
PHYS 525
Solutions to HW 5
(Dated: March 21, 2019)

PROBLEM 1

a) We first consider the eigenstates of the Hamiltonian

H(~k) =λσz (sx sin ky − sy sin kx) + λzσy sin kz + σxM~k (1)
M~k =ε− 2t (cos kx + cos ky)− 2tz cos kz. (2)

We have

H2(~k) =
(
λ2(sin2 ky + sin2 ky) +M2

~k

)
1114×4. (3)

For λ = 1, the eigenstates are

ε(~k) = ±
√

sin2 kx + sin2 ky + λ2
z sin2 kz +M2

~k
. (4)

Note that each band is doubly-degenerate.
Under the inversion P and time-reversal T operations, the Hamiltonian transforms as

P : σxH(~k)σx =− σz (sx sin ky − sy sin kx)− λzσy sin kz + σxM~k

=H( ~−k)

T : syH
∗(~k)sy =σz (−sx sin ky + sy sin kx)− λzσy sin kz + σxM~k

=H( ~−k)

(5)

(6)

(7)

(8)

b) The occupied bands satisfy

H(~k)Ψ(−)
α (~k) = −|ε(~k)|Ψ(−)

α , (9)

where α ∈ 1, 2 is an effective angular momentum index. The 8 TRIM ~Γi=1...8 occur at kx,y,z = 0, π. At these TRIM,
|ε(~Γi)| = |M~Γi

|. Moreover, H(~Γi) = σxM~Γi
. Therefore, we can write

H(~Γi)Ψ
(−)
α (~Γi) =σxM~Γi

Ψ(−)
α (10)

=− |M~Γi
|Ψ(−)
α . (11)

The eigenvalues under inversion are then

σxΨ(−)
α = −sgn(M~Γi

)Ψ(−)
α . (12)

We impose t = tz > 0 and λz = λ. Refer to Fig. 1.

The ν0 Z2 index is determined from

(−1)ν0 =

8∏
i=1

−sgn(M~Γi
) (13)

=sgn
[
(−1)8(ε− 6t)(ε+ 6t) [(ε− 2t)(ε+ 2t)]

3
]

(14)

=sgn [(|ε| − 6t)(|ε| − 2t)] . (15)
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FIG. 1. M~Γi
at TRIM for a).
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FIG. 2. Phase diagram for b).

ν0 =

{
0, |ε| < 2t or |ε| > 6t

1, otherwise
(16)

For all other three indices νi=1,2,3, we have the unique expression

(−1)νi =

4∏
i=j

−sgn(M~Γj
) (17)

=sgn(−1)4
[
(ε+ 2t)2(ε− 2t)(ε+ 6t)

]
(18)

=sgn [(ε+ 6t)(ε− 2t)] . (19)

Note that the products above correspond to the eigenvalues of the inversion at TRIM Γj,x with x, y, z components set to π
respectively.

νi=1,2,3

{
0, ε < −6t or ε > 2t

1, otherwise.
(20)

c)
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FIG. 3. Fermi surfaces for the z = 0 boundary.
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FIG. 4. M~Γi
at TRIM for d).

d) Consider t 6= tz and refer to Fig. 4

(−1)ν1 = (−1)ν2 =(−1)4sgn [(ε+ 2tz)(ε− 2tz)(ε+ 4t− 2tz)(ε+ 4t+ 2tz)] (21)
=sgn [(|ε| − 2tz)(|ε+ 4t| − 2tz)] (22)

(−1)ν3 =(−1)4sgn
[
(ε+ 2tz)

2(ε+ 4t+ 2tz)(ε− 4t+ 2tz)
]

(23)
=sgn [|ε+ 2tz| − 4t] (24)

(−1)ν0 =(−1)8sgn
[
(ε+ 2tz)

2(ε− 2tz)
2(ε+ 4t+ 2tz)(ε+ 4t− 2tz)(ε− 4t+ 2tz)(ε− 4t− 2tz)

]
(25)

=sgn [(|ε− 4t| − 2tz)(|ε+ 4t| − 2tz)] (26)

The (1;110) phase occurs for a range of parameters indicated in Fig. 5 which also shows all other phases that are possible in
the system when the condition tz = t is relaxed.



4

FIG. 5. Phase diagram for tz 6= t. (Figure courtesy of Rafael Haenel).

PROBLEM 2

a) We know from the dispersion found in the previous problem (λ = λz) that for when ε = 6t the bulk gap can close when
kx,y,z = 0. Allowing ε(x, y, z) = 6t−∆(x, y, z), we can expand the Hamiltonian to linear order about this point:

Heff (~q) = σz(sxqy − syqx) + σyqz −∆(x, y, z)σx . (27)

b) x = 0 surface:
Let ∆(x, y, z) = ∆(x), with opposite signs on either side of the surface. Ignoring the dispersion along the surface (qy =

qz = 0), we can solve the following Hamiltonian:

Heff = iσzsy∂x −∆(x)σx. (28)

This can be brought into an effective 1D form if we rotate sy → sz . We look for zero-modes with the ansatz

Ψx =


ua
ub
va
vb

φ(x). (29)

The equations are

(iua∂x − va∆(x))φ(x) = 0 (30)
(iub∂x + vb∆(x))φ(x) = 0 (31)
(iva∂x + ua∆(x))φ(x) = 0 (32)
(ivb∂x − ub∆(x))φ(x) = 0 (33)

We can find two solutions when either (i) ub = vb = 0, ua = iva 6= 0 or (ii) ub = ivb 6= 0, ua = va = 0. In either case,
φ(x) = Ce−

∫ x
0
dx′∆(x′).

z = 0 surface
Now we have ∆(x, y, z) = ∆(z) with similar sign change about the surface and set qx = qy = 0:
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FIG. 6. Surface spectrum and spin orientation for one surface. The orientation is reversed for the other surface. In the x = 0 plane, the spin is
oriented along x̂.

Heff = −iσy∂z −∆(z)σx. (34)

This reduces to

ua(−∂z −∆(z))φ(z) = 0 (35)
ub(−∂z −∆(z))φ(z) = 0 (36)
va(∂z −∆(z))φ(z) = 0 (37)
vb(∂z −∆(z))φ(z) = 0. (38)

We can find solutions when either (i) ua = 1, ub = va = vb = 0 or (ii) ub = 1, ub = va = vb = 0.
Note that for the x = 0 case, we can find a vector in a mixed orbital-spin space which rotates like ~s as in the z = 0 case.
c)

PROBLEM 3

Consider the low-energy effective Hamiltonian of the previous problem:

Heff (~q) = σz(sxqy − syqx) + σyqz −∆(x, y, z)σx. (39)

We can add a term mσzsz that breaks time-reversal and that anti-commutes with Heff (~q). The resulting spectrum is

ε(~q) = ±
√
|~q|2 + ∆2(~r) +m2. (40)

Thus, it is possible to pass from regions with ∆ > 0 to those with ∆ < 0 without closing the gap. In this case, there are no
gapless surface states.


