PHYS 525 Solution to HW 3

Emilian M. Nica, Pedro Lopes (Dated: January 31, 2019)

PROBLEM 1

a) A possible choice of anticommuting hermitian 4×4 matrices reads

$$\Gamma_1 = \tau_z \sigma_x, \ \Gamma_2 = \tau_z \sigma_y, \ \Gamma_3 = \tau_z \sigma_z, \ \Gamma_4 = \tau_x \sigma_0, \ \Gamma_5 = \tau_y \sigma_0.$$
(1)

Here and hereafter σ_0 is used to denote a 2 × 2 unit matrix and we use the tensor product notation with \otimes sign ommitted for the sake of brevity. The matrices defined above are often called Dirac Γ matrices and are used to formulate the relativistic version of the Schrödinger equation.

b) The calculation of the energy spectrum follows as in the 2×2 case discussed in class. We square the Hamiltonian

$$H^{2} = \sum_{i,j} \underbrace{d_{i}\left(\mathbf{k}\right) d_{j}\left(\mathbf{k}\right)}_{\text{symmetric in } i \leftrightarrow j} \underbrace{\Gamma_{i}\Gamma_{j}}_{\frac{1}{2}\{\Gamma_{i},\Gamma_{j}\}} = \left|\mathbf{d}\left(\mathbf{k}\right)\right|^{2} \mathbb{I}$$

Taking a square root then gives, as before

$$E_{\pm}\left(\mathbf{k}\right) = \pm \left|\mathbf{d}\left(\mathbf{k}\right)\right|.\tag{2}$$

c) Extending the construction in part (a), a possible choice of 8×8 matrices reads

$$\rho_z \tau_z \sigma_x, \ \rho_z \tau_z \sigma_y, \ \rho_z \tau_z \sigma_z, \ \rho_z \tau_y \sigma_0, \ \rho_z \tau_x \sigma_0, \ \rho_x \tau_0 \sigma_0, \ \rho_y \tau_0 \sigma_0, \tag{3}$$

The structure is self-explanatory. In general, one can extend this scheme to construct a set of anticommuting $2^n \times 2^n$ matrices based on the knowledge of $2^{n-1} \times 2^{n-1}$ such matrices. At every step two new matrices are added which adds up to a total of $3 + 2 \times (n-1) = 2n + 1$ matrices.

Mathematically, this corresponds to the Clifford algebra $Cl_{d-1}(\mathbb{R})$ for even d, plus the chiral matrix. The Clifford algebra always contains d matrices Γ_i with i = 0, ..., d - 1 and for even d it admits the chiral matrix $\Gamma_c = i^{d/2-1}\Gamma_0...\Gamma_{d-1}$ which anticommutes with all Γ_i . For $2^{d/2} \times 2^{d/2} \equiv 2^n \times 2^n$ we have d = 2n and adding Γ_c one arrives at 2n + 1 again.

PROBLEM 2

$$H = -t \sum_{\langle ij \rangle} \left(e^{i\phi_{ij}} c_i^{\dagger} c_j + h.c. \right)$$
(4)

a) In the gauge $\vec{A} = B(0, x, 0)$, the phase factors along the x-bonds remain 1 but the phase factors along the y-bonds are x-dependent. We denote $\phi = 2\pi/q$, and illustrate the situation in Fig. ??.

The smalles unit cell contains q sites for

$$B = \frac{p}{q} \frac{\Phi_0}{a^2} \tag{5}$$

The band structure thus consists of q bands for each \vec{k} in the 1st BZ, the latter being $k_x \in (-\frac{\pi}{qa}, \frac{\pi}{qa}), k_y \in (-\frac{\pi}{a}, \frac{\pi}{a}).$

b) For p = 1, q = 2 the unit cell has 2 sites (Fig. ??), denoted by $a_{\vec{r}}, b_{\vec{r}}$

$$H = -t \sum_{ij} \left[\left(a_{ij}^{\dagger} b_{ij} + a_{ij}^{\dagger} b_{i-1j} \right) + \left(a_{ij}^{\dagger} a_{ij+1} + b_{ij}^{\dagger} b_{ij+1} \right) + h.c. \right].$$
(6)

Fourier transforming, we get $H = \sum_k \Psi_{\vec{k}}^{\dagger} \mathcal{H}(\vec{k}) \Psi_{\vec{k}}$ with $\Psi_{\vec{k}} = \left(a_{\vec{k}}, b_{\vec{k}}\right)^T$ and

$$\mathcal{H}(\vec{k}) = -2t \begin{pmatrix} \cos k_y & e^{-ik_x} \cos k_x \\ e^{ik_x} \cos k_x & -\cos k_y \end{pmatrix},\tag{7}$$

$$E_{\vec{k}} = \pm 2t \sqrt{\cos^2 k_x + \cos^2 k_y}.$$
 (8)

The Dirac points are at $\vec{k} = \left(\frac{\pi}{2a}, \pm \frac{\pi}{2a}\right)$, as shown in Fig. ??.

Near the Dirac points, the low-E Hamiltonian can be written as

$$\mathcal{H}_{eff}(\vec{q}) = v_F \left(\tau_z \sigma_z q_y + \sigma_y q_x \right) \tag{9}$$

where $\tau_z = \pm 1$ labels the two "valleys".

c) Time reversal - this is a spinless Hamiltonian so T is represented as

$$\mathfrak{T}: \quad \Theta = K, \quad \mathfrak{H}^*(\vec{k}) = \mathfrak{H}(-\vec{k})$$
(10)

<u>Inversion</u> is more complicated beacuse the system is <u>not</u> inversion symmetric about the midpoint between <u>a</u> and <u>b</u> sites. However, either site <u>a</u> or site <u>b</u> can be taken as the center of inversion. This is generated by

$$\mathcal{P}: \quad P\mathcal{H}(\vec{k})P^{-1} = \mathcal{H}(-\vec{k}), \text{ where } P = \begin{pmatrix} e^{-2i\vec{k}} & 0\\ 0 & 1 \end{pmatrix}$$
(11)

In the low-*E* theory, valleys get exchanged under both τ and \mathcal{P} :

$$\mathcal{T}: \quad \tau_x \mathcal{H}^*_{eff}(\vec{q}) \tau_x = \mathcal{H}_{eff}(-\vec{q}) \tag{12}$$

$$\mathcal{P}: \quad \tau_x \sigma_z \mathcal{H}_{eff}(\vec{q}) \sigma_z \tau_x = \mathcal{H}_{eff}(-\vec{q}) \tag{13}$$

T-invariance of H with q = 2 is special. It holds because the smallest loop that an electron can traverse (one square plaquette) contains a flux $(1/2)\Phi_0$ and thus gives rise to a phase factor $e^{i\pi} = -1$. This is <u>real</u> and the electron cannot differentiate between clockwise and counter-clockwise hopping.

d) Possible mass terms are: $\sigma_x \tau_z$, σ_x , $\sigma_z \tau_x$, and $\sigma_z \tau_y$ (these are the only terms that anticommute with $\mathcal{H}_{eff}(\vec{q})$).

FIG. 1. Hopping parameters along y direction.

FIG. 2. Unit cell for p = 1, q = 2

The \mathcal{T} -breaking mass $\sigma_x \tau_z$ describes second-neighbor hopping with imaginary amplitude. The \mathcal{P} -breaking mass σ_x can be realized by dimerizing the lattice along the x-direction, i.e. alternating $t + \delta t$ and $t - \delta t$.

e) With the $\ensuremath{\mathbb{T}}\xspace$ breaking mass we have

$$\mathcal{H}_{eff}(\vec{q}) = v_F \left(\tau_z \sigma_z q_y + \sigma_y q_x\right) + m \sigma_x \tau_z \tag{14}$$

We can calculate the Chern number for the two valleys in analogy with graphene

$$C_1 = \frac{1}{2} \operatorname{sgn} \left[(+v_F)(+v_F)(+m) \right] = \frac{1}{2} \operatorname{sgn}(m) \quad (\tau_z = +1)$$
(15)

$$C_2 = \frac{1}{2} \operatorname{sgn} \left[(-v_F)(+v_F)(-m) \right] = \frac{1}{2} \operatorname{sgn}(m) \quad (\tau_z = -1)$$
(16)

Thus, $C = C_1 + C_2 = \operatorname{sgn}(m) = \pm 1$. The system is a Chern insulator.

FIG. 3. Brillouin Zone and Dirac points.