PHYS 525

Solutions to HW 5

(Dated: March 21, 2019)

PROBLEM 1

a) We first consider the eigenstates of the Hamiltonian

$$
\begin{align*}
\mathcal{H}(\vec{k}) & =\lambda \sigma_{z}\left(s_{x} \sin k_{y}-s_{y} \sin k_{x}\right)+\lambda_{z} \sigma_{y} \sin k_{z}+\sigma_{x} M_{\vec{k}} \tag{1}\\
M_{\vec{k}} & =\epsilon-2 t\left(\cos k_{x}+\cos k_{y}\right)-2 t_{z} \cos k_{z} \tag{2}
\end{align*}
$$

We have

$$
\begin{equation*}
\mathcal{H}^{2}(\vec{k})=\left(\lambda^{2}\left(\sin ^{2} k_{y}+\sin ^{2} k_{y}\right)+M_{\vec{k}}^{2}\right) \mathbf{1}_{4 \times 4} \tag{3}
\end{equation*}
$$

For $\lambda=1$, the eigenstates are

$$
\begin{equation*}
\varepsilon(\vec{k})= \pm \sqrt{\sin ^{2} k_{x}+\sin ^{2} k_{y}+\lambda_{z}^{2} \sin ^{2} k_{z}+M_{\vec{k}}^{2}} \tag{4}
\end{equation*}
$$

Note that each band is doubly-degenerate.
Under the inversion \mathcal{P} and time-reversal \mathcal{T} operations, the Hamiltonian transforms as

$$
\begin{align*}
\mathcal{P}: \quad \sigma_{x} \mathcal{H}(\vec{k}) \sigma_{x} & =-\sigma_{z}\left(s_{x} \sin k_{y}-s_{y} \sin k_{x}\right)-\lambda_{z} \sigma_{y} \sin k_{z}+\sigma_{x} M_{\vec{k}} \tag{5}\\
& =\mathcal{H}(\overrightarrow{-k}) \tag{6}\\
\mathcal{T}: \quad s_{y} \mathcal{H}^{*}(\vec{k}) s_{y} & =\sigma_{z}\left(-s_{x} \sin k_{y}+s_{y} \sin k_{x}\right)-\lambda_{z} \sigma_{y} \sin k_{z}+\sigma_{x} M_{\vec{k}} \tag{7}\\
& =\mathcal{H}(-\overrightarrow{-k}) \tag{8}
\end{align*}
$$

b) The occupied bands satisfy

$$
\begin{equation*}
\mathcal{H}(\vec{k}) \Psi_{\alpha}^{(-)}(\vec{k})=-|\varepsilon(\vec{k})| \Psi_{\alpha}^{(-)} \tag{9}
\end{equation*}
$$

where $\alpha \in 1,2$ is an effective angular momentum index. The 8 TRIM $\vec{\Gamma}_{i=1 \ldots 8}$ occur at $k_{x, y, z}=0, \pi$. At these TRIM, $\left|\varepsilon\left(\vec{\Gamma}_{i}\right)\right|=\left|M_{\vec{\Gamma}_{i}}\right|$. Moreover, $\mathcal{H}\left(\vec{\Gamma}_{i}\right)=\sigma_{x} M_{\vec{\Gamma}_{i}}$. Therefore, we can write

$$
\begin{align*}
\mathcal{H}\left(\vec{\Gamma}_{i}\right) \Psi_{\alpha}^{(-)}\left(\vec{\Gamma}_{i}\right) & =\sigma_{x} M_{\vec{\Gamma}_{i}} \Psi_{\alpha}^{(-)} \tag{10}\\
& =-\left|M_{\vec{\Gamma}_{i}}\right| \Psi_{\alpha}^{(-)} \tag{11}
\end{align*}
$$

The eigenvalues under inversion are then

$$
\begin{equation*}
\sigma_{x} \Psi_{\alpha}^{(-)}=-\operatorname{sgn}\left(M_{\vec{\Gamma}_{i}}\right) \Psi_{\alpha}^{(-)} \tag{12}
\end{equation*}
$$

We impose $t=t_{z}>0$ and $\lambda_{z}=\lambda$. Refer to Fig. 1.
The $\nu_{0} \mathbb{Z}_{2}$ index is determined from

$$
\begin{align*}
(-1)^{\nu_{0}} & =\prod_{i=1}^{8}-\operatorname{sgn}\left(M_{\vec{\Gamma}_{i}}\right) \tag{13}\\
& =\operatorname{sgn}\left[(-1)^{8}(\epsilon-6 t)(\epsilon+6 t)[(\epsilon-2 t)(\epsilon+2 t)]^{3}\right] \tag{14}\\
& =\operatorname{sgn}[(|\epsilon|-6 t)(|\epsilon|-2 t)] \tag{15}
\end{align*}
$$

FIG. 1. $M_{\vec{\Gamma}_{i}}$ at TRIM for a).

FIG. 2. Phase diagram for b).

$$
\nu_{0}= \begin{cases}0, & |\epsilon|<2 t \text { or }|\epsilon|>6 t \tag{16}\\ 1, & \text { otherwise }\end{cases}
$$

For all other three indices $\nu_{i=1,2,3}$, we have the unique expression

$$
\begin{align*}
(-1)^{\nu_{i}} & =\prod_{i=j}^{4}-\operatorname{sgn}\left(M_{\vec{\Gamma}_{j}}\right) \tag{17}\\
& =\operatorname{sgn}(-1)^{4}\left[(\epsilon+2 t)^{2}(\epsilon-2 t)(\epsilon+6 t)\right] \tag{18}\\
& =\operatorname{sgn}[(\epsilon+6 t)(\epsilon-2 t)] \tag{19}
\end{align*}
$$

Note that the products above correspond to the eigenvalues of the inversion at TRIM $\Gamma_{j, x}$ with x, y, z components set to π respectively.

$$
\nu_{i=1,2,3} \begin{cases}0, & \epsilon<-6 t \text { or } \epsilon>2 t \tag{20}\\ 1, & \text { otherwise }\end{cases}
$$

c)

FIG. 3. Fermi surfaces for the $z=0$ boundary.

FIG. 4. $M_{\vec{\Gamma}_{i}}$ at TRIM for d).
d) Consider $t \neq t_{z}$ and refer to Fig. 4

$$
\begin{align*}
(-1)^{\nu_{1}}=(-1)^{\nu_{2}} & =(-1)^{4} \operatorname{sgn}\left[\left(\epsilon+2 t_{z}\right)\left(\epsilon-2 t_{z}\right)\left(\epsilon+4 t-2 t_{z}\right)\left(\epsilon+4 t+2 t_{z}\right)\right] \tag{21}\\
& =\operatorname{sgn}\left[\left(|\epsilon|-2 t_{z}\right)\left(|\epsilon+4 t|-2 t_{z}\right)\right] \tag{22}\\
(-1)^{\nu_{3}} & =(-1)^{4} \operatorname{sgn}\left[\left(\epsilon+2 t_{z}\right)^{2}\left(\epsilon+4 t+2 t_{z}\right)\left(\epsilon-4 t+2 t_{z}\right)\right] \tag{23}\\
& =\operatorname{sgn}\left[\left|\epsilon+2 t_{z}\right|-4 t\right] \tag{24}\\
(-1)^{\nu_{0}} & =(-1)^{8} \operatorname{sgn}\left[\left(\epsilon+2 t_{z}\right)^{2}\left(\epsilon-2 t_{z}\right)^{2}\left(\epsilon+4 t+2 t_{z}\right)\left(\epsilon+4 t-2 t_{z}\right)\left(\epsilon-4 t+2 t_{z}\right)\left(\epsilon-4 t-2 t_{z}\right)\right] \tag{25}\\
& =\operatorname{sgn}\left[\left(|\epsilon-4 t|-2 t_{z}\right)\left(|\epsilon+4 t|-2 t_{z}\right)\right] \tag{26}
\end{align*}
$$

The $(1 ; 110)$ phase occurs for a range of parameters indicated in Fig. 5 which also shows all other phases that are possible in the system when the condition $t_{z}=t$ is relaxed.

FIG. 5. Phase diagram for $t_{z} \neq t$. (Figure courtesy of Rafael Haenel).

PROBLEM 2

a) We know from the dispersion found in the previous problem $\left(\lambda=\lambda_{z}\right)$ that for when $\epsilon=6 t$ the bulk gap can close when $k_{x, y, z}=0$. Allowing $\epsilon(x, y, z)=6 t-\Delta(x, y, z)$, we can expand the Hamiltonian to linear order about this point:

$$
\begin{equation*}
\mathcal{H}_{e f f}(\vec{q})=\sigma_{z}\left(s_{x} q_{y}-s_{y} q_{x}\right)+\sigma_{y} q_{z}-\Delta(x, y, z) \sigma_{x} \tag{27}
\end{equation*}
$$

b) $x=0$ surface:

Let $\Delta(x, y, z)=\Delta(x)$, with opposite signs on either side of the surface. Ignoring the dispersion along the surface $\left(q_{y}=\right.$ $q_{z}=0$), we can solve the following Hamiltonian:

$$
\begin{equation*}
\mathcal{H}_{e f f}=i \sigma_{z} s_{y} \partial_{x}-\Delta(x) \sigma_{x} \tag{28}
\end{equation*}
$$

This can be brought into an effective 1D form if we rotate $s_{y} \rightarrow s_{z}$. We look for zero-modes with the ansatz

$$
\Psi_{x}=\left(\begin{array}{l}
u_{a} \tag{29}\\
u_{b} \\
v_{a} \\
v_{b}
\end{array}\right) \phi(x)
$$

The equations are

$$
\begin{align*}
\left(i u_{a} \partial_{x}-v_{a} \Delta(x)\right) \phi(x) & =0 \tag{30}\\
\left(i u_{b} \partial_{x}+v_{b} \Delta(x)\right) \phi(x) & =0 \tag{31}\\
\left(i v_{a} \partial_{x}+u_{a} \Delta(x)\right) \phi(x) & =0 \tag{32}\\
\left(i v_{b} \partial_{x}-u_{b} \Delta(x)\right) \phi(x) & =0 \tag{33}
\end{align*}
$$

We can find two solutions when either (i) $u_{b}=v_{b}=0, u_{a}=i v_{a} \neq 0$ or (ii) $u_{b}=i v_{b} \neq 0, u_{a}=v_{a}=0$. In either case, $\phi(x)=C e^{-\int_{0}^{x} d x^{\prime} \Delta\left(x^{\prime}\right)}$.
$z=0$ surface
Now we have $\Delta(x, y, z)=\Delta(z)$ with similar sign change about the surface and set $q_{x}=q_{y}=0$:

$$
z=0 \quad x=0
$$

FIG. 6. Surface spectrum and spin orientation for one surface. The orientation is reversed for the other surface. In the $x=0$ plane, the spin is oriented along \hat{x}.

$$
\begin{equation*}
\mathcal{H}_{e f f}=-i \sigma_{y} \partial_{z}-\Delta(z) \sigma_{x} \tag{34}
\end{equation*}
$$

This reduces to

$$
\begin{align*}
u_{a}\left(-\partial_{z}-\Delta(z)\right) \phi(z) & =0 \tag{35}\\
u_{b}\left(-\partial_{z}-\Delta(z)\right) \phi(z) & =0 \tag{36}\\
v_{a}\left(\partial_{z}-\Delta(z)\right) \phi(z) & =0 \tag{37}\\
v_{b}\left(\partial_{z}-\Delta(z)\right) \phi(z) & =0 . \tag{38}
\end{align*}
$$

We can find solutions when either (i) $u_{a}=1, u_{b}=v_{a}=v_{b}=0$ or (ii) $u_{b}=1, u_{b}=v_{a}=v_{b}=0$.
Note that for the $x=0$ case, we can find a vector in a mixed orbital-spin space which rotates like \vec{s} as in the $z=0$ case. c)

PROBLEM 3

Consider the low-energy effective Hamiltonian of the previous problem:

$$
\begin{equation*}
\mathcal{H}_{e f f}(\vec{q})=\sigma_{z}\left(s_{x} q_{y}-s_{y} q_{x}\right)+\sigma_{y} q_{z}-\Delta(x, y, z) \sigma_{x} \tag{39}
\end{equation*}
$$

We can add a term $m \sigma_{z} s_{z}$ that breaks time-reversal and that anti-commutes with $\mathcal{H}_{e f f}(\vec{q})$. The resulting spectrum is

$$
\begin{equation*}
\varepsilon(\vec{q})= \pm \sqrt{|\vec{q}|^{2}+\Delta^{2}(\vec{r})+m^{2}} \tag{40}
\end{equation*}
$$

Thus, it is possible to pass from regions with $\Delta>0$ to those with $\Delta<0$ without closing the gap. In this case, there are no gapless surface states.

