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Spin waves in disordered llI-V diluted magnetic semiconductors by a modified RPA approach
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We propose a scheme for numerically computing collective-mode spectra for large-size systems, using a
reformulation of the random-phase approximation. In this study, we apply this method to investigate the
spectrum and nature of the spin-waves dfilgMn)V diluted magnetic semiconductor. We use an impurity
band picture to describe the interaction of the charge carriers with the local Mn spins. The spin-wave spectrum
is shown to depend sensitively on the positional disorder of the Mn atoms inside the host semiconductor. Both
localized and extended spin-wave modes are found. Unusual spin and charge transport is implied.
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I. INTRODUCTION ferromagnetism. A number of very usefab initio studies
have also been publishét.
Diluted magnetic semiconductof®MS’s) based on IlI-V In parallel, we have studied effects of positional disorder

semiconductors doped with Mn have attracted a lot of interon the magnetic orderingn the absence of spin-orbit cou-
est recently, after critical temperatures for the onset of ferropling) of an impurity band modéf?~° developed from pre-
magnetism of the order of 110 K have been found invious work done in the context of insulating 1lI-VI DMS
Ga,_,Mn,As, where x=0.053"% More recently, critical compoundg®’Such an approach should be of relevance at
temperatures larger than room temperatures have been hew doping concentrationsx, at and below the metal-
ported in Mn-doped GaN, enhancing the hope for extensivénsulator transition, and possibly even above it. Evidence of
technological applications of these materfats. the existence of impuritylike states was provideddyinitio
While there is general agreement that the magnetism istudiest which found that occupied hole states near the
due to charge-carrier-mediated, effectively ferromagnetic, infFermi level have wave functions mostly concentrated on and
teractions between the Mn spins, there are various theoreticakar the Mn impurity. More recently, angle-resolved photo-
models attempting to understand their detailed behavioemission spectroscopy revealed the existence of the impurity
DMS'’s are alloy systems, with an inherent positional disor-band in Ga_,Mn,As with x=0.035(very close to the metal-
der of the Mn atoms; further, spin-orbit coupling may play ainsulator transition’® A scanning tunneling microscope
significant role for hole doping. A theoretical treatmentstudy® demonstrated the existence of an impurity band in
which takes into account all these factors, and their effect§Ga,MnAs samples withx=0.005. Optical spectroscoffy
on the magnetic and transport properties of DMS's, is not yetlso identified the impurity band fox=0.0001 and 0.05
available. Instead, theoretical models have tended to concesamples.
trate on different aspects of the problem. Electron densities in localized states, as well as states
One class of models, where much work has been donelose to the mobility edge, can be far from homogeneous,
neglects both the disorder and spin-orbit coupling effects. Aunlike Bloch waves. At low Mn concentrations and at a high
large carrier densities, where Coulomb potentials of the imdegree of compensatigwhich comes from charged centers,
purity (Mn) atoms are effectively screened out, and othersee Ref. 2Lseen in DMS's, short-length-scale density fluc-
disorder effectgsuch as those coming from As antisite de-tuations could be significant. This can lead to inhomogene-
fects which are believed to be the cause of the large compeiities in the local charge densities at different Mn sites, which
sation observed experimentaliyan be neglected, the former in turn leads to(microscopically inhomogeneous magneti-
at least can be justified. In such a case, holes occupy a Fermations of the magnetic ions in the ordered phase. Such an
sea at the top of the valence bahStudies of the spin-wave inhomogeneity would be expected to alter the nature of the
spectrd, Monte Carlo studie§,and dynamical mean-field collective magnetic excitationspin wave$ of the magneti-
theory studiel have been performed. Overall, their resultscally ordered system, which in turn would affect charge
are rather similar to the physics one would expect to hold intransport through the magnetic excitation processes which
a conventional ferromagnet. More recently, it has been progive rise to spin-flip scattering.
posed that spin-orbit coupling of the valence band, in the In this paper, we develop a numerical scheme to calculate
high carrier density(strongly metalli¢ regime leads to a the spin-wave spectrum for a finite but large size model of
RKKY coupling between Mn moments thatasisotropicin ~ coupled fermions and spins, in the presence of quenched
spin space, and where the positional disorder effectivelylisorder. We show that the method accurately reproduces the
leads to random anisotrop$.This would lead to frustration results for a lattice model of small size obtained from a stan-
effects on the magnetic ordering, and therefore to unusualard treatment of spin waves via the random-phase approxi-
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mation (RPA).?>~*We then apply the method to the model Fermi level and the top of the valence bdidnly if the

of Ref. 12, and study in detail its collective magnetic concentration of holesor the temperatujeis large enough

excitations?® are states in the valence band itself occupied by holes. Thus
The plan of the paper is as follows. The model Hamil-it is reasonable to attempt a description of the charge-carrier

tonian for DMS’s is described in Sec. Il. Section Il is de- behavior only in terms of this impurity band.

voted to developing the numerical scheme. The accuracy of As in previous work>*3in the following we will use the

the scheme is tested by comparing it with the standard RPA&lectron formalism to treat the problem. This is equivalent to

method in Sec. IV. In particular, we demonstrate that we camperforming a particle-hole transformation which leads to an

use our scheme to study large size systems, beyond the daversionE— —E of the charge-carrier spectrum. Thus, in-

pability of the standard RPA approach. Section V presentstead of emptying the top of a valencelike impurity band

the results obtained by applying the scheme to the model di.e., introducing holes in the systgmwe instead occupy the

Sec. I, including the density of states and nature of thebottom of a conductionlike impurity band. We also make the

eigenvectors of the magnetic excitations of the coupledsimplifying assumption that the isolated impurity wave func-

fermion-spin system. We summarize our conclusiongion for a charge carrier trapped near the Mn at Bités the

In Sec. V. 1s hydrogen orbital ¢(r—R;) = ¢;(r) ~exp(-|r—R|/ag),
whereag=%/y/2m*E,=8 A is the appropriate Bohr radius

Il. MODEL related to the effective mass of the heavy hatg &0.5m,

In the following we develop the formalism for an impu- for GaAs and the binding energyH,=112.4 meV for Mn

rity band Hamiltonian that we believe to be appropriate for" GaAs.?” Our approach neglects both the complicated or-
describing(at least qualitativelythe diluted magnetic semi- Pital form of the acceptor wave-functidiRef. 27 and spin-
conductor Ga_,Mn,As for low dopingx (in the insulating orblt_ co_upllng. The former is not expected to lead t_o any
phase, or not too far from the metal-insulator transjtion quahtgtlve changes. It was recgntly proposed_that spin-orbit
However, generalizations of this method for other types of€OUPINg leads to frustration in the magnetic orderifig.

Hamiltonians, crystal structures, parameters, etc., can bEhese effects are left out in the present study, which concen-
done in a straightforward manner. trates on the effect of disorder. A study combining both ef-

The I11-V host semiconductor is assumed to have the zincf€Cts is indicated for future work.
We consider the Hamiltonian

blende structure appropriate for GaAs. Experimental
measurement$2® suggested that valence-Il Mn substitutes

for valence-lll Ga. As a result, th¥y Mn dopants are ran- H= 2 tclciot 2 3;Ss;. (1)
domly distributed at position®;,i=1,... Ny on the N b o

X NXN fcc Ga sublattice, corresponding xe= Ny/4N3. All Herec/, creates a charge carrier with spinin the impurity
throughout this paper, we assume periodic boundary condktate centered at sif . The first term describes the hopping
tions. of charge carriers between impurity states. We use the pa-

Due to the valence mismatch, each Mn introduces dametrizationt;; = 2(1+r/ag)exp(~r/ag) Ry, wherer =|R;
charge carriethole) in the system. However, experimentally —R;|, of magnitude and form appropriate for hopping be-
it is found that the hole concentration is considerably suptween two isolated € impurities which are not too close to
pressed through compensation processes. As a result, t8fie anothef® This hopping term has been shown to lead to
number of holes is only a fraction=10-30 % of the num-  the appearance of an impurity band which has a mobility
ber of Mn atomsN,=pNy. Each Mn atom also has3aspin  edge, as well as to a characteristic energy for the occupied
§i from its half-filled 3d level. The magnetic properties of states in agreement with physical expectafion.
the doped semiconductor are related to the exchange interac- The second term of Hamiltoniafl) describes the AFM
tion between the Mn spins and the charge carrier spins. Thigxchange between the Mn spﬁnand the charge-carrier spin

interaction is known to be antiferromagnefidFM), and g:%cfa(;aﬁcjﬁ [ are the Pauli spin matricgsThis AFM

. > - . i i
Fr:gpcoorrt';zgglofdtizg R/Irﬁb;g“ty of finding the charge carrier atexchange is proportional to the probability of finding the

Recently, we proposed a simple impurity-band model to-harge carrier trapped &; near the Mn spin aR;, and

describe the behavior of the charge carriers for the lowtherefore J;=J|#;(R))|*=J exp(-2|R —R||/ag). Based on
doping regimé?*® The main justification is that near and calculations of the isolated Mn impurity in GaAs, we esti-
below the metal-insulator transitiox40.03) the density of Mmate the exchange coupling between a hole and the trapping
charge carriers is not large enough to effectively screen thiin (R;=R;) to be J=15 meV!?%’ As already stated, the
attractive Coulomb potential of the Mn dopants. As a resulthumber of Mn atoms i8l,, and therefore there are a total of
bound, hydrogenlike impurity states are created about eachN, states in the impurity band. The number of charge car-
Mn site, at an energig,=1 Ry above the top of the valence riers is fixed toN,=pNgy, where we takep=10%.

band. These impurity states, arising as a result of hole-ion In Ref. 13 we studied the relevance of various other
interactions, lead to the formation of an impurity band due taterms, such as an on-site potentiassociated with the Cou-
wave-function overlap, and the holes first occupy states itomb potential of the compensation cenjerdubbard-like
this band. For the parameters we use in the following, weon-site repulsion(describing interactions between charge
have found a more than 200-meV difference between thearriers, external magnetic field, etc. While they lead to

085207-2



SPIN WAVES IN DISORDERED IlI-V DILUTED . . . PHYSICAL REVIEW B66, 085207 (2002

variousquantitativechanges, we believe that tigealitative = The mean-field ground state of the charge carriers is obtained
picture we present in the following sections is not changedy occupying theN,, lowest-energy orbitals:
by their absence.

Np
IIl. COLLECTIVE MODE SPECTRUM W)= I al,lo). (8)
(no)=1

The RPA describes the collective excitations of a system

very short review of the derivation of the relevant equationsyamiitonian with the spin raising operatsf = S +iS/:
for the mean-field ground state. ! :

A. Mean-field ground state [H,S" 1= —hz J”S,Zsi*+ﬁz J;iS'st. (9)
We use the equation-of-motion approach of Ref. 23. At J :

the mean-field level, we are trying to find noninteracting fer-the right-hand side now contains charge-carrier operdiors

mionic quaS|part|cI¢s through a unitary transformation of thg,q charge-carrier spin operatobeside the spin operators.

on-site charge-carrier operators, We again use linearizatiors' — (s )=0 [see Eq.(8)] and
sf—(sf)=sp(i), and by comparison with Eq4) we find

80,= 2 thnoli)Cl,, @
such that Hi=— 2 Jijsn(i)- (10
[Hla;a]%En(rala’ (3) . . .
From Eq.(5) we see that iH;>0, then in the mean-field
and ground state the spi§ is in the “up” state| +S) and there-
[H,S"]~—#HS". 4) fore Syu(i)=+S, while if H;<0 the spinS is in the

“down” state | —S) and Sy,(i) = —S(S=5/2). As a result,
For a noninteracting system, E¢8) and(4) would be exact. the spin part of the mean-field ground state can also be easily
For an interacting system at the mean-field level, the exadbund if the expectation value of the charge-carrier spins
Hamiltonian is approximated by the diagonalized, nonintersy(j) are known from Eqs(7) and (8). Thus we obtain the
acting Hartree-Fock Hamiltonian usual self-consistent Hartree-Fock equations.
Diluted magnetic semiconductors exhibit ferromagnetism
at low temperatures. As a result, we assume that in the mean-

_ T — &z
HHHHF_% Eno@no@no EI HiS, ® field ground state, all Mn spins are fully polariz&g;,(i)
) =+S. Then, from Eq.(7), we find the lowest-lyingN},
for which Egs.(3) and (4) become exact. states. If the charge carriers are also fully polarizedr at
- mean-field ground state is of the form
. = O-CY(T .

[Hrago]:; t; lﬁno(l)CiTa‘F;j: JijS; > Ynoli)Cl,. N
(6) w)=11 a,[0)¢[SS, ....9). (1)

e

The right-hand-side of Eq6) contains spin operators, so it
cannot be put into the form of E¢3) unless we linearize it,

by replacing the spin operators with their mean-field ground—by verifying that indeed the firsN, lowest-energy one-

state expectation valu&s;—(S;)=€,Sun(j). While the  gjectron states are all spin-down. We find that this always
choice of a collinear ground state, with all Mn spins alignedpq|ds true for the parameters we study in this paper. As dis-
along thez axis, is not the most general possibility, we actu-c,ssed below, the spin-wave spectrum of the collective exci-
ally showed in Ref. 13 that the ground state of this modelyations also confirms that this ground state is indeed stable.
for the range of parameters we are interested in, is indeefioever, for higher charge-carrier concentratiéoisHamil-
collinear. This is why we choose @ priori make this as-  (gnjans with other types of interactionis is likely that the
sumption in this case. _ Hartree-Fock(HF) ground-state is only partially spin polar-

_ After the linearization, Vye can how equate the right-handzeq. |n that case, one must do the full iterational search for
side of Eq.(6) with Ey,a,, [see Eq.(3)] to obtain the the self-consistent HF ground state. The computation for the
Hartree-Fock equation for the one-particle orbitals: spin-wave spectrum in the partially polarized caf® in-

. stance due to spin-orbit couplingan be derived in a similar
= ; ; : way to the one we present in the following for the full
Eaotno1)= 2 tytno1)+ 2 3ySunl) 5 o). ) 8% 12 18 7€ WE P 9 y

Of course, one must check that self-consistency is obeyed
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B. Random-phase approximation

We will use the same equation-of-motion approach to de(nl),

PHYSICAL REVIEW B 66, 085207 (2002

The restriction to relevant terms means that in any sum over
we restrictn to being an occupied orbital in the HF

. T _ .
rive the RPA equations. We are interested in spin wavegJround-state &n<Ny,, because otherwisey, |¥)=0, i.e.,

which are related to spin-flifspin-lowering processes.

a spin-flip process from the HF ground-state is impossible

Therefore, the RPA operators for spin-wave collective mode&STee Eq. (12)]. Performing a similar linearization for

must be constructed in terms of spin-flip operators:

to_ ot
bpp=ap;ap, ,

Bl=—5 . (12

The indexh=1, N4 runs over the empty*hole” ) states of
the HF ground state, while the ind@< 1, N, runs over the
occupied(“particle” ) states of the HF ground state. The in-
dexi=1, Ny runs over all the Mn spin positions. The HF

ground statéW) is fully polarized, and given by Eq11).

The spin-flip operators have a “bosonic” nature, as ex-

an,amsS , and collecting the various terms, we find the
linearized equation of motion

Nh Nd

[H,Bf]~HBf+ Jz_sp; h§=‘,l Join(Dbpp. (1)

After similar steps, the linearized equation of motion for the
other spin-flip operatob;,, is found to be
(Mool ~ = (B~ Ep)bnp= V252 35, i (1)B].
17)
Equationg16) and(17) allow us to “guess” the RPA part

pected for collective mode operators. Indeed, it is straightyf the Hamiltonian, for which Eqs(16) and (17) become

forward to verify that([bhp,bﬁ,p,D:5pp,5hh, A{[B; ,Bf])

= §j;, with all the other commutators identically zero. Here,
the notation(- - -) signifies an average over the HF ground

state(V| ...|¥).
The Hamiltonian can be rewritten in terms of thg,
operators agsee Eqs(1) and(2)]

_ t ot > &
H= 2 tnmaanaama_l—nzmi ‘]na,mﬁ(l)anaamﬁaaﬁ'si’

n,m,o B
(13
where

tnmg:iEJ_ i o (D) o)

and

1
Inamp)=3 24 3 () ¥mg))- (14

exact, to be given by

Ng

Np
HRPA=h§1 El (EhT—EF,l)k)Ept>hp+2i H;B/B;

p=
Ng  Np

+ Jz—sZ hzl p}‘,l (Jp,.ni(1)BibpptH.C).

(18

Thus the RPA Hamiltonian is quartic in electron operators
and quadratic in spin operators, showing that it is the next-
order term after the Hartree-Fock Hamiltoni@avhich is qua-
dratic in electron operators and linear in spin operators

H:HHF+HRPA+ cee

Higher-order approximation terms describe interactions be-
tween the collective modes, which are neglected at the RPA
level.

We want to diagonalize the RPA Hamiltonian to the ca-
nonical form

One can easily derive the equations of motion for the

spin-flip operators. For instance,

2

[H,B]1= N 2 Jng,mi(1)an am S

1 . _
T T = 2 Jna,ma(l)aaﬁaamosl . (15)

2S nmo

Since the RPA is an approximation, not an exact solution, w
again must linearize this commutator about the HF ground)
state, and keep only the meaningful terms. In other words"

we replace

ahamﬁz%ahamﬁsi” axlamT<S|Z>_>53ﬂ¢amT .

Hrpa= 2 7Q,Q1Q., (19

whereQZ is the creation operator for a spin wave with en-
ergy 1Q,, anda is an index(in homogeneous systems, it
would be a wave vector Since they create collective mode
excitations, these operators must have a bosonic nature:
[Q.,Qz]=0. However, since they do not describe exact, but
gnly approximate, solutions of the exact Hamiltonian, in fact
nly the weaker conditiod[ Q, ,Q}1)= 8,4 is obeyed. The

ost general form for these operatgsee Eq.(18)] is

Ng Np

Q£=h21 p; Xﬁ‘:ﬁme YIB! (20)

Here, the first transformation is the linearization about theUsing the equation of motioﬂjHRpA,QL]zﬁQaQZ and
HF ground statg¥). The second transformation results if computing the commutator using E¢&8) and(20), we find

one uses the HF expectation vall(éa%>=8,<aglam>=0.

the diagonalization conditions to be
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3 i eral form |®)=[1+3c,(Q!)"«]|¥). Within the RPA the
[ﬁQa*EhT_Eplpqmp):\/Z_SZ o (HYD, (21 dynamics of such states is dictated Bgp,, leading to a
time dependence

Nh  Ng
[ma—Hi]YF“E—Jz—s;l 2 (X (22 1D (1) =e Enrtt 143 ¢ e Malal(QF)Ma| W),

These are RPA equations, and they can be recast in thghere Eye=(W[H|¥) is the Hartree-Fock energy of the

customary standard eigenvalue RPA equation frm system. If any of the frequenciés,, has a nontrivial imagi-
nary part, it follows that the expectation value of any opera-

X E J\ (X tor (®(t)|- - -|®(t)) will move in time exponentially away
(29} —Y) =(J* H) (Y) (23)  from its mean-field ground-state expectation value
(W|...|¥), i.e., the mean field is unstable to small pertur-

where the vectorX andY contain all the unknownk,, and bations. _
Y;, and the matricesE, H, and J have the elements The advantage of the standard RPA approach is that by
Enpnp’ = = Ontv ppr (Eny —Ep ) Hi i =— 8/ Hi, andJpp; solving the eigenvalue probleffEq. (23)], one finds the
=\2S 3, (). ’ ’ ’ normal-mode spectrur() and the spatial distribution of the
The dimension of the RPA matripEg. (23)], and there- spin wavedrelated to theY; coefficient$ at once. The obvi-
fore the number of normal modes,Ng+ N, X Ny. Of these ~ OUS disadvantage is of a numerical nature: for a disordered
solutions,Ng are proper spin-wave collective modes, while SyStem the RPA matrix must be diagonalized numerically.
the rest ofN,x Ny are spin-flip processes associated with 1€ Size of the matrix is=(1+Np)Ng. The typical sizes
particle-hole excitations. If there were no interactios ( W€ consider are systems with arouhy=500 Mn spins,
—0), the eigenenergies of these spin-flip processes would &d Nn="50=10%Nj, holes (although concentrations up to
H; for the lowering of the Mn spiii, andEp,; — E,,; for a hole 30% mlght have to be qon3|dered3 depgndlng on the doping
spin-flip [see the left-hand side of Eq&21) and (22)], re- x), leading to RPA matrices of typical size>25000. As a
spectively. Interactions renormalize these valfjas de- esult, one has to either consider much smaller systéms
scribed by the right-hand sides of Eq&1) and (22)], but which case, finite-size effects may be overwhelmingly im-
one still expectsNy spin-wave collective solutions at low portany, or to try sparse matrix techniques to obtain the first
energies, coming from the Mn spin lowering, aNgx Ng few low-energy modes of the RPA matrialthough the off-

spin-flip particle-hole excitations at energies comparable téliagonall matrix is not necessarily spajse
or larger than the spin-flip gap=E;; —Ey, - There is, however, an alternative way of finding the col-
h

We now comment on the sign of the RPA spectrum fre_Iective mode spectrum and spatial distributions. We can di-
quenciesh (), . SinceH,>0 [see Eq.(10)] and Ey, — E,, rectly solve for theX,, coefficients from Eq(21), and re-

>0 (by definition of the HF ground statét is apparent from write Eq. (22) as

Egs. (21) and (22) that Ng spin-wave solutions will have

positive energie& (), , while theNyX Ny spin-flip particle- E Mij(0)Yj(w)=foY(v), (26)
hole excitations will have negative energies. THses not i’

imply that the system is unstable, but simply that we hav‘?/}/here

not chosen the proper spin-flip creation operators. Instead o

the choice of Eq(20), we can also denote Np Ny g% iJ :
M--(w)=5~H-—ZSE E pl,hT(') pi,hT(J)
Ng Np ! e p=1h-1ho+Ey—Ep +in’
P.=QL=2 2 Xitbn,+2 YBl. (29 27
h=1 p=1 i

The advantage of this formulation is that one has to deal with

In terms of these new operators, we have rGdgpa,P,] much smaller matrice¢the dimension of theVl matrix is
=nQ,P,, ie., Ny=500). Equation26) tells us that for frequencieQ be-
longing to the spin-wave spectrum, the matkiX()) has at
least one eigenvector corresponding to an eigenvalue
NQ,)=2Q, (if the mode is degenerate, there are several
such eigenvectoysThe corresponding eigenvectors give us
In other words, a negative solution fb€) simply means that the desired spatial mode distributidé”‘)=Yi(Qa). Thus the
we chose the corresponding annihilation operator instead giroblem is reduced to sweeping the range of frequencies of
the creation operator when we wrote Eg0). For spin-flip  interest(for low-energy collective excitations, this is usually
processes, it is obvious that this is the case from the depenrfairly small range of frequencies near=0), and monitor-
dence onZ onby,, instead ofoﬁ . ing the eigenvalues of thiél (w) matrix. The dependence on

An unstable mean-field ground state is signaleccosn-  « of the matrix elementd/;; (), and therefore of the ei-
plex values of the spectrum frequenci$),.>>?* Excited  genvalues\(w) is monotonic for smallb<A [see Eq(27)].
states about the mean-field ground-s{até are of the gen- As a result, each equation(w) =% has a single solution,

Hrpa= 2, (—1Q,)PLP,,. (25)

a
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and we expect to findll collective mode eigenenergies, one JoS

for each eigenvalue. The monotonic dependence(af) on Eko= ekt -0 (29)

w also simplifies the search for the collective spectrum, since

it is enough to evaluate the eigenvaluds) in the range of  Here EFEE;&otéeXp@'Z@ is the kinetic energy of the non-
if_ntgrest onla_grid Off s;eﬁw, and ;;e )”niiar irXerpoIatir?n 10 interacting electrons, wheré indexes all the neighboring
ind the solutions of the equationd w) =# w. As we show  _. L ; S B3 RS
in the following by comparison with the standard REAr sites andt,;.—tij for which |R_‘ RL|_|§|' AlSo, Jo= 2505,
small system sizéswe can very easily achieve relative er- Where againd;=J;; for which IRi—=Ry|=[d]. In the HF

rors less than 10P. ground state, the state,() given by the conditionN;

The RPA spectrum has a second type of solutions, the k<. 1 are occupied. Since tHe, electrons are equally
spin-flip particle-hole continuum. These solutions are at fredistributed among thé&ly Mn sites, and are fully polarized,
quencies of the order of the gap between the last occupieghe z-component of the total spin created by electrons at each
and first empty HF statebw~A, and one expectsl, X Ny site, within the HF approximation, isy(j)=—3(N;/N)
such solutions. In principle, one can use the same method te — p/2, and therefore we fin#l;=J,p/2 [see Eq(10)].
find these energies as well, although the fact that they extend Using the fact that the solutions of ER6) must also

over a larger range of frequencies and thataheéependence  haye plane-wave structudé~exp(Q-R), it follows that the

is very strong makes the search more difficult. Typically, one 2
: ) : o . index a— Q becomes a wave vector, as expected, and we
is only interested in the lower and upper limits of the spin-

flip continuum, which can be found easily with the method “2" reduce Eqs(26) and (27) to a self-consistent equation

just described. for each collective modéw(@):

Finally, we would like to mention that it is always pos- 2 )
sible to reformulate the standard RPA equati@3) in a ﬁw_p_Jo:_ S3(Q)| f(Ek))
“self-consistent” form of the type shown in E¢26), with a 2 2Ny T ho+eg—ei+doS
matrix M (w) of much smaller dimension than the RPA ma- (30

trix. For instance, for Hamiltonians describing interacting - . .
electron systems, the RPA matrix has a dimensidd,N,,  Here J(Q)=23exp(Q-9)J;. The occupation number
whereN, is the number of occupied, amd is the number of  f(Ek,|) obviously comes from the sum over occupied states
empty orbitals in the mean-field ground st&t&or a system We had in Eq.(27). For a finite-size ordered lattice, one
with a finite concentration of electromson a lattice of linear €XPects considerable degeneracy for each nfiqde due to
dimensionN in a D-dimensional space, we ha\N%fvaD invariance to various symmetry transformations ofkheec-

and Ng~(1—x)NP, and the RPA matrix scales ag1 tor. In most cases, the number of charge carriers is such that
—x)N?P. For such systems, one can always find an equivathe last orbital(of degeneracys) is only partially occupied

lent reformulation of the RPA equation in terms ofVH ) by g charge carriers. In this case, one must obviously choose
matrix of size~NP.2° This allows a numerical handling of f=9/G for all these orbitals, andi=1 for lower, fully oc-
considerably larger systems, without having to resort tgcupied orbitals, and =0 for higher, empty orbitals. Other-
sparse matrix techniques, which often have issues related wise, the translational invariance is broken and the collective
instability. spectrum is not indexed by a wave-vector.

The sum in Eq(30) can be performed if we assume that
the dispersion at the bottom of the band is of quadratic form
ex=h2k?/(2m) (this is a reasonable approximation since we

In this section we show, by direct comparison againstare interested in low filling fractiop). Then the sum over
known calculations, as well as by direct comparison againsbccupied states can be transformed to an integral which is
solving the RPA matrix equation, that the formulation of Egs.straightforward to evaluate, leading to the solution
(26) and (27) gives correct and numerically very accurate

IV. IMPLEMENTATION

results. In Sec. IV B we describe in more detail the numerical ho— PJo N |J(@)|23psif(w Q) 31)
implementation as well as the efficiency of our method. 2 4ve Q e
Here vp=#kg/m is the Fermi velocity, where the Fermi
A. Analytical solution vector is given by

We first apply our approach by solving E¢26) and(27)
analytically for a simplified case. We assume that the Mn
spins are arranged on an ordered superlattice, instead of hav-
ing random positions. Then, the charge-carrier part of thel'he functionf (w,Q) is given by

mean-field Hamiltonian is easily diagonalizedﬁ'rspace,

3
V 4k

Nh:de:W 3

hot+eg+deS 1 ho+eq+JoS|?
e ¢ foQ="—"o0 "2¥" |7 %a
Hee =2 EioCy,Cho (28) F -
ko % ﬁw+6Q+\]os_UFQ
where nﬁw+eQ+JOS+vFQ’
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FIG. 1. The largest eight eigenvalueéw) of the M (w) matrix
(circles, evaluated on a grid with a stefin=0.05 meV. The full
line is Aw. The spin-wave spectrum is given by the conditiog
=fho.

FIG. 2. AccuracyA w/ wgpa for all Ng=80 spin-wave frequen-
cies wgrpa, between the exact RPfstandargl values and values
obtained in our formulation using a grid wihw=0.05(see Fig. 1L

where eq=172Q>?/2m. we have found alNg4 spin-wave frequencies. If one or more

For comparison purposes, we will assume a local AEMeigenvalues do not intersect the line, this means that the
interaction J;; —cJyed; . leading toJ(@)zJochpd. in  mean-field grOL_md state is unstalflthere arecomplexspin- _
this case, the Hamiltonian becomes identical to the Hamilvave frequencies For all the cases and parameters we in-
tonian used by Konigt al. in Ref. 7, provided that the ef- Vvestigate, we found that the fully-polarized ground-state is
fective massnin the dispersion relation is assumed to be thestable for our model.
band effective mass. We can easily solve E2fl) in the To find the spectrum frequencié<) ,, we use linear in-
asymptotic limitQ—0, to find terpolation over the intervadw where each\(w) curve in-

tersects thé w curve. This method avoids the need of evalu-
. h*Q? 1 ating the eigenvalues at too manay points (the most time-
ha(Q)= 2m 2S/p—1 consuming part of the computation is the evaluation of the

L . . . i matrix elements oM). The high degree of accuracy ob-
This is indeed identical with the asymptotic long-wavelength;;ined with this method is demonstrated in Fig. 2, where we

spin—waye spectrum obtaineq in Ref. 7 and has.the typica&ompare the exact RPA spectrumyp» obtained through a
quadratic dependence of spin-waves in conventional ferrog;qc¢ diagonalization of the RPA matrfsee Eq(23)] with

magnetic systems. the valueswgp, Obtained through our formulation. In fact,

we plot the relative errodA w/ wgpa=(®rpa— ®rpa) ®rpa

for each spectrum frequen@gkp . AS one can see from Fig.
In this section we briefly illustrate the accuracy and spee@, the largest error is of the ordet<2.0~®, for the grid Sw

of our formulation of the RPA problerfEgs. (26) and(27)], =0.05.

in comparison with the standard RPA approdéy. (23)]. This suggests that one could use a much larger §ad

4t(p

2/3

B. Direct comparison between the two formulations

We use a rather small system, wity=80 Mn spins ran-
domly distributed on a fcc lattice with linear siZé¢=10,
corresponding to a Mn concentratisrs Ny/4N3=0.02. The
number of charge carriers i,=pNy=8, and the other pa-

and still have a good accuracy. Indeed, we have computed
the spectrum through both methods for five different realiza-
tions of disorder, using various grid valués in our formu-

lation, and selected the largest relative error for each case

rameters are as defined in Sec. Il. Thus the standard RP&om a total of 3Ny=400 valueg The results are shown in
involves the diagonalization of a non-Hermitian matrix of Fig. 3. The error is found to scale as the square of the grid
dimension 720. size. Even with a very large grido=1 meV [which im-

In Fig. 1 we show thev dependence of the largest eight plies the evaluation of the eigenvalue&w) in only very few
eigenvalues\ (w) of the M matrix (circles, evaluated on a points|, we still obtain a relative error smaller than 10
grid with a stepdw=0.05 meV.[For realw and =0, the  Thus one can use a grid stéjm to optimize and consider-
matrix M (w) is Hermitian and all eigenvalueq w) are real, ably speed up the computation. However, as the number of
see Eq.(27)]. The full line is#w, and the spin-wave spec- spins(and eigenvalug\, increases, one must take into con-
trum is given by the condition (w) =% w. One can see that sideration other complications, as discussed below.
the eigenvaluea (w) have a monotonically increasing de- In Fig. 4 we compare CPU times for finding the RPA
pendence ow for smallo<A~50 meV, and therefore the spin-wave spectrum using the standard formulation vs our
equation\ (w)=%w can have at most one solution for each RPA formulation. All simulations were done on the same
eigenvalue, for smalb. If each eigenvalue yields a solution, processor. We used a small gidd=0.05 meV for our ap-
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FIG. 3. Largest relative errak w/wgp, among Ny=400 spin- FIG. 5. Eigenvalues (w) for a system withNy=512 random

wave frequenciesrp,, between the exact RPstandaril values ~ SPINS, evaluated for a gridw=0.05 meV. Crossing and anticross-
and values obtained in our formulation using a grid wish ings of neighboring eigenvalues are apparent. The dotted lhe is

=0.05,0.1,0.2,0.3,0.4,0.5,0.75, and 1 meV. The line is drawn to>"C& We are interested in the solutions of the equal¢w)
guide the eye. Even for a very large grid, the relative error is still = #@. it is clear that too large a gridw may lead to considerable
reasonably small. errors.

proach, and verified that all relative errors were less tharappear. Some typical examples are shown in Fig. 5, for a
107°. We use systems withNg=64, 125, and 216 spins, disordered system witNy=512 spins. Tracking the crossing
randomly distributed on fcc lattices of linear sizhs=12,  of the eigenvalues is essential, since such events lead to a
15, and 18 x=0.0092 andb=10%). As expected, the com- change in the indexing of the eigenvalues from one grid
putational time depends in a power-law manner on the sizgoint to the next. We found that requiring continuity in first
Ng, with exponents 6.4 and 3.2, respectively, for the stanand second derivatives allows a unique identification of each
dard and current approaches. Clearly, our formulation can bggntinuous eigenvalue from one grid point to the nittee
successfully used for much larger sizes than those af“fordegkeps are shown for each eigenvalue in Fig.I6 fact, the

by the standard approach. Another advantage of our methqgly relevant crossings are the ones that take place within the
is that it can be easily implemented in a parallel code. Fogtepéw where the eigenvalues intersects the line (shown
instange, the diagonali;ation of the. mathik at various fre- as a dotted line in Fig.)5Such an example is shown in the
quenciesw can pe carried out on different processors, Iead1eft panel of Fig. 5. For the largest system size investigated,
ing to a further improvement in speed and efficiency. of Ny=512 randomly distributed spins, we find that only

One important aspect to keep in mind is that as the systerms% of the eigenvalues have such relevant crossings within

size Ny increases, neighboring eigenvalues become mor&#’ of A(w)=%w. The percentage decreases with decreasing
closely spaced, and accidental crossings and anticrossin 10 1.1% and 0.3% foNg—216 and 125, respectively.

This percentage also depends on the grid siep for in-
creasingdw the identification of crossings and anticrossings
becomes more difficult, leading to possibly large errors. One
can optimize the choice of the grid sté@ by starting with
a larger value. The well-separated eigenval(sexh as the
ones depicted in Fig.)1will provide unique identification
and very accurate values for their corresponding spin-wave
spectra values. However, where considerable mixing and
therefore a nonlinear variation of the eigenvalugsv) is
apparent, a finer mesh is necessary in order to correctly char-
acterize their variation ned@rw. In all our simulations, we
use the griddw=0.05 meV, which allows for a comfortable
tracking of each eigenvalue and is also sufficiently small to
- allow us to approximate the variation ®{w) as being linear
10 5 0100 00 within eachdw step.
N These comparisons clearly demonstrate the accuracy and

speed of our formulation of the RPA, as compared to the

FIG. 4. CPU time for the two RPA methods, for systems with Standard RPA. The biggest advantage, though, is that it can
Ny=64, 125, and 216 spins. The standard RfAl line) is signifi-  easily be applied to systems with large sizes, for which stan-
cantly more time consuming than our formulati@tashed ling dard RPA is numerically cumbersome.

104§ T
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FIG. 6. Spin-wave dispersioﬂ(ﬁ) for an ordered, simple cubic 2 Do i
superlattice arrangement of Mn spins inside the host semiconductor. & P
Lattices of linear sizedl=15, 18, 24 and 150, with a total of 125, ; :
216, 512, and 125 000 Mn spins, respectively, are considered. This L : §
corresponds tax=0.0092 ando=10%. Dispersion is plotted along | _e . ' .
three linear cuts in the Brillouin zone—(,0,0)— (,0,0),(— , () e Lol -l

—,0)— (7, 7,0), and & 7,— 7, — 7)— (7, 7,7). 10 10° E (ln(:e\/) 10 10

V. SPIN-WAVE SPECTRA OF DMS FIG. 7. Upper panel: average density of stgi¢lmg;;E) on a

In this section, we use the RPA method described above tlé)gamhm'c scaléor systems witiNy =125, 216, and 512 Mn spins

study the density of states, as well as nat(eetended or In moderately disordered configuratioffsill lines). Lower panel:

. . average density of states for systems with= 125, 216, and 512
locahzed of the spm-vyave SpeCtrl,Jm @fil,Mn)V DMS de- Mn spins in strongly disordered configuratioffisll lines). The dot-
scribed by the model introduced in Sec. Il.

ted line is the spin-wave density of states of a DMS with fully
ordered(superlatticg configuration of Mn spins. All samples corre-
A. Spin-wave density of states spond tox=0.00924 anc=10%.

We study the spin-wave density of states for three types of,ving the standard method of dividing the Brillouin zone

arrangements of the Mn spins inside the host semiconductol; terahedra and linearizing the dispersietef. 31. The
AIIhsampIes studied correspon_? *:;:.0'0092 andp=10%. DOS obtained for the lattice witN'=150 andN4=125 000
Other parameters are as specified in Sec. I. is shown as a dotted line in Fig. 7. We use a logarithmic scale

_F|rst we consider fully ord_ered syste_ms, in wh|c_h the Mn£or the energy, and normalize the density of states such that
spins are arranged on a simple cubic superlattice. ¥or

=0.0092, the superlattice constantag=3a. In this case, o
we can study the spin-wave dispersion and density of states J dxp(x)=1,
for very large sizes, since we can use directly E2{) to *°°

compute the spin-wave frequentw(q) for each wave vec-  where x=log;o(E). This convention will be maintained
tor ﬁ inside the Brillouin zone. Spin-wave dispersion ob- throughout the rest of the paper.
tained along three cuts in the Brillouin zone is shown in Fig. In the upper panel of Fig. 7 we also plot the densities of
6. The dispersion has a quadratic behavior near the center efates obtained for moderately disordered configurations with
the Brillouin zone, as expected from the discussion for arNg=125, 215, and 512 Mn spir(&ull lines). These are con-
ordered case provided above. The finite-size effects are reéigurations in which we place the Mn spins randomly on the
sonably small. For the small sizes we used both(Bfj).and fcc Ga sublattice of the host semiconductor, subject to the
our method to compute the dispersion. The results of the twoonstraint that the distance between any two spifarger
agree with a relative error of less than 0 than 2a. (In the ordered cubic superlattice, the nearest-

One important aspect to notice is the small range of theneighbor spin separation & =3a.) This moderate amount
spin-wave spectrum, as compared to the AFM exchahge of disorder breaks translational invariance, and the wave vec-
=15 meV. This is a consequence of the fact that the Mrtors are no longer good quantum numbers. Also, the large
spins do not interact directly with one another. Instead, theidegeneracies of the superlattice spectrum are lifted. We com-
interaction is mediated by the rather small concentration oputed the spin-wave spectrum for 200 realizations of the dis-
charge carriers present. order with Ng=125 spins, 100 realizations witN =216

We compute the density of statd30S) p(E) associated spins and 50 realizations witiy=512 spins. Thus we have
with the spin-wave dispersion for the superlattice case ema total of over 21 000 spin-wave energies for each size, and
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statistics can be comfortably carried out. In particular, from 107 107 102 107" 10° 10"
Fig. 7 we see that the DOS histograms corresponding to the 10° AL T A A I
three sizes are smooth functions, i.e., the average over disor- i 4aTe
der is well accounted for. Also, the curves are practically - Ag '
indistinguishable from one another, implying that finite-size | ¢ 2
effects are negligible.

In the lower panel of Fig. 7 we plot the DOS correspond- N =125 me
ing to fully disordered configurations withyg=125, 215, A1 e ae ®
and 512 Mn spindfull lines). These are configurations in 107F | w N;=216 ‘a0l E
which we place the Mn spins randomly on the fcc Ga sub- [ |a Ny=512 a "t

A °
[ |

IPR (E)

lattice of the host semiconductor, with no restrictigascept [ ALt

that each Mn occupies a different giteThe number of R R

samples analyzed is the same as in the previous case. Again, 10”_—-—;,11] T

the curves show smooth behavior and no finite-size effects. - ’] ° .

The origin of the peak appearing near-5 meV will be I "o ]

discussed later. - " "W
Before continuing the analysis, we must also point out 4 2 ]

that the Goldstone modes have been left out in the DOS me

shown in Fig. 7. The RPA systealwayshas one solution of

energyw=0 (numerically, we find its magnitude to be less g . e 2

than 10 %), corresponding tor; = 1/\/Ng4. This is the Gold- L as

stone mode, describing the same overall rotation of all the La

spins. These Goldstone modes would appear in the DOS as a 10 —domrnd—nuld il ol

8(w) function atw=0 (log,E=—). 10 10 10E (meVl)O 10 10
The effect of disorder in the positions of the Mn is re-

flected in the considerable widening of the D@ a loga- FIG. 8. Upper panel: average IFB for systems withNg

rithmic 5C3|9,_ and rounding of the van Hove 5in9U|f3{fitieS of =125, 216, and 512 Mn spins in moderately disordered configura-
the superlattice DOS, as the amount of disorder increasegons (circles, squares and triangles, respectivelyower panel:

More significantly, however, is theubstantialenhancement same for strongly disordered configurations. All samples correspond
of the DOS atlow energies This behavior is in agreement to x=0.00924 ang=10%. Error bars are shorter than the symbol
with the general expectation of the effects of disorder on arsizes.

energy-band dispersion.

A question of considerable interest concernsrihture of We compute the IPR of the spin waves in the following
the spin-wave excitations. We know that the ordered supemanner. As we sweep the frequenciesf interest and com-
lattice has extended, plane-wave-type spin waves. The gepute the eigenvalues(w) of the M(w) matrix on the grid
eral expectation is that disorder will lead to localization, andsw, we also compute the corresponding IPR of the eigenvec-
thus one expects the appearance of localized spin-waves &ss Y(w) (which are normalized to unily The IPR is a
the disorder increases. One way to characterize the nature géntinuous function ofo, and we use linear interpolation to
the spin-waves is to compute their inverse participation ratigind its value at the spin-wave frequenci®s, of interest.
(IPR), defined as Whenever eigenvalues(w) cross, the IPR’s are no longer

well defined: one can choose any linear combination of the

IPR (E)
-

A geo

Ng eigenvectors of the degenerate modes, which would lead to
> (Y4 different values for the corresponding IPR’s. We have
IPR — i=1 checked that these accidental crossings are rathethal@awv
E TN - (33 o .
d a few percentand equally distributed over the entire energy
24 (Y{®)2 scale. If we exclude all these degenerate cases, we obtain
|:

DOS which is virtually indistinguishable from the one ob-
tained when these modes are kept. More importantly, we find
For an extended mode (a plane wave, for instanewe  that modes which cross predominantly have the same nature
expect that allv{®) coefficients are roughly of equal magni- (either localized or extend@dAs a result, the ensemble-
tude, since all spins are expected to participate equally in thaveraged IPR is not sensitive to the precise treatment of these
spin-wave. Then, it follows that for aextended mode, an  cases.

IPR, at~1/Ny, i.e., itis inversely proportional to the size of  In Fig. 8 we plot the(geometri¢ average IPFE) for the

the system. On the other hand, in a localized mad@nly  moderate(upper panél and strong(lower panel disorder

the spins within the localization volume have non-vanishingconfigurations. Again, the Goldstone modes are not shown.
values forYi(") . Thus it follows that for docalized moder, = We use the geometric medie., arithmetic mean of the log
IPR, is independent oNy . Instead, its value is given by the valueg in order to insure proper weight for the extended
inverse number of Mn spins participating in the localizedmodes, with a low IPR. For moderate disorder configura-
mode. tions, we see that the spin-wave modes at high enekigies
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FIG. 9. Histogram of the IPR values for all spin wauspin- FIG. 10. Histogram of the IPR values for all spin wavepin-

flips) of energyE<5x 103, for Ny=125, 216, and 512. Results [liPs) of energyE> 1071, for Ny=125, 216, and 512. Results are
are shown only for strong disorder configurations. Except for theShown only for strong disorder configurations. The histograms are
low-lying Goldstone modes, the histograms are identical, sugges@'mOSt identical, suggesting only localized modes at these energies.
ing only localized modes at these energies.

just below an IPR of 1. The absence of a dependendd pon

>1 meV are localized: the values corresponding to the threeonfirms that all these modes are localiZzegcept the Gold-
different sizes collapse on top of one another. This is exstone modes, of course
pected, given the fact that the upper band edge of the super- The high-energy localized states are of very different na-
lattice spectra is just belowe=1 meV (see Fig. 7. Thus ture: their IPR is close to 0.5, suggesting that it has large
states of higher energy have been split off the band by diseontributions from only two sites. Analysis of thg values
order, and are expected to be localized. The low-energy pafbr such modes shows that most of them are associated with
of the band also appears to be localized: while the thre@mearest-neighbotn.n) Mn spins on the fcc Ga sublattice.
curves do not quite meet, the value of the IPR is just belowThe characteristic energy for the spin-waves centered on
unity, showing that these spin waves have considerablsuch n.n. sites is just below 5 meV, and this is the feature
weight on only one spifii.e., they correspond to a individual responsible for the peak appearing in the DOS at these ener-
spin-flip). However, for the central part of the spectrum, thegies(see Fig. 7, lower panglCareful inspection of the DOS
spin waves are extended, with the IPR’s for the three sizeseveals the appearance of smaller peaks at somewhat lower
clearly distinct and decreasing with increasiXg. energies(even the DOS for moderate disorder has a small

For strong disorder configurations, this tendency is evempeak at around 2 meV, and its IPR for these modes is close to
more apparent. The high and low-energy regiofs, 0.5. These peaks are associated with excitations of spin
>1 meV, E<5X10 2 meV, respectively, contain local- pairs (or larger clusterswith varying separations, but they
ized spin waves: in both limits, the IPR curves collapse orare not as well defined as the one corresponding to nearest-
top of one another. The low-energy localized modes are inneighbor spins.
dividual spin-flips. The associatéf] are vanishingly small at The small clusters of Mn spins giving rise to such modes
all sites except one, leading to an IPR approximately equal tare always found to be in regions densely populated with
1. These sites are always situated far apart from all other Meharge carriers. Due to their closeness in space, these spins
spins, and the probability to be visited by charge carriers isire much more strongly coupled to one another than they are
exponentially smalltailing from far occupied regionsAs a  to other spins with which they share charge carriers. This
result, the Mn spins at these sites are virtually isolated, anteads to the “resonancelike” character of these modes: either
their spin excitations are individual spin-flips. The energy forof the spins can be flipped with equal probability. As a result
such a spin-flip is equal tol;, if one neglects small correc- of the strong coupling, the cost of flipping either spin is high,
tions due to the extremely weak interactigsee Eq.(22) since it frustrates their ferromagnetic arrangement. Indeed,
and following discussioh the characteristic energy of roughly3 reflects much stron-

Histograms of the IPR of all the modes with energiesger coupling than the average one present in the superlattice
below E<5x 10 2 are shown in Fig. 9. Here, we also show case. The histogram of the IPR of all modes of enefgy
the Goldstone modes, which have zero energy, and an IPR 0f 10" ! shown in Fig. 10 confirms all these conclusions. We
1/N4. The histograms have been scaled by the total numbegaution that these energies may be substantially modified due
of modes for all disorder realizations considered for eacho direct antiferromagnetic Mn-Mn exchangeft out in our
particular size. Since the number of Goldstone modes exactignode) in real systems.
equals the number of different realizations of disorder con- Finally, spin waves at intermediate energies B) ><E
sidered, their peaks are in a ratio of roughly 200/100/50 with< 10" correspond to extended modes. It is rather difficult to
respect to one another. The main observation is that the higstablish exactly the “mobility edge” corresponding to the
tograms for the three sizes are very similar, with a huge peaktansitions from localized to extended modes at either end,
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2 107! 10° the positions of the Goldstone modes in Fig. 9, and are well
tooror T T below the cutoffs observed in Fig. 1T his means that in the
disordered system, the extended spinwaves are delocalized

only over a fraction of the total number of sites. As the
amount of disorder increases, this fraction decreases, since
IPR averages for the moderate disorder are smaller than IPR
averages for full disorder.

These results are consistent with the picture provided by
the temperature-dependent mean-field study of this model
(Ref. 13. There, we concluded that in a disordered system
the (small fractionp) of charge carriers are concentrated in a
small volume of the sample, where the local Mn concentra-
tion is larger than average. As a result, the concentration of
charge carriers is strongly enhanced in these regions, and the
exchange with the Mn spins inside these regiGnkich is
proportional to the probability of finding charge carriers
nearby is greatly increased, preserving magnetization of
these regions up to high temperatures. On the other hand, the
Mn spins in the regions devoid of charge carriers are very
weakly coupled, and behave as free spins down to very low
temperatures. Due to the very inhomogeneous assembly of
weakly and strongly interacting spins, the magnetization
107 107" 10° curves have very unusual, concave shapes.

IPR The present study of the spin waves corroborates the same
picture. We find very low-energy, spin-flip-like excitations,
which are obviously due to the weakly interacting spins, and
which are responsible for a very sharp decrease of the mag-
netization at exponentially small temperatute$® This is is
q be contrasted with the behavior of ordered conventional
erromagnets, where at low temperatures only low-energy
given the rather small system sizes considered here. Thugng-wavelength spin waves can be excited. Since their
we use the values quoted above only as plausible estimat@hase space is vanishing in the long-wavelength limit(in
of these boundaries. Clearly, for these energies the averagedimensiong the magnetization of conventional ferromag-
IPR decreases with increasihy, (see Fig. 8 In Fig. 11 we nets decreases very slowly from its saturation value with
plot the histograms of the IPR for all the modes with energyincreasing temperature, leading to convex upward magneti-
5.10 3<E<10"L. In this case, the size dependence iszation curves?
clearly visible, both in the position of the broad peak maxi- In our model, the extended spin waves are concentrated
mum as well as in the lower cut-off in IPR value. The posi-around the high-density Mn regions, where the charge carri-
tion of the maxima scale roughly like Nj. We have at- ers mediating the interactions are to be found. This is con-
tempted both Gaussian and Lorentzian fits, but neither seenséstent with the appearance of modes whose IPR, while scal-
to capture the low-IPR tail properly. In the smaller samplesjng with the system size, shows modes extended only over a
a second peak appears just below an IPR of 1. At first sighffaction of all system sites. As the amount of disorder de-
this might seem to indicate the existence of a finite density ofreases all the way to a fully ordered superlattice, the charge
localized states at these energies as well. However, we bearriers are more and more homogeneously spread through-
lieve that this peak is a finite-size effect. Clearly, its ampli-out the sample and the IPR of the extended modes has lower
tude decreases with increasihg and would vanish in the and lower values, as observed from Fig. 8. However, the
thermodynamic limit. This is very different from the behav- more homogeneous a sample is, the less the average AFM
ior observed in either of the two localized energy rangesgoupling between the Mn spins and the charge carriers, since
where the distributions for all sizes are virtually identical the charge carriers have now equal probability of being
(see Figs. 9 and 10The reason for the appearance of thisfound anywhere in the sample, instead of being concentrated
second peak is simply the restriction where the IPR is les# a small fraction of the space. This leads to a decrease of
than or equal to 1. As the broad peak moves toward highethe critical temperatur&c, as observed in both mean-fittd
values with decreasinly, all the values in the upper tail and Monte Carl& analyses. The enhancement of the mean
“bunch” at an IPR of 1. field T¢ with increasing disorder is also suggested by the

One final important observation relates to the absolutexistence of the high-energy localized modes, which show
values of the IPR’s in the extended spin-wave regime. Al-that ferromagnetic alignment will persist in high-density
though scaling with system size is present, the correspondingusters up to very high temperatures. It also suggests that
IPR values are much higher than the ones expected fdocal ferromagnetic fluctuations might be observed well
modes extended ovell Mn sites(these values are shown by aboveTc.

histogram (arb. units)

FIG. 11. Histogram of the IPR values for all spin wavepin-
flips) of energy 510 3<E<10"%, for Ny=125 (uppe), 216
(middle), and 512(lower pane). Results are shown only for strong
disorder configurations. With increasimy the histograms shift to
lower values, suggesting that these spin-wave modes are extend
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VI. FINAL REMARKS this may have significant consequences for transport proper-

The aim of this paper is twofold. Eirst. we demonstrateties as well. For instance, charge carrier spin scattering is
the accuracy and 2 ged of a schéme f,or computin RI:,I'kely to be very different in various regions of the sample.
spectra Whi)(/:h a||0V\5)S tackling of systems of mEch %r er219¢ anomalous Hall effect has been observed in
P ’ g y . 9T Ga,MnAs 2 but the theory used to interpret it is borrowed
sizes than the ones that can be analyzed with the standa
) o : om phenomenology relevant to homogeneous ferromag-
RPA formulation. Investigation of large system sizes and av-

. . o . netic metals. In an inhomogeneous system, some of the ac-
erages over many disorder realizations facilitate a clear pic-

. . cepted ideas might have to be modified or at least verified to
ture for the problem we are interested in, namely, the spec:-.

X ) still hold true.
trum and nature of spin waves of a disordered DMS.

We then demonstrate that disorder can significantly

change the spectrum and the nature of the spin waves. This is
likely to lead to important consequences not only as far as This research was supported by NSF Grant No. DMR-
magnetic properties are concerngge have already com- 9809483. M.B. was supported in part by a Postdoctoral Fel-
mented on the fast demagnetization with increasing temperdewship from the Natural Sciences and Engineering Research
ture, due to low-energy spin-flip mode#ore importantly, = Council of Canada.
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