
PHYS 525
Solutions to HW 5
(Dated: March 1, 2019)

PROBLEM 1

a) The Hamiltonian is

H(~q) = ~d · ~σ, with ~d = (q2
x − q2

y, 2qxqy,m), (1)

with an energy spectrum

E(~q) = ±
∣∣∣~d∣∣∣ = ±

√
q4 +m2. (2)

At the critical point (m = 0) we have

E(~q,m = 0) = ±q2, (3)

i.e. quadratic band crossing.
b) Calculate the change in Chern number of the occupied band (negative energy)

∆n =n(m < 0)− n(m > 0) (4)

=
1

4π

∫
d2q

1

d3
~d ·
(
∂x~d× ∂y ~d

) ∣∣∣∣m<0

m>0

(5)

=
1

4π

∫
d2q

4q2m

(q4 +m2)
3/2

∣∣∣∣m<0

m>0

(6)

=
1

2

∫ Λ

0

qdq
4q2m

(q4 +m2)
3/2

∣∣∣∣m<0

m>0

(7)

=

[
sgn(m)− m√

Λ4 +m2

]m<0

m>0

Λ�|m|−−−−→ −2 (8)

Thus the Chern number of the occupied band is -2 while that of the empty band is +2.

PROBLEM 2

a) The spectrum is

H2(~k) = sin2 kx + sin2 ky +M2
k (9)

E(~k) = ±
√

sin2 kx + sin2 ky +M2
k (10)

Time reversal:

syH
∗(~k)sy =− σz (sx sin ky − sy sin kx) + σxMk (11)

=H(−~k). (12)

Inversion:

σxH(~k)σx =− σz (sx sin ky − sy sin kx) + σxMk (13)

=H(−~k). (14)
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FIG. 1. Phase diagram for (b).

Therefore, H(~k) respects both T and P.
b) At the time-reversal invariant momenta (TRIM) ~Γ = (0, 0), (0, π), (π, 0), (π, π) the Hamiltonian is

H(Γ) = σxMk. (15)

The eigenstates of the filled bands are eigenstates of σx with eigenvalue −sgn (MΓ). Since the inversion symmetry is imple-
mented by σx as well, we have

ξ(Γ) = −sgn (HΓ) . (16)

According to the Fu-Kane parity criteria we have

(−1)ν =
∏
j

[
−sgn

(
MΓj

)]
= sgn

[
M(0,0)M(0,π)M(π,0)M(π,π)

]
. (17)

Thus,

(−1)ν = sgn
[
(ε− 4t)ε2(ε+ 4t)

]
= sgn (|ε| − 4t) . (18)

For t > 0 we thus have

ν = 1 when |ε| < 4t (19)
ν = 0 when |ε| > 4t. (20)

In addition, ν is not defined at ε = 0 because the system is gapless at that point. The phase diagram is given in Fig. ??.

c) The spectrum for H(~k) + δH is

E(~k) = ±

√(√
sin2 kx + sin2 kx ± |m|

)2

+M2
k (21)

For small |m|, the phase diagram will be modified only close to the critical points ε = −4t, 0, 4t. Also, the nature of the phase
(i.e. its topological class) will be unchanged far away from the points of adiabatic continuity.

Let us analyze the spectrum near the critical points by expanding E(~k) close to the relevant gapless points.

(i) ε ≈ 4t
The gap closes at ~k = (0, 0) so expand

E(~k) ≈ ±
√(
|~k| ± |m|

)2

+ (ε− 4t+ tk2)
2
. (22)

The energy vanishes when k2 = m2 and ε− 4t+ tk2 = 0. This happens only when

ε = t(4−m2), (23)
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FIG. 2. Phase diagram for (c). Not drawn to scale.

which defines a new (shifted) critical point.

(ii) ε ≈ 0
The gap closes at ~k = (0, π) and (π, 0).

E(~k) ≈ ±
√(
|~k| ± |m|

)2

+
[
ε+ t(k2

x − k2
y)
]2
. (24)

The energy vanishes when k2
x + k2

y = m2 and ε+ t(k2
x − k2

y) = 0.
These two equations have a solution for (kx, ky) if and only if |ε| < m2t. Thus, in the range −m2t < ε < m2t the spectrum

is gapless.

(iii) ε ≈ −4t
This case is analyzed as in (i) and one finds a shifted critical point ε = −t(4−m2).
The resulting phase diagram is sketched in Fig. 2.


