PHYS 525

Solution to HW 3

Emilian M. Nica
(Dated: February 11, 2019)

PROBLEM 1

a) After the transformation

$$
\begin{equation*}
H=\sum_{\boldsymbol{k}} \sum_{\mu \nu} U_{\mu \alpha}^{*}(\boldsymbol{k}) \mathcal{H}_{\alpha \beta}(\boldsymbol{k}) U_{\beta \nu}(\boldsymbol{k}) d_{-\boldsymbol{k} \mu} d_{-\boldsymbol{k}, \nu}^{\dagger} \tag{1}
\end{equation*}
$$

$\operatorname{Using}\left\{d_{\boldsymbol{k} \mu}, d_{\boldsymbol{k} \nu}^{\dagger}\right\}=\delta_{\mu \nu}$ we obtain

$$
\begin{equation*}
H=\sum_{\boldsymbol{k}} \sum_{\mu \nu}\left[U^{\dagger}(-\boldsymbol{k}) \mathcal{H}(-\boldsymbol{k}) U(-\boldsymbol{k})\right]_{\nu \mu} d_{\boldsymbol{k}, \mu}^{\dagger} d_{\boldsymbol{k}, \nu}+\left[U^{*}(-\boldsymbol{k}) \mathcal{H}(-\boldsymbol{k}) U(-\boldsymbol{k})\right]_{\mu \mu} \tag{2}
\end{equation*}
$$

The last term reduces to $\operatorname{Tr}(\mathcal{H}(-\boldsymbol{k}))$. For H to be the same as the original we thus require

> 1) $U^{\dagger}(\boldsymbol{k}) \mathcal{H}(\boldsymbol{k}) U(\boldsymbol{k})=-H^{T}(-\boldsymbol{k})=-H^{*}(-\boldsymbol{k})$
> 2) $\operatorname{Tr}(\mathcal{H}(-\boldsymbol{k}))=0$.

For condition (1) we used the fact that H is Hermitian.
b) Consider additional time-reversal symmetry:

$$
\begin{equation*}
\mathcal{T}: \quad \mathcal{H}^{*}(\boldsymbol{k})=\mathcal{H}(-\boldsymbol{k}) \tag{5}
\end{equation*}
$$

The eigenstates are defined by

$$
\begin{equation*}
\mathcal{H} \Psi(\boldsymbol{k})=E_{\boldsymbol{k}} \Psi(\boldsymbol{k}) \tag{6}
\end{equation*}
$$

Inserting identity $U U^{\dagger}=1$, we get

$$
\begin{equation*}
\left[U(\boldsymbol{k}) \mathcal{H}(\boldsymbol{k}) U^{\dagger}(\boldsymbol{k})\right][U(\boldsymbol{k}) \Psi(\boldsymbol{k})]=E_{\boldsymbol{k}} \Psi(\boldsymbol{k}) \tag{7}
\end{equation*}
$$

Using p-h symmetry condition 1) (Eq. 3) and TR (Eq. 5), we get

$$
\begin{gather*}
\mathcal{H}^{*}(-\boldsymbol{k}) \tilde{\Psi}(\boldsymbol{k})=-E_{\boldsymbol{k}} \tilde{\Psi}(\boldsymbol{k}) \tag{8}\\
\mathcal{H}(\boldsymbol{k}) \tilde{\Psi}(\boldsymbol{k})=-E_{\boldsymbol{k}} \tilde{\Psi}(\boldsymbol{k}) . \tag{9}
\end{gather*}
$$

For each eigenstate $\Psi(\boldsymbol{k})$ with energy $E_{\boldsymbol{k}}$ there exists an eigenstate $\tilde{\Psi}(\boldsymbol{k})=U(\boldsymbol{k}) \Psi(\boldsymbol{k})$ with energy $-E_{\boldsymbol{k}}$.
c) For spinless graphene we have $\mathcal{H}(\boldsymbol{k})=\boldsymbol{\sigma} \cdot \boldsymbol{d}(\boldsymbol{k})$, where

$$
\begin{equation*}
d_{x}(\boldsymbol{k})=+d_{x}(-\boldsymbol{k}), \quad d_{y}(\boldsymbol{k})=-d_{y}(-\boldsymbol{k}), \text { and } \quad d_{z}(\boldsymbol{k})=0 \tag{10}
\end{equation*}
$$

Clearly, $\operatorname{Tr}(\mathcal{H}(\boldsymbol{k}))=0$, so condition (2) is satisfied. It is easy to check that

$$
\begin{equation*}
U(\boldsymbol{k})=e^{i \phi_{\boldsymbol{k}}} \sigma_{z} \tag{11}
\end{equation*}
$$

with $\phi_{\boldsymbol{k}}$ an arbitrary phase which can be taken equal to zero.

PROBLEM 2

Recall that the low-energy Hamiltonian for graphene with a Semenoff mass is

$$
\begin{equation*}
\mathcal{H}\left(x, k_{y}\right)=v_{F}\left(\sigma_{x} \tau_{z}\left(-i \partial_{x}\right)+k_{y} \sigma_{y}\right)+m_{s}(x) \sigma_{z} \tag{12}
\end{equation*}
$$

where we assumed translational invariance along y and $\lim _{x \rightarrow \pm \infty} m_{s}(x)= \pm\left|m_{0}\right|$. For $k_{y}=0$ we want $\mathcal{H}(x) \Psi(x)=0$. After a rotation $e^{i(\pi / 4) \sigma_{x}}$ which sends $\sigma_{z} \rightarrow \sigma_{y}, \sigma_{y} \rightarrow-\sigma_{z}$, we get

$$
\left(\begin{array}{cc}
0 & -i\left[v_{F} \tau_{z} \partial_{x}+m_{s}(x)\right] \tag{13}\\
i\left[-v_{F} \tau_{z} \partial_{x}+m_{s}(x)\right] & 0
\end{array}\right)\binom{\Psi_{1}}{\Psi_{2}}=0
$$

For $\tau_{z}=+1$, we find normalizable solutions $\Psi_{1}=0$ and $\Psi_{2}=A e^{-\frac{1}{v_{f}} \int_{0}^{x} m\left(x^{\prime}\right) d x^{\prime}}$. Similarly, for $\tau_{z}=-1$, we find $\Psi_{2}=0$ and $\Psi_{1}=A e^{-\frac{1}{v_{f}} \int_{0}^{x} m\left(x^{\prime}\right) d x^{\prime}}$.

Altogether there are two gapless modes which, after rotating back, have the form

$$
\Psi^{+}=\left(\begin{array}{c}
-i \tag{14}\\
1 \\
0 \\
0
\end{array}\right) A e^{-\frac{1}{v_{f}} \int_{0}^{x} m\left(x^{\prime}\right) d x^{\prime}}, \quad \Psi^{-}=\left(\begin{array}{c}
0 \\
0 \\
1 \\
-i
\end{array}\right) A e^{-\frac{1}{v_{f}} \int_{0}^{x} m\left(x^{\prime}\right) d x^{\prime}}
$$

The two have spectra $\epsilon_{k}^{ \pm}=\left\langle\Psi^{ \pm}\right| v_{F} k_{y} \sigma_{y}\left|\Psi^{ \pm}\right\rangle= \pm v_{F} k_{y}$. Therefore we may conclude that a domain wall in the Semenoff mass hosts a pair of gapless, counter-propagating one-dimensional modes with a linear dispersion.

