,13 The main justification is that near an
below the metal-insulator transition (x'0.03) the density of
charge carriers is not large enough to effectively screen
attractive Coulomb potential of the Mn dopants. As a res
bound, hydrogenlike impurity states are created about e
Mn site, at an energyEb51 Ry above the top of the valenc
band. These impurity states, arising as a result of hole
interactions, lead to the formation of an impurity band due
wave-function overlap, and the holes first occupy states
this band. For the parameters we use in the following,
have found a more than 200-meV difference between
08520
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Fermi level and the top of the valence band.13 Only if the
concentration of holes~or the temperature! is large enough
are states in the valence band itself occupied by holes. T
it is reasonable to attempt a description of the charge-ca
behavior only in terms of this impurity band.

As in previous work,12,13 in the following we will use the
electron formalism to treat the problem. This is equivalent
performing a particle-hole transformation which leads to
inversionE→2E of the charge-carrier spectrum. Thus, i
stead of emptying the top of a valencelike impurity ba
~i.e., introducing holes in the system! we instead occupy the
bottom of a conductionlike impurity band. We also make t
simplifying assumption that the isolated impurity wave fun
tion for a charge carrier trapped near the Mn at siteRW i is the
1s hydrogen orbital f(rW2RW i)5f i(rW);exp(2urW2RW iu/aB),
whereaB5\/A2m* Eb58 Å is the appropriate Bohr radiu
related to the effective mass of the heavy hole (m* '0.5me
for GaAs! and the binding energy (Eb5112.4 meV for Mn
in GaAs!.27 Our approach neglects both the complicated
bital form of the acceptor wave-function~Ref. 27! and spin-
orbit coupling. The former is not expected to lead to a
qualitative changes. It was recently proposed that spin-o
coupling leads to frustration in the magnetic ordering10

These effects are left out in the present study, which conc
trates on the effect of disorder. A study combining both
fects is indicated for future work.

We consider the Hamiltonian

H5 (
i , j ,s

t i j cis
† cj s1(

i , j
Ji j SW i•sW j . ~1!

Herecis
† creates a charge carrier with spins in the impurity

state centered at siteRW i . The first term describes the hoppin
of charge carriers between impurity states. We use the
rametrizationt i j 52(11r /aB)exp(2r/aB) Ry, wherer 5uRi
2Rj u, of magnitude and form appropriate for hopping b
tween two isolated 1s impurities which are not too close t
one another.28 This hopping term has been shown to lead
the appearance of an impurity band which has a mobi
edge, as well as to a characteristic energy for the occup
states in agreement with physical expectation.29

The second term of Hamiltonian~1! describes the AFM
exchange between the Mn spinSW i and the charge-carrier spi
sW j5

1
2 cj a

† sW abcj b @sW are the Pauli spin matrices#. This AFM
exchange is proportional to the probability of finding th
charge carrier trapped atRW j near the Mn spin atRW i , and
therefore Ji j 5Juf j (RW i)u25J exp(22uRW i2RW ju/aB). Based on
calculations of the isolated Mn impurity in GaAs, we es
mate the exchange coupling between a hole and the trap
Mn (RW i5RW j ) to be J515 meV.12,27 As already stated, the
number of Mn atoms isNd , and therefore there are a total o
2Nd states in the impurity band. The number of charge c
riers is fixed toNh5pNd , where we takep510%.

In Ref. 13 we studied the relevance of various oth
terms, such as an on-site potential~associated with the Cou
lomb potential of the compensation centers!, Hubbard-like
on-site repulsion~describing interactions between char
carriers!, external magnetic field, etc. While they lead
7-2
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SPIN WAVES IN DISORDERED III-V DILUTED . . . PHYSICAL REVIEW B66, 085207 ~2002!
variousquantitativechanges, we believe that thequalitative
picture we present in the following sections is not chang
by their absence.

III. COLLECTIVE MODE SPECTRUM

The RPA describes the collective excitations of a syst
about its self-consistentT50 mean-field ground state. In o
der to clarify the notation used, we begin this section wit
very short review of the derivation of the relevant equatio
for the mean-field ground state.

A. Mean-field ground state

We use the equation-of-motion approach of Ref. 23.
the mean-field level, we are trying to find noninteracting f
mionic quasiparticles through a unitary transformation of
on-site charge-carrier operators,

ans
† 5(

i
cns~ i !cis

† , ~2!

such that

@H,ans
† #'Ensans

† ~3!

and

@H,Si
1#'2\HiSi

1 . ~4!

For a noninteracting system, Eqs.~3! and~4! would be exact.
For an interacting system at the mean-field level, the ex
Hamiltonian is approximated by the diagonalized, nonint
acting Hartree-Fock Hamiltonian

H→HHF5(
ns

Ensans
† ans2(

i
HiSi

z , ~5!

for which Eqs.~3! and ~4! become exact.
It is straightforward to show that, for Hamiltonian~1!,

@H,ans
† #5(

i j
t i j cns~ j !cis

† 1(
i j

Ji j SW j

sW as

2
cns~ i !cia

† .

~6!

The right-hand-side of Eq.~6! contains spin operators, so
cannot be put into the form of Eq.~3! unless we linearize it,
by replacing the spin operators with their mean-field grou
state expectation valueSW j→^SW j&5êzSMn( j ). While the
choice of a collinear ground state, with all Mn spins align
along thez axis, is not the most general possibility, we ac
ally showed in Ref. 13 that the ground state of this mod
for the range of parameters we are interested in, is ind
collinear. This is why we choose toa priori make this as-
sumption in this case.

After the linearization, we can now equate the right-ha
side of Eq. ~6! with Ensans

† @see Eq.~3!# to obtain the
Hartree-Fock equation for the one-particle orbitals:

Enscns~ i !5(
j

t i j cns~ j !1(
j

Ji j SMn~ j !
s

2
cns~ i !. ~7!
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The mean-field ground state of the charge carriers is obta
by occupying theNh lowest-energy orbitals:

uC&cc5 )
(ns)51

Nh

ans
† u0&. ~8!

The effective magnetic fieldsHi @see Eq. 5!# are obtained
in a similar way. We evaluate the commutator of the ex
Hamiltonian with the spin raising operatorSi

15Si
x1 iSi

y :

@H,Si
1#52\(

j
Ji j Si

zsi
11\(

j
Ji j Si

1si
z . ~9!

The right-hand side now contains charge-carrier operators~in
the charge-carrier spin operator!, beside the spin operators
We again use linearizationssi

1→^si
1&50 @see Eq.~8!# and

si
z→^si

z&5sh( i ), and by comparison with Eq.~4! we find

Hi52(
j

Ji j sh~ j !. ~10!

From Eq.~5! we see that ifHi.0, then in the mean-field
ground state the spinSW i is in the ‘‘up’’ stateu1S& and there-
fore SMn( i )51S, while if Hi,0 the spin SW i is in the
‘‘down’’ state u2S& and SMn( i )52S(S55/2). As a result,
the spin part of the mean-field ground state can also be ea
found if the expectation value of the charge-carrier sp
sh( j ) are known from Eqs.~7! and ~8!. Thus we obtain the
usual self-consistent Hartree-Fock equations.

Diluted magnetic semiconductors exhibit ferromagneti
at low temperatures. As a result, we assume that in the m
field ground state, all Mn spins are fully polarizedSMn( i )
51S. Then, from Eq.~7!, we find the lowest-lyingNh
states. If the charge carriers are also fully polarized aT
50, all the occupiedNh state haves5↓, and therefore the
mean-field ground state is of the form

uC&5 )
n51

Nh

an↓
† u0& ^ uS,S, . . . ,S&. ~11!

Of course, one must check that self-consistency is obe
by verifying that indeed the firstNh lowest-energy one-
electron states are all spin-down. We find that this alwa
holds true for the parameters we study in this paper. As
cussed below, the spin-wave spectrum of the collective e
tations also confirms that this ground state is indeed sta
However, for higher charge-carrier concentrations~or Hamil-
tonians with other types of interactions! it is likely that the
Hartree-Fock~HF! ground-state is only partially spin polar
ized. In that case, one must do the full iterational search
the self-consistent HF ground state. The computation for
spin-wave spectrum in the partially polarized case~for in-
stance due to spin-orbit coupling!, can be derived in a simila
way to the one we present in the following for the ful
polarized case.
7-3
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B. Random-phase approximation

We will use the same equation-of-motion approach to
rive the RPA equations. We are interested in spin wav
which are related to spin-flip~spin-lowering! processes.
Therefore, the RPA operators for spin-wave collective mo
must be constructed in terms of spin-flip operators:

bhp
† 5ah↑

† ap↓ ,

Bi
†5

1

A2S
Si

2 . ~12!

The indexh51, Nd runs over the empty~‘‘hole’’ ! states of
the HF ground state, while the indexp51, Nh runs over the
occupied~‘‘particle’’ ! states of the HF ground state. The i
dex i 51, Nd runs over all the Mn spin positions. The H
ground stateuC& is fully polarized, and given by Eq.~11!.

The spin-flip operators have a ‘‘bosonic’’ nature, as e
pected for collective mode operators. Indeed, it is straig
forward to verify that ^@bhp ,bh8p8

†
#&5dpp8dhh8 ,^@Bi ,Bj

†#&
5d i j , with all the other commutators identically zero. Her
the notation̂ •••& signifies an average over the HF grou
state^Cu . . . uC&.

The Hamiltonian can be rewritten in terms of theans

operators as@see Eqs.~1! and ~2!#

H5 (
n,m,s

tnmsans
† ams1 (

n,m,i
ab

Jna,mb~ i !ana
† ambsW ab•SW i ,

~13!

where

tnms5(
i , j

t i j cns* ~ i !cms~ j !

and

Jna,mb~ i !5
1

2 (
j

Ji j cna* ~ j !cmb~ j !. ~14!

One can easily derive the equations of motion for
spin-flip operators. For instance,

@H,Bi
†#5

2

A2S
(
nm

Jn↓,m↑~ i !an↓
† am↑Si

z

2
1

A2S
(
nms

Jns,ms~ i !sans
† amsSi

2 . ~15!

Since the RPA is an approximation, not an exact solution,
again must linearize this commutator about the HF grou
state, and keep only the meaningful terms. In other wo
we replace

an↓
† am↑Si

z→^an↓
† am↑&Si

z1an↓
† am↑^Si

z&→San↓
† am↑ .

Here, the first transformation is the linearization about
HF ground stateuC&. The second transformation results
one uses the HF expectation values^Si

z&5S,^an↓
† am↑&50.
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The restriction to relevant terms means that in any sum o
(n↓), we restrictn to being an occupied orbital in the H
ground-state 1<n<Nh , because otherwisebmn

† uC&50, i.e.,
a spin-flip process from the HF ground-state is impossi
@see Eq. ~12!#. Performing a similar linearization fo
ans

† amsSi
2 , and collecting the various terms, we find th

linearized equation of motion

@H,Bi
†#'HiBi

†1A2S(
p51

Nh

(
h51

Nd

Jp↓,h↑~ i !bhp . ~16!

After similar steps, the linearized equation of motion for t
other spin-flip operatorbhp is found to be

@H,bhp#'2~Eh↑2Ep↓!bhp2A2S(
i

Jp↓,h↑* ~ i !Bi
† .

~17!

Equations~16! and~17! allow us to ‘‘guess’’ the RPA part
of the Hamiltonian, for which Eqs.~16! and ~17! become
exact, to be given by

HRPA5 (
h51

Nd

(
p51

Nh

~Eh↑2Ep↓!bhp
† bhp1(

i
HiBi

†Bi

1A2S(
i

(
h51

Nd

(
p51

Nh

~Jp↓,h↑~ i !Bibhp1H.c.!.

~18!

Thus the RPA Hamiltonian is quartic in electron operato
and quadratic in spin operators, showing that it is the ne
order term after the Hartree-Fock Hamiltonian~which is qua-
dratic in electron operators and linear in spin operators!:

H5HHF1HRPA1•••.

Higher-order approximation terms describe interactions
tween the collective modes, which are neglected at the R
level.

We want to diagonalize the RPA Hamiltonian to the c
nonical form

HRPA5(
a

\VaQa
†Qa , ~19!

whereQa
† is the creation operator for a spin wave with e

ergy \Va , anda is an index~in homogeneous systems,
would be a wave vector!. Since they create collective mod
excitations, these operators must have a bosonic na
@Qa ,Qb#50. However, since they do not describe exact, b
only approximate, solutions of the exact Hamiltonian, in fa
only the weaker condition̂@Qa ,Qb

† #&5dab is obeyed. The
most general form for these operators@see Eq.~18!# is

Qa
†5 (

h51

Nd

(
p51

Nh

Xhp
(a)bhp1(

i
Yi

(a)Bi
† . ~20!

Using the equation of motion@HRPA,Qa
† #5\VaQa

† and
computing the commutator using Eqs.~18! and~20!, we find
the diagonalization conditions to be
7-4
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@\Va1Eh↑2Ep↓#Xhp
(a)5A2S(

i
Jp↓,h↑~ i !Yi

(a) , ~21!

@\Va2Hi #Yi
(a)52A2S(

p51

Nh

(
h51

Nd

Jp↓,h↑* ~ i !Xhp
(a) . ~22!

These are RPA equations, and they can be recast in
customary standard eigenvalue RPA equation form24

\VS X

2YD 5S E J

J* H D •S X

YD , ~23!

where the vectorsX andY contain all the unknownsXhp and
Yi , and the matricesE, H, and J have the elements
Ehp,h8p852dhh8dpp8(Eh↑2Ep↓),H i ,i 852d i ,i 8Hi , andJhp,i

5A2SJp↓,h↑( i ).
The dimension of the RPA matrix@Eq. ~23!#, and there-

fore the number of normal modes, isNd1Nh3Nd . Of these
solutions,Nd are proper spin-wave collective modes, wh
the rest ofNh3Nd are spin-flip processes associated w
particle-hole excitations. If there were no interactionsJ
50), the eigenenergies of these spin-flip processes woul
Hi for the lowering of the Mn spini, andEh↑2Ep↓ for a hole
spin-flip @see the left-hand side of Eqs.~21! and ~22!#, re-
spectively. Interactions renormalize these values@as de-
scribed by the right-hand sides of Eqs.~21! and ~22!#, but
one still expectsNd spin-wave collective solutions at low
energies, coming from the Mn spin lowering, andNh3Nd
spin-flip particle-hole excitations at energies comparable
or larger than the spin-flip gapD5E1↑2ENh↓ .

We now comment on the sign of the RPA spectrum f
quencies\Va . SinceHi.0 @see Eq.~10!# and Eh↑2Ep↓
.0 ~by definition of the HF ground state!, it is apparent from
Eqs. ~21! and ~22! that Nd spin-wave solutions will have
positive energies\Va , while theNh3Nd spin-flip particle-
hole excitations will have negative energies. Thisdoes not
imply that the system is unstable, but simply that we ha
not chosen the proper spin-flip creation operators. Instea
the choice of Eq.~20!, we can also denote

Pa5Qa
†5 (

h51

Nd

(
p51

Nh

Xhp
(a)bhp1(

i
Yi

(a)Bi
† . ~24!

In terms of these new operators, we have now@HRPA,Pa#
5\VaPa , i.e.,

HRPA5(
a

~2\Va!Pa
† Pa . ~25!

In other words, a negative solution for\V simply means that
we chose the corresponding annihilation operator instea
the creation operator when we wrote Eq.~20!. For spin-flip
processes, it is obvious that this is the case from the de
dence ofQa

† on bhp , instead ofbhp
† .

An unstable mean-field ground state is signaled bycom-
plex values of the spectrum frequencies\Va .23,24 Excited
states about the mean-field ground-stateuC& are of the gen-
08520
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eral form uF&5@11(ca(Qa
†)na#uC&. Within the RPA the

dynamics of such states is dictated byHRPA, leading to a
time dependence

uF~ t !&5e2 iEHFt/\F11(
a

cae2 inaVat~Qa
† !naG uC&,

where EHF5^CuHuC& is the Hartree-Fock energy of th
system. If any of the frequenciesVa has a nontrivial imagi-
nary part, it follows that the expectation value of any ope
tor ^F(t)u•••uF(t)& will move in time exponentially away
from its mean-field ground-state expectation val
^Cu . . . uC&, i.e., the mean field is unstable to small pertu
bations.

The advantage of the standard RPA approach is tha
solving the eigenvalue problem@Eq. ~23!#, one finds the
normal-mode spectrum\V and the spatial distribution of the
spin waves~related to theYi coefficients! at once. The obvi-
ous disadvantage is of a numerical nature: for a disorde
system the RPA matrix must be diagonalized numerica
The size of the matrix isn5(11Nh)Nd . The typical sizes
we consider are systems with aroundNd5500 Mn spins,
and Nh550510%Nd holes ~although concentrations up t
30% might have to be considered, depending on the dop
x), leading to RPA matrices of typical sizen.25 000. As a
result, one has to either consider much smaller systems~in
which case, finite-size effects may be overwhelmingly i
portant!, or to try sparse matrix techniques to obtain the fi
few low-energy modes of the RPA matrix~although the off-
diagonalJ matrix is not necessarily sparse!.

There is, however, an alternative way of finding the c
lective mode spectrum and spatial distributions. We can
rectly solve for theXhp coefficients from Eq.~21!, and re-
write Eq. ~22! as

(
i 8

Mi j ~v!Yj~v!5\vYi~v!, ~26!

where

Mi j ~v!5d i j Hi22S(
p51

Nh

(
h51

Nd Jp↓,h↑* ~ i !Jp↓,h↑~ j !

\v1Eh↑2Ep↓1 ih
.

~27!

The advantage of this formulation is that one has to deal w
much smaller matrices~the dimension of theM matrix is
Nd5500). Equation~26! tells us that for frequenciesV be-
longing to the spin-wave spectrum, the matrixM (V) has at
least one eigenvector corresponding to an eigenva
l(Va)5\Va ~if the mode is degenerate, there are seve
such eigenvectors!. The corresponding eigenvectors give
the desired spatial mode distributionYi

(a)5Yi(Va). Thus the
problem is reduced to sweeping the range of frequencie
interest~for low-energy collective excitations, this is usual
a fairly small range of frequencies nearv50), and monitor-
ing the eigenvalues of theM (v) matrix. The dependence o
v of the matrix elementsMii 8(v), and therefore of the ei-
genvaluesl(v) is monotonic for smallv!D @see Eq.~27!#.
As a result, each equationl(v)5\v has a single solution
7-5
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MONA BERCIU AND R. N. BHATT PHYSICAL REVIEW B 66, 085207 ~2002!
and we expect to findNd collective mode eigenenergies, on
for each eigenvalue. The monotonic dependence ofl(v) on
v also simplifies the search for the collective spectrum, si
it is enough to evaluate the eigenvaluesl(v) in the range of
interest on a grid of stepdv, and use linear interpolation t
find the solutions of the equationsl(v)5\v. As we show
in the following by comparison with the standard RPA~for
small system sizes!, we can very easily achieve relative e
rors less than 1025.

The RPA spectrum has a second type of solutions,
spin-flip particle-hole continuum. These solutions are at f
quencies of the order of the gap between the last occu
and first empty HF states\v;D, and one expectsNh3Nd
such solutions. In principle, one can use the same metho
find these energies as well, although the fact that they ex
over a larger range of frequencies and that thev dependence
is very strong makes the search more difficult. Typically, o
is only interested in the lower and upper limits of the sp
flip continuum, which can be found easily with the meth
just described.

Finally, we would like to mention that it is always pos
sible to reformulate the standard RPA equation~23! in a
‘‘self-consistent’’ form of the type shown in Eq.~26!, with a
matrix M (v) of much smaller dimension than the RPA m
trix. For instance, for Hamiltonians describing interacti
electron systems, the RPA matrix has a dimension;NoNe ,
whereNo is the number of occupied, andNe is the number of
empty orbitals in the mean-field ground state.24 For a system
with a finite concentration of electronsx on a lattice of linear
dimensionN in a D-dimensional space, we haveNo;xND

and Ne;(12x)ND, and the RPA matrix scales asx(1
2x)N2D. For such systems, one can always find an equ
lent reformulation of the RPA equation in terms of aM (v)
matrix of size;ND.30 This allows a numerical handling o
considerably larger systems, without having to resort
sparse matrix techniques, which often have issues relate
instability.

IV. IMPLEMENTATION

In this section we show, by direct comparison agai
known calculations, as well as by direct comparison aga
solving the RPA matrix equation, that the formulation of Eq
~26! and ~27! gives correct and numerically very accura
results. In Sec. IV B we describe in more detail the numer
implementation as well as the efficiency of our method.

A. Analytical solution

We first apply our approach by solving Eqs.~26! and~27!
analytically for a simplified case. We assume that the
spins are arranged on an ordered superlattice, instead of
ing random positions. Then, the charge-carrier part of
mean-field Hamiltonian is easily diagonalized inkW space,

H cc
HF5(

kWs

EkWsckWs
†

ckWs ~28!

where
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EkWs5ekW1
J0S

2
s. ~29!

Here ekW5(dW Þ0tdWexp(ikW•dW) is the kinetic energy of the non
interacting electrons, wheredW indexes all the neighboring
sites andtdW5t i j for which uRW i2RW j u5udW u. Also, J05(dWJdW ,
where againJdW5Ji j for which uRW i2RW j u5udW u. In the HF
ground state, the states (kW ,↓) given by the conditionNh
5( ukW u,kF

1 are occupied. Since theNh electrons are equally

distributed among theNd Mn sites, and are fully polarized
the z-component of the total spin created by electrons at e
site, within the HF approximation, issh( j )52 1

2 (Nh /Nd)
52p/2, and therefore we findHi5J0p/2 @see Eq.~10!#.

Using the fact that the solutions of Eq.~26! must also
have plane-wave structureYi;exp(iQW •RW i), it follows that the
index a→QW becomes a wave vector, as expected, and
can reduce Eqs.~26! and ~27! to a self-consistent equatio
for each collective mode\v(QW ):

\v2
pJ0

2
52

SuJ~QW !u2

2Nd
(

kW

f ~EkW ,↓!

\v1ekW2QW 2ekW1J0S
.

~30!

Here J(QW )5(dWexp(iQW •dW)JdW . The occupation numbe
f (EkW ,↓) obviously comes from the sum over occupied sta
we had in Eq.~27!. For a finite-size ordered lattice, on
expects considerable degeneracy for each modeEkWs , due to
invariance to various symmetry transformations of thekW vec-
tor. In most cases, the number of charge carriers is such
the last orbital~of degeneracyG) is only partially occupied
by g charge carriers. In this case, one must obviously cho
f 5g/G for all these orbitals, andf 51 for lower, fully oc-
cupied orbitals, andf 50 for higher, empty orbitals. Other
wise, the translational invariance is broken and the collec
spectrum is not indexed by a wave-vector.

The sum in Eq.~30! can be performed if we assume th
the dispersion at the bottom of the band is of quadratic fo
ekW5\2k2/(2m) ~this is a reasonable approximation since w
are interested in low filling fractionp). Then the sum over
occupied states can be transformed to an integral whic
straightforward to evaluate, leading to the solution

\v5
pJ0

2
1uJ~QW !u2

3pS

4vF

1

Q
f ~v,Q!. ~31!

Here vF5\kF /m is the Fermi velocity, where the Ferm
vector is given by

Nh5pNd5
V

~2p!3

4pkF
3

3
.

The functionf (v,Q) is given by

f ~v,Q!52
\v1eQ1J0S

vFQ
1

1

2 F12S \v1eQ1J0S

vFQ D 2G
3 ln

\v1eQ1J0S2vFQ

\v1eQ1J0S1vFQ
,

7-6
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whereeQ5\2Q2/2m.
For comparison purposes, we will assume a local AF

interaction Ji j →cJpdd i j , leading to J(QW )5J05cJpd . In
this case, the Hamiltonian becomes identical to the Ham
tonian used by Koniget al. in Ref. 7, provided that the ef
fective massm in the dispersion relation is assumed to be
band effective mass. We can easily solve Eq.~31! in the
asymptotic limitQ→0, to find

\v~QW !5
\2Q2

2m

1

2S/p21F12
4

5

t

J0SS p

6p2D 2/3G . ~32!

This is indeed identical with the asymptotic long-waveleng
spin-wave spectrum obtained in Ref. 7, and has the typ
quadratic dependence of spin-waves in conventional fe
magnetic systems.

B. Direct comparison between the two formulations

In this section we briefly illustrate the accuracy and spe
of our formulation of the RPA problem@Eqs.~26! and~27!#,
in comparison with the standard RPA approach@Eq. ~23!#.
We use a rather small system, withNd580 Mn spins ran-
domly distributed on a fcc lattice with linear sizeN510,
corresponding to a Mn concentrationx5Nd/4N350.02. The
number of charge carriers isNh5pNd58, and the other pa
rameters are as defined in Sec. II. Thus the standard
involves the diagonalization of a non-Hermitian matrix
dimension 720.

In Fig. 1 we show thev dependence of the largest eig
eigenvaluesl(v) of the M matrix ~circles!, evaluated on a
grid with a stepdv50.05 meV.@For realv andh50, the
matrix M (v) is Hermitian and all eigenvaluesl(v) are real,
see Eq.~27!#. The full line is \v, and the spin-wave spec
trum is given by the conditionl(v)5\v. One can see tha
the eigenvaluesl(v) have a monotonically increasing de
pendence onv for smallv!D'50 meV, and therefore the
equationl(v)5\v can have at most one solution for ea
eigenvalue, for smallv. If each eigenvalue yields a solution

FIG. 1. The largest eight eigenvaluesl(v) of theM (v) matrix
~circles!, evaluated on a grid with a stepdv50.05 meV. The full
line is \v. The spin-wave spectrum is given by the conditionlv
5\v.
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we have found allNd spin-wave frequencies. If one or mor
eigenvalues do not intersect the\v line, this means that the
mean-field ground state is unstable~ there arecomplexspin-
wave frequencies!. For all the cases and parameters we
vestigate, we found that the fully-polarized ground-state
stable for our model.

To find the spectrum frequencies\Va , we use linear in-
terpolation over the intervaldv where eachl(v) curve in-
tersects the\v curve. This method avoids the need of eva
ating the eigenvalues at too manyv points ~the most time-
consuming part of the computation is the evaluation of
matrix elements ofM ). The high degree of accuracy ob
tained with this method is demonstrated in Fig. 2, where
compare the exact RPA spectrumvRPA obtained through a
direct diagonalization of the RPA matrix@see Eq.~23!# with
the valuesṽRPA obtained through our formulation. In fac
we plot the relative errorDv/vRPA5(ṽRPA2vRPA)/vRPA
for each spectrum frequencyvRPA. As one can see from Fig
2, the largest error is of the order 231026, for the griddv
50.05.

This suggests that one could use a much larger griddv
and still have a good accuracy. Indeed, we have compu
the spectrum through both methods for five different reali
tions of disorder, using various grid valuesdv in our formu-
lation, and selected the largest relative error for each c
~from a total of 5Nd5400 values!. The results are shown in
Fig. 3. The error is found to scale as the square of the g
size. Even with a very large griddv51 meV @which im-
plies the evaluation of the eigenvaluesl(v) in only very few
points#, we still obtain a relative error smaller than 1023.
Thus one can use a grid stepdv to optimize and consider
ably speed up the computation. However, as the numbe
spins~and eigenvalues! Nd increases, one must take into co
sideration other complications, as discussed below.

In Fig. 4 we compare CPU times for finding the RP
spin-wave spectrum using the standard formulation vs
RPA formulation. All simulations were done on the sam
processor. We used a small griddv50.05 meV for our ap-

FIG. 2. AccuracyDv/vRPA for all Nd580 spin-wave frequen-
cies vRPA, between the exact RPA~standard! values and values
obtained in our formulation using a grid withdv50.05~see Fig. 1!.
7-7



a
,

-
siz
an

b
d
th
Fo

ad

te
o
in

r a
g
to a
rid
st
ach

the

e
ed,
ly
thin
ing
.

gs
ne

ave
and

har-

e
to

and
the
can
an-

t
ti

ith

-

MONA BERCIU AND R. N. BHATT PHYSICAL REVIEW B 66, 085207 ~2002!
proach, and verified that all relative errors were less th
1025. We use systems withNd564, 125, and 216 spins
randomly distributed on fcc lattices of linear sizesN512,
15, and 18 (x50.0092 andp510%). As expected, the com
putational time depends in a power-law manner on the
Nd , with exponents 6.4 and 3.2, respectively, for the st
dard and current approaches. Clearly, our formulation can
successfully used for much larger sizes than those affor
by the standard approach. Another advantage of our me
is that it can be easily implemented in a parallel code.
instance, the diagonalization of the matrixM at various fre-
quenciesv can be carried out on different processors, le
ing to a further improvement in speed and efficiency.

One important aspect to keep in mind is that as the sys
size Nd increases, neighboring eigenvalues become m
closely spaced, and accidental crossings and anticross

FIG. 3. Largest relative errorDv/vRPA among 5Nd5400 spin-
wave frequenciesvRPA, between the exact RPA~standard! values
and values obtained in our formulation using a grid withdv
50.05,0.1,0.2,0.3,0.4,0.5,0.75, and 1 meV. The line is drawn
guide the eye. Even for a very large grid, the relative error is s
reasonably small.

FIG. 4. CPU time for the two RPA methods, for systems w
Nd564, 125, and 216 spins. The standard RPA~full line! is signifi-
cantly more time consuming than our formulation~dashed line!.
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appear. Some typical examples are shown in Fig. 5, fo
disordered system withNd5512 spins. Tracking the crossin
of the eigenvalues is essential, since such events lead
change in the indexing of the eigenvalues from one g
point to the next. We found that requiring continuity in fir
and second derivatives allows a unique identification of e
continuous eigenvalue from one grid point to the next~three
steps are shown for each eigenvalue in Fig. 5!. In fact, the
only relevant crossings are the ones that take place within
stepdv where the eigenvalues intersects the\v line ~shown
as a dotted line in Fig. 5!. Such an example is shown in th
left panel of Fig. 5. For the largest system size investigat
of Nd5512 randomly distributed spins, we find that on
4.5% of the eigenvalues have such relevant crossings wi
dv of l(v)5\v. The percentage decreases with decreas
Nd , to 1.1% and 0.3% forNd5216 and 125, respectively
This percentage also depends on the grid stepdv; for in-
creasingdv the identification of crossings and anticrossin
becomes more difficult, leading to possibly large errors. O
can optimize the choice of the grid stepdv by starting with
a larger value. The well-separated eigenvalues~such as the
ones depicted in Fig. 1! will provide unique identification
and very accurate values for their corresponding spin-w
spectra values. However, where considerable mixing
therefore a nonlinear variation of the eigenvaluesl(v) is
apparent, a finer mesh is necessary in order to correctly c
acterize their variation near\v. In all our simulations, we
use the griddv50.05 meV, which allows for a comfortabl
tracking of each eigenvalue and is also sufficiently small
allow us to approximate the variation ofl(v) as being linear
within eachdv step.

These comparisons clearly demonstrate the accuracy
speed of our formulation of the RPA, as compared to
standard RPA. The biggest advantage, though, is that it
easily be applied to systems with large sizes, for which st
dard RPA is numerically cumbersome.

o
ll

FIG. 5. Eigenvaluesl(v) for a system withNd5512 random
spins, evaluated for a griddv50.05 meV. Crossing and anticross
ings of neighboring eigenvalues are apparent. The dotted line is\v.
Since we are interested in the solutions of the equationl(v)
5\v, it is clear that too large a griddv may lead to considerable
errors.
7-8
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SPIN WAVES IN DISORDERED III-V DILUTED . . . PHYSICAL REVIEW B66, 085207 ~2002!
V. SPIN-WAVE SPECTRA OF DMS

In this section, we use the RPA method described abov
study the density of states, as well as nature~extended or
localized! of the spin-wave spectrum of~III,Mn !V DMS de-
scribed by the model introduced in Sec. II.

A. Spin-wave density of states

We study the spin-wave density of states for three type
arrangements of the Mn spins inside the host semicondu
All samples studied correspond tox50.0092 andp510%.
Other parameters are as specified in Sec. II.

First we consider fully ordered systems, in which the M
spins are arranged on a simple cubic superlattice. Fox
50.0092, the superlattice constant isaL53a. In this case,
we can study the spin-wave dispersion and density of st
for very large sizes, since we can use directly Eq.~31! to
compute the spin-wave frequency\v(qW ) for each wave vec-
tor qW inside the Brillouin zone. Spin-wave dispersion o
tained along three cuts in the Brillouin zone is shown in F
6. The dispersion has a quadratic behavior near the cent
the Brillouin zone, as expected from the discussion for
ordered case provided above. The finite-size effects are
sonably small. For the small sizes we used both Eq.~31! and
our method to compute the dispersion. The results of the
agree with a relative error of less than 1026.

One important aspect to notice is the small range of
spin-wave spectrum, as compared to the AFM exchangJ
515 meV. This is a consequence of the fact that the
spins do not interact directly with one another. Instead, th
interaction is mediated by the rather small concentration
charge carriers present.

We compute the density of states~DOS! r(E) associated
with the spin-wave dispersion for the superlattice case

FIG. 6. Spin-wave dispersionV(qW ) for an ordered, simple cubic
superlattice arrangement of Mn spins inside the host semicondu
Lattices of linear sizesN515, 18, 24 and 150, with a total of 125
216, 512, and 125 000 Mn spins, respectively, are considered.
corresponds tox50.0092 andp510%. Dispersion is plotted along
three linear cuts in the Brillouin zone: (2p,0,0)→(p,0,0),(2p,
2p,0)→(p,p,0), and (2p,2p,2p)→(p,p,p).
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ploying the standard method of dividing the Brillouin zon
into tetrahedra and linearizing the dispersion~Ref. 31!. The
DOS obtained for the lattice withN5150 andNd5125 000
is shown as a dotted line in Fig. 7. We use a logarithmic sc
for the energy, and normalize the density of states such

E
2`

`

dxr~x!51,

where x5 log10(E). This convention will be maintained
throughout the rest of the paper.

In the upper panel of Fig. 7 we also plot the densities
states obtained for moderately disordered configurations w
Nd5125, 215, and 512 Mn spins~full lines!. These are con-
figurations in which we place the Mn spins randomly on t
fcc Ga sublattice of the host semiconductor, subject to
constraint that the distance between any two spins islarger
than 2a. ~In the ordered cubic superlattice, the neare
neighbor spin separation isaL53a.! This moderate amoun
of disorder breaks translational invariance, and the wave v
tors are no longer good quantum numbers. Also, the la
degeneracies of the superlattice spectrum are lifted. We c
puted the spin-wave spectrum for 200 realizations of the
order with Nd5125 spins, 100 realizations withNd5216
spins and 50 realizations withNd5512 spins. Thus we have
a total of over 21 000 spin-wave energies for each size,

or.

is

FIG. 7. Upper panel: average density of statesr(log10E) on a
logarithmic scalefor systems withNd5125, 216, and 512 Mn spins
in moderately disordered configurations~full lines!. Lower panel:
average density of states for systems withNd5125, 216, and 512
Mn spins in strongly disordered configurations~full lines!. The dot-
ted line is the spin-wave density of states of a DMS with fu
ordered~superlattice! configuration of Mn spins. All samples corre
spond tox50.00924 andp510%.
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MONA BERCIU AND R. N. BHATT PHYSICAL REVIEW B 66, 085207 ~2002!
statistics can be comfortably carried out. In particular, fro
Fig. 7 we see that the DOS histograms corresponding to
three sizes are smooth functions, i.e., the average over d
der is well accounted for. Also, the curves are practica
indistinguishable from one another, implying that finite-si
effects are negligible.

In the lower panel of Fig. 7 we plot the DOS correspon
ing to fully disordered configurations withNd5125, 215,
and 512 Mn spins~full lines!. These are configurations i
which we place the Mn spins randomly on the fcc Ga s
lattice of the host semiconductor, with no restrictions~except
that each Mn occupies a different site!. The number of
samples analyzed is the same as in the previous case. A
the curves show smooth behavior and no finite-size effe
The origin of the peak appearing nearv;5 meV will be
discussed later.

Before continuing the analysis, we must also point o
that the Goldstone modes have been left out in the D
shown in Fig. 7. The RPA systemalwayshas one solution of
energyv50 ~numerically, we find its magnitude to be les
than 10214), corresponding toYi51/ANd. This is the Gold-
stone mode, describing the same overall rotation of all
spins. These Goldstone modes would appear in the DOS
d(v) function atv50 (log10E52`).

The effect of disorder in the positions of the Mn is r
flected in the considerable widening of the DOS~on a loga-
rithmic scale!, and rounding of the van Hove singularities
the superlattice DOS, as the amount of disorder increa
More significantly, however, is thesubstantialenhancemen
of the DOS atlow energies. This behavior is in agreemen
with the general expectation of the effects of disorder on
energy-band dispersion.

A question of considerable interest concerns thenatureof
the spin-wave excitations. We know that the ordered su
lattice has extended, plane-wave-type spin waves. The
eral expectation is that disorder will lead to localization, a
thus one expects the appearance of localized spin-wave
the disorder increases. One way to characterize the natu
the spin-waves is to compute their inverse participation ra
~IPR!, defined as

IPRa5

(
i 51

Nd

~Yi
(a)!4

S (
i 51

Nd

~Yi
(a)!2D 2 . ~33!

For an extended modea ~a plane wave, for instance!, we
expect that allYi

(a) coefficients are roughly of equal magn
tude, since all spins are expected to participate equally in
spin-wave. Then, it follows that for anextended modea, an
IPRa at ;1/Nd , i.e., it is inversely proportional to the size o
the system. On the other hand, in a localized modea, only
the spins within the localization volume have non-vanish
values forYi

(a) . Thus it follows that for alocalized modea,
IPRa is independent ofNd . Instead, its value is given by th
inverse number of Mn spins participating in the localiz
mode.
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We compute the IPR of the spin waves in the followin
manner. As we sweep the frequenciesv of interest and com-
pute the eigenvaluesl(v) of the M (v) matrix on the grid
dv, we also compute the corresponding IPR of the eigenv
tors Y(v) ~which are normalized to unity!. The IPR is a
continuous function ofv, and we use linear interpolation t
find its value at the spin-wave frequenciesVa of interest.
Whenever eigenvaluesl(v) cross, the IPR’s are no longe
well defined: one can choose any linear combination of
eigenvectors of the degenerate modes, which would lea
different values for the corresponding IPR’s. We ha
checked that these accidental crossings are rather rare~below
a few percent! and equally distributed over the entire ener
scale. If we exclude all these degenerate cases, we ob
DOS which is virtually indistinguishable from the one o
tained when these modes are kept. More importantly, we
that modes which cross predominantly have the same na
~either localized or extended!. As a result, the ensemble
averaged IPR is not sensitive to the precise treatment of th
cases.

In Fig. 8 we plot the~geometric! average IPR~E! for the
moderate~upper panel! and strong~lower panel! disorder
configurations. Again, the Goldstone modes are not sho
We use the geometric mean~i.e., arithmetic mean of the log
values! in order to insure proper weight for the extend
modes, with a low IPR. For moderate disorder configu
tions, we see that the spin-wave modes at high energieE

FIG. 8. Upper panel: average IPR~E! for systems withNd

5125, 216, and 512 Mn spins in moderately disordered configu
tions ~circles, squares and triangles, respectively!. Lower panel:
same for strongly disordered configurations. All samples corresp
to x50.00924 andp510%. Error bars are shorter than the symb
sizes.
7-10
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SPIN WAVES IN DISORDERED III-V DILUTED . . . PHYSICAL REVIEW B66, 085207 ~2002!
.1 meV are localized: the values corresponding to the th
different sizes collapse on top of one another. This is
pected, given the fact that the upper band edge of the su
lattice spectra is just belowE51 meV ~see Fig. 7!. Thus
states of higher energy have been split off the band by
order, and are expected to be localized. The low-energy
of the band also appears to be localized: while the th
curves do not quite meet, the value of the IPR is just be
unity, showing that these spin waves have considera
weight on only one spin~i.e., they correspond to a individua
spin-flip!. However, for the central part of the spectrum, t
spin waves are extended, with the IPR’s for the three s
clearly distinct and decreasing with increasingNd .

For strong disorder configurations, this tendency is e
more apparent. The high and low-energy regions,E
.1 meV, E,531023 meV, respectively, contain local
ized spin waves: in both limits, the IPR curves collapse
top of one another. The low-energy localized modes are
dividual spin-flips. The associatedYi are vanishingly small a
all sites except one, leading to an IPR approximately equa
1. These sites are always situated far apart from all other
spins, and the probability to be visited by charge carrier
exponentially small~tailing from far occupied regions!. As a
result, the Mn spins at these sites are virtually isolated,
their spin excitations are individual spin-flips. The energy
such a spin-flip is equal toHi , if one neglects small correc
tions due to the extremely weak interactions@see Eq.~22!
and following discussion#.

Histograms of the IPR of all the modes with energ
belowE,531023 are shown in Fig. 9. Here, we also sho
the Goldstone modes, which have zero energy, and an IP
1/Nd . The histograms have been scaled by the total num
of modes for all disorder realizations considered for ea
particular size. Since the number of Goldstone modes exa
equals the number of different realizations of disorder c
sidered, their peaks are in a ratio of roughly 200/100/50 w
respect to one another. The main observation is that the
tograms for the three sizes are very similar, with a huge p

FIG. 9. Histogram of the IPR values for all spin waves~spin-
flips! of energyE,531023, for Nd5125, 216, and 512. Result
are shown only for strong disorder configurations. Except for
low-lying Goldstone modes, the histograms are identical, sugg
ing only localized modes at these energies.
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just below an IPR of 1. The absence of a dependence onNd

confirms that all these modes are localized~except the Gold-
stone modes, of course!.

The high-energy localized states are of very different
ture: their IPR is close to 0.5, suggesting that it has la
contributions from only two sites. Analysis of theYi values
for such modes shows that most of them are associated
nearest-neighbor~n.n.! Mn spins on the fcc Ga sublattice
The characteristic energy for the spin-waves centered
such n.n. sites is just below 5 meV, and this is the feat
responsible for the peak appearing in the DOS at these e
gies~see Fig. 7, lower panel!. Careful inspection of the DOS
reveals the appearance of smaller peaks at somewhat l
energies~even the DOS for moderate disorder has a sm
peak at around 2 meV, and its IPR for these modes is clos
0.5!. These peaks are associated with excitations of s
pairs ~or larger clusters! with varying separations, but the
are not as well defined as the one corresponding to nea
neighbor spins.

The small clusters of Mn spins giving rise to such mod
are always found to be in regions densely populated w
charge carriers. Due to their closeness in space, these
are much more strongly coupled to one another than they
to other spins with which they share charge carriers. T
leads to the ‘‘resonancelike’’ character of these modes: ei
of the spins can be flipped with equal probability. As a res
of the strong coupling, the cost of flipping either spin is hig
since it frustrates their ferromagnetic arrangement. Inde
the characteristic energy of roughlyJ/3 reflects much stron-
ger coupling than the average one present in the superla
case. The histogram of the IPR of all modes of energyE
.1021 shown in Fig. 10 confirms all these conclusions. W
caution that these energies may be substantially modified
to direct antiferromagnetic Mn-Mn exchange~left out in our
model! in real systems.

Finally, spin waves at intermediate energies 531023,E
,1021 correspond to extended modes. It is rather difficult
establish exactly the ‘‘mobility edge’’ corresponding to th
transitions from localized to extended modes at either e

e
t-

FIG. 10. Histogram of the IPR values for all spin waves~spin-
flips! of energyE.1021, for Nd5125, 216, and 512. Results ar
shown only for strong disorder configurations. The histograms
almost identical, suggesting only localized modes at these ener
7-11
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given the rather small system sizes considered here. T
we use the values quoted above only as plausible estim
of these boundaries. Clearly, for these energies the ave
IPR decreases with increasingNd ~see Fig. 8!. In Fig. 11 we
plot the histograms of the IPR for all the modes with ene
5•1023,E,1021. In this case, the size dependence
clearly visible, both in the position of the broad peak ma
mum as well as in the lower cut-off in IPR value. The po
tion of the maxima scale roughly like 1/Nd . We have at-
tempted both Gaussian and Lorentzian fits, but neither se
to capture the low-IPR tail properly. In the smaller sampl
a second peak appears just below an IPR of 1. At first si
this might seem to indicate the existence of a finite density
localized states at these energies as well. However, we
lieve that this peak is a finite-size effect. Clearly, its amp
tude decreases with increasingNd and would vanish in the
thermodynamic limit. This is very different from the beha
ior observed in either of the two localized energy rang
where the distributions for all sizes are virtually identic
~see Figs. 9 and 10!. The reason for the appearance of th
second peak is simply the restriction where the IPR is l
than or equal to 1. As the broad peak moves toward hig
values with decreasingNd , all the values in the upper ta
‘‘bunch’’ at an IPR of 1.

One final important observation relates to the abso
values of the IPR’s in the extended spin-wave regime.
though scaling with system size is present, the correspon
IPR values are much higher than the ones expected
modes extended overall Mn sites~these values are shown b

FIG. 11. Histogram of the IPR values for all spin waves~spin-
flips! of energy 531023,E,1021, for Nd5125 ~upper!, 216
~middle!, and 512~lower panel!. Results are shown only for stron
disorder configurations. With increasingNd the histograms shift to
lower values, suggesting that these spin-wave modes are exte
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the positions of the Goldstone modes in Fig. 9, and are w
below the cutoffs observed in Fig. 11!. This means that in the
disordered system, the extended spinwaves are deloca
only over a fraction of the total number of sites. As th
amount of disorder increases, this fraction decreases, s
IPR averages for the moderate disorder are smaller than
averages for full disorder.

These results are consistent with the picture provided
the temperature-dependent mean-field study of this mo
~Ref. 13!. There, we concluded that in a disordered syst
the ~small fractionp! of charge carriers are concentrated in
small volume of the sample, where the local Mn concent
tion is larger than average. As a result, the concentration
charge carriers is strongly enhanced in these regions, and
exchange with the Mn spins inside these regions~which is
proportional to the probability of finding charge carrie
nearby! is greatly increased, preserving magnetization
these regions up to high temperatures. On the other hand
Mn spins in the regions devoid of charge carriers are v
weakly coupled, and behave as free spins down to very
temperatures. Due to the very inhomogeneous assemb
weakly and strongly interacting spins, the magnetizat
curves have very unusual, concave shapes.

The present study of the spin waves corroborates the s
picture. We find very low-energy, spin-flip-like excitation
which are obviously due to the weakly interacting spins, a
which are responsible for a very sharp decrease of the m
netization at exponentially small temperatures.12,13 This is is
to be contrasted with the behavior of ordered conventio
ferromagnets, where at low temperatures only low-ene
long-wavelength spin waves can be excited. Since th
phase space is vanishing in the long-wavelength limit (;d in
d dimensions!, the magnetization of conventional ferroma
nets decreases very slowly from its saturation value w
increasing temperature, leading to convex upward magn
zation curves.32

In our model, the extended spin waves are concentra
around the high-density Mn regions, where the charge ca
ers mediating the interactions are to be found. This is c
sistent with the appearance of modes whose IPR, while s
ing with the system size, shows modes extended only ov
fraction of all system sites. As the amount of disorder d
creases all the way to a fully ordered superlattice, the cha
carriers are more and more homogeneously spread thro
out the sample and the IPR of the extended modes has lo
and lower values, as observed from Fig. 8. However,
more homogeneous a sample is, the less the average A
coupling between the Mn spins and the charge carriers, s
the charge carriers have now equal probability of be
found anywhere in the sample, instead of being concentra
in a small fraction of the space. This leads to a decreas
the critical temperatureTC , as observed in both mean-field12

and Monte Carlo15 analyses. The enhancement of the me
field TC with increasing disorder is also suggested by
existence of the high-energy localized modes, which sh
that ferromagnetic alignment will persist in high-dens
clusters up to very high temperatures. It also suggests
local ferromagnetic fluctuations might be observed w
aboveTC .

ed.
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VI. FINAL REMARKS

The aim of this paper is twofold. First, we demonstra
the accuracy and speed of a scheme for computing
spectra, which allows tackling of systems of much lar
sizes than the ones that can be analyzed with the stan
RPA formulation. Investigation of large system sizes and
erages over many disorder realizations facilitate a clear
ture for the problem we are interested in, namely, the sp
trum and nature of spin waves of a disordered DMS.

We then demonstrate that disorder can significan
change the spectrum and the nature of the spin waves. Th
likely to lead to important consequences not only as far
magnetic properties are concerned~we have already com
mented on the fast demagnetization with increasing temp
ture, due to low-energy spin-flip modes!. More importantly,
iv
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this may have significant consequences for transport prop
ties as well. For instance, charge carrier spin scattering
likely to be very different in various regions of the sample
Large anomalous Hall effect has been observed
~Ga,Mn!As,26 but the theory used to interpret it is borrowed
from phenomenology relevant to homogeneous ferroma
netic metals. In an inhomogeneous system, some of the a
cepted ideas might have to be modified or at least verified
still hold true.
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