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PROBLEM 1

a) A possible choice of anticommuting hermitian 4 x 4 matrices reads
Iy =700, Ty =70y Is=m10. I'y=100 I's=my00. (D

Here and hereafter o is used to denote a 2 X 2 unit matrix and we use the tensor product notation with ® sign ommitted for the
sake of brevity. The matrices defined above are often called Dirac I' matrices and are used to formulate the relativistic version
of the Schrodinger equation.

b) The calculation of the energy spectrum follows as in the 2 x 2 case discussed in class. We square the Hamiltonian

H =3 di(k)d; (k) T.T;, =|d(&)PI

Y symmetric in 4> j %{Finj}

Taking a square root then gives, as before
Ey (k) =+|d (k). (2)
¢) Extending the construction in part (a), a possible choice of 8 x 8 matrices reads
PT20z, PzT0y, P:T20z, P:Ty00, P:Tz00, PzT000, PyT000, 3)

The structure is self-explanatory. In general, one can extend this scheme to construct a set of anticommuting 2™ x 2™ matrices
based on the knowledge of 2"~ ! x 2"~! such matrices. At every step two new matrices are added which adds up to a total of
3+2x (n—1)=2n+ 1 matrices.

Mathematically, this corresponds to the Clifford algebra Cl;_; (R) for even d, plus the chiral matrix. The Clifford algebra
always contains d matrices I'; with ¢ = 0,...,d — 1 and for even d it admits the chiral matrix I', = i%/271T...I'y_; which
anticommutes with all I';. For 24/2 x 24/2 = 2" x 2"we have d = 2n and adding I, one arrives at 2n + 1 again.

PROBLEM 2

H= —tz (ei‘b” c;rcj + h.c.) 4@
(ig)

a) In the gauge A= B(0,x,0), the phase factors along the x-bonds remain 1 but the phase factors along the y-bonds are
x-dependent. We denote ¢ = 27 /¢, and illustrate the situation in Fig. 2?.

The smalles unit cell contains ¢ sites for
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The band structure thus consists of ¢ bands for each & in the 1st BZ, the latter being k, € (=%, %) ky € (%, %),

qa’ qa a’a

b) For p = 1, ¢ = 2 the unit cell has 2 sites (Fig. ??), denoted by az, b

H = —tz K“Zjbij + a;(jbi,1j> + (azjaijﬂ + szbij+1) + h.c.} . (6)
ij
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Fourier transforming, we get H =}, W.H(k) ¥y with ¥ = (az,bz)” and

o cosk, e e cosk,
Hk) = -2t (eikw cosky, —cosk, ) ’ )

E; = £2ty/cos? k, + cos? ky. 8)

The Dirac points are at k = (=, 47-), as shown in Fig. ?2.

Near the Dirac points, the low-E Hamiltonian can be written as

’ g{eff((j) = Vf (TzUzQy + Usz) ‘ 9

where 7, = %1 labels the two “valleys”.

¢) Time reversal - this is a spinless Hamiltonian so 7 is represented as

T: O0=K, H*(k)=H(—k) (10)

Inversion is more complicated beacuse the system is not inversion symmetric about the midpoint between a and b sites.
However, either site a or site b can be taken as the center of inversion. This is generated by

o o —2ik
P. PH(E)P' = H(—F), where P = (e ) (1)> (11

In the low- E theory, valleys get exchanged under both 7 and P:

T m.f]{:ff(cj)m =Herr(—4) (12)
P o Hepp(Q)oe = Hepp(—q) (13)

J-invariance of H with ¢ = 2 is special. It holds because the smallest loop that an electron can traverse (one square plaquette)
contains a flux (1/2)®, and thus gives rise to a phase factor e’ = —1. This is real and the electron cannot differentiate between
clockwise and counter-clockwise hopping.

d) Possible mass terms are: 0,7, 0, 0,7, and 0,7, (these are the only terms that anticommute with I ¢ ().
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FIG. 1. Hopping parameters along y direction.



FIG. 2. Unitcellforp =1,q =2

The T-breaking mass o, 7, describes second-neighbor hopping with imaginary amplitude.
The P-breaking mass o, can be realized by dimerizing the lattice along the x-direction, i.e. alternating ¢ + §t and t — Jt.

e) With the T-breaking mass we have

Hepp(q) = vr (T20.qy + 0yGz) + Moy, (14)

We can calculate the Chern number for the two valleys in analogy with graphene

C1 = gsgn [(+or) (+or) (+m)] = ssgn(m) (= = +1) as)
Oy =gsgn[(~vr) (+vr) (~m)] = ssgn(m) (- = 1) (16)

Thus, C = Cy + Cy = sgn(m) = 1. The system is a Chern insulator.
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FIG. 3. Brillouin Zone and Dirac points.



