PHYS 525
 Solution to HW 3

Emilian M. Nica, Pedro Lopes

(Dated: January 31, 2019)

PROBLEM 1

a) A possible choice of anticommuting hermitian 4×4 matrices reads

$$
\begin{equation*}
\Gamma_{1}=\tau_{z} \sigma_{x}, \quad \Gamma_{2}=\tau_{z} \sigma_{y}, \quad \Gamma_{3}=\tau_{z} \sigma_{z}, \quad \Gamma_{4}=\tau_{x} \sigma_{0}, \quad \Gamma_{5}=\tau_{y} \sigma_{0} \tag{1}
\end{equation*}
$$

Here and hereafter σ_{0} is used to denote a 2×2 unit matrix and we use the tensor product notation with \otimes sign ommitted for the sake of brevity. The matrices defined above are often called Dirac Γ matrices and are used to formulate the relativistic version of the Schrödinger equation.
b) The calculation of the energy spectrum follows as in the 2×2 case discussed in class. We square the Hamiltonian

$$
H^{2}=\sum_{i, j} \underbrace{d_{i}(\mathbf{k}) d_{j}(\mathbf{k})}_{\text {symmetric in } i \leftrightarrow j} \underbrace{\Gamma_{i} \Gamma_{j}}_{\frac{1}{2}\left\{\Gamma_{i}, \Gamma_{j}\right\}}=|\mathbf{d}(\mathbf{k})|^{2} \mathbb{I}
$$

Taking a square root then gives, as before

$$
\begin{equation*}
E_{ \pm}(\mathbf{k})= \pm|\mathbf{d}(\mathbf{k})| \tag{2}
\end{equation*}
$$

c) Extending the construction in part (a), a possible choice of 8×8 matrices reads

$$
\begin{equation*}
\rho_{z} \tau_{z} \sigma_{x}, \quad \rho_{z} \tau_{z} \sigma_{y}, \quad \rho_{z} \tau_{z} \sigma_{z}, \quad \rho_{z} \tau_{y} \sigma_{0}, \quad \rho_{z} \tau_{x} \sigma_{0}, \quad \rho_{x} \tau_{0} \sigma_{0}, \quad \rho_{y} \tau_{0} \sigma_{0} \tag{3}
\end{equation*}
$$

The structure is self-explanatory. In general, one can extend this scheme to construct a set of anticommuting $2^{n} \times 2^{n}$ matrices based on the knowledge of $2^{n-1} \times 2^{n-1}$ such matrices. At every step two new matrices are added which adds up to a total of $3+2 \times(n-1)=2 n+1$ matrices.

Mathematically, this corresponds to the Clifford algebra $C l_{d-1}(\mathbb{R})$ for even d, plus the chiral matrix. The Clifford algebra always contains d matrices Γ_{i} with $i=0, \ldots, d-1$ and for even d it admits the chiral matrix $\Gamma_{c}=i^{d / 2-1} \Gamma_{0} \ldots \Gamma_{d-1}$ which anticommutes with all Γ_{i}. For $2^{d / 2} \times 2^{d / 2} \equiv 2^{n} \times 2^{n}$ we have $d=2 n$ and adding Γ_{c} one arrives at $2 n+1$ again.

PROBLEM 2

$$
\begin{equation*}
H=-t \sum_{\langle i j\rangle}\left(e^{i \phi_{i j}} c_{i}^{\dagger} c_{j}+h . c .\right) \tag{4}
\end{equation*}
$$

a) In the gauge $\vec{A}=B(0, x, 0)$, the phase factors along the x -bonds remain 1 but the phase factors along the y -bonds are x-dependent. We denote $\phi=2 \pi / q$, and illustrate the situation in Fig. ??.

The smalles unit cell contains q sites for

$$
\begin{equation*}
B=\frac{p}{q} \frac{\Phi_{0}}{a^{2}} \tag{5}
\end{equation*}
$$

The band structure thus consists of q bands for each \vec{k} in the 1 st BZ , the latter being $k_{x} \in\left(-\frac{\pi}{q a}, \frac{\pi}{q a}\right), k_{y} \in\left(-\frac{\pi}{a}, \frac{\pi}{a}\right)$.
b) For $p=1, q=2$ the unit cell has 2 sites (Fig. ??), denoted by $a_{\vec{r}}, b_{\vec{r}}$

$$
\begin{equation*}
H=-t \sum_{i j}\left[\left(a_{i j}^{\dagger} b_{i j}+a_{i j}^{\dagger} b_{i-1 j}\right)+\left(a_{i j}^{\dagger} a_{i j+1}+b_{i j}^{\dagger} b_{i j+1}\right)+h . c .\right] \tag{6}
\end{equation*}
$$

Fourier transforming, we get $H=\sum_{k} \Psi_{\vec{k}}^{\dagger} \mathcal{H}(\vec{k}) \Psi_{\vec{k}}$ with $\Psi_{\vec{k}}=\left(a_{\vec{k}}, b_{\vec{k}}\right)^{T}$ and

$$
\begin{align*}
\mathcal{H}(\vec{k}) & =-2 t\left(\begin{array}{cc}
\cos k_{y} & e^{-i k_{x}} \cos k_{x} \\
e^{i k_{x}} \cos k_{x} & -\cos k_{y}
\end{array}\right) \tag{7}\\
E_{\vec{k}} & = \pm 2 t \sqrt{\cos ^{2} k_{x}+\cos ^{2} k_{y}} \tag{8}
\end{align*}
$$

The Dirac points are at $\vec{k}=\left(\frac{\pi}{2 a}, \pm \frac{\pi}{2 a}\right)$, as shown in Fig. ??.
Near the Dirac points, the low- E Hamiltonian can be written as

$$
\begin{equation*}
\mathcal{H}_{e f f}(\vec{q})=v_{F}\left(\tau_{z} \sigma_{z} q_{y}+\sigma_{y} q_{x}\right) \tag{9}
\end{equation*}
$$

where $\tau_{z}= \pm 1$ labels the two "valleys".
c) Time reversal - this is a spinless Hamiltonian so \mathcal{T} is represented as

$$
\begin{equation*}
\mathcal{T}: \quad \Theta=K, \quad \mathcal{H}^{*}(\vec{k})=\mathcal{H}(-\vec{k}) \tag{10}
\end{equation*}
$$

Inversion is more complicated beacuse the system is not inversion symmetric about the midpoint between \underline{a} and \underline{b} sites. However, either site \underline{a} or site \underline{b} can be taken as the center of inversion. This is generated by

$$
\mathcal{P}: \quad P \mathcal{H}(\vec{k}) P^{-1}=\mathcal{H}(-\vec{k}), \text { where } P=\left(\begin{array}{cc}
e^{-2 i \vec{k}} & 0 \tag{11}\\
0 & 1
\end{array}\right)
$$

In the low- E theory, valleys get exchanged under both τ and \mathcal{P} :

$$
\begin{array}{ll}
\mathcal{T}: & \tau_{x} \mathcal{H}_{e f f}^{*}(\vec{q}) \tau_{x}=\mathcal{H}_{e f f}(-\vec{q}) \\
\mathcal{P}: & \tau_{x} \sigma_{z} \mathcal{H}_{e f f}(\vec{q}) \sigma_{z} \tau_{x}=\mathcal{H}_{e f f}(-\vec{q}) \tag{13}
\end{array}
$$

\mathcal{T}-invariance of H with $q=2$ is special. It holds because the smallest loop that an electron can traverse (one square plaquette) contains a flux $(1 / 2) \Phi_{0}$ and thus gives rise to a phase factor $e^{i \pi}=-1$. This is real and the electron cannot differentiate between clockwise and counter-clockwise hopping.
d) Possible mass terms are: $\sigma_{x} \tau_{z}, \sigma_{x}, \sigma_{z} \tau_{x}$, and $\sigma_{z} \tau_{y}$ (these are the only terms that anticommute with $\mathcal{H}_{e f f}(\vec{q})$).

Mass term	\mathcal{P}	\mathcal{T}
$\sigma_{x} \tau_{z}$	\mathfrak{V}	\mathbf{x}
$\sigma_{z} \tau_{x}$	\mathfrak{J}	$\mathfrak{\checkmark}$
$\sigma_{z} \tau_{y}$	\boldsymbol{x}	$\mathfrak{\checkmark}$
σ_{x}	\boldsymbol{x}	$\mathfrak{\checkmark}$

FIG. 1. Hopping parameters along y direction.

FIG. 2. Unit cell for $p=1, q=2$

The \mathcal{T}-breaking mass $\sigma_{x} \tau_{z}$ describes second-neighbor hopping with imaginary amplitude.
The \mathcal{P}-breaking mass σ_{x} can be realized by dimerizing the lattice along the x-direction, i.e. alternating $t+\delta t$ and $t-\delta t$.
e) With the \mathcal{T}-breaking mass we have

$$
\begin{equation*}
\mathcal{H}_{e f f}(\vec{q})=v_{F}\left(\tau_{z} \sigma_{z} q_{y}+\sigma_{y} q_{x}\right)+m \sigma_{x} \tau_{z} \tag{14}
\end{equation*}
$$

We can calculate the Chern number for the two valleys in analogy with graphene

$$
\begin{array}{ll}
C_{1} & =\frac{1}{2} \operatorname{sgn}\left[\left(+v_{F}\right)\left(+v_{F}\right)(+m)\right]=\frac{1}{2} \operatorname{sgn}(m) \\
C_{2}=\frac{1}{2} \operatorname{sgn}\left[\left(-v_{F}\right)\left(+v_{F}\right)(-m)\right]=\frac{1}{2} \operatorname{sgn}(m) & \left(\tau_{z}=-1\right) \tag{16}
\end{array}
$$

Thus, $C=C_{1}+C_{2}=\operatorname{sgn}(m)= \pm 1$. The system is a Chern insulator.

FIG. 3. Brillouin Zone and Dirac points.

