PHYS 525B Student Presentations

The presentations will be given during the normal class time on March 28, April 2, 4 and 5.  Detailed schedule of talks is posted below. Each presentation will be 15 minutes in length plus 5 minutes for questions. You can use PowerPoint/Keynote or do a blackboard presentation. If you do a computer-based presentation please make sure you have all the necessary connectors and know how to operate the projection system. You are welcome to use the built-in PC which has PowerPoint installed but please make sure you know how to operate it and how to transfer your talk using  a USB memory stick.

March 28
Aswin Vishnu Radhan (2)
Philip Haupt (5)
Martin Cross (6) Ryan Roemer (31)
April 2
Fan Yang (8)
Sydney Dufresne (12)
Max Werner (15)
Tarun Tummuru (17)
April 4
Vedangi Pathak (23) Tim Child (24) Mohammad Khalifa (25) Eddie Ji (26)
April 5
Sebastian Gitt (7) Rafael Haenel (33) Oliver Yau Chuen Yam (18) Brandon Stuart (27)

Shadab Ahamed (30) Stepan Fomichev (32)

The March 28, April 2, 4 presentations will be held during the regular class time. The April 5 session will be held between 12:30-14:30
in the same room as regular class.


Presentations will be evaluated by your peers based on the following criteria:
Some general pointers how to give good presentations can be found here or here.

Presentations will be based on recent research articles. Some suggested articles are listed below. Please review the list and let me know by email before Feb. 15 which article you wish to present. You are welcome to use an article not on the list but please let me know well ahead of the Feb. 15 deadline so that I can approve and add it to the list.  Note: Articles marked with student names in [green angular brackets] have been taken and are thus no longer available.

  1. M. König, et al., "Quantum Spin Hall Insulator State in HgTe Quantum Wells", Science 318, 766 (2007).
  2. I. Knez, Rui-Rui Du, G. Sullivan, "Evidence for Helical Edge Modes in Inverted InAs/GaSb Quantum Wells", Phys. Rev. Lett. 107, 136603 (2011). [Aswin Vishnu Radhan]
  3. Y. Ran, A. Vishwanath, and D.-H. Lee, "Spin-Charge Separated Solitons in a Topological Band Insulator", Phys. Rev. Lett. 101, 086801 (2008). X.-L. Qi and S.-C. Zhang,  "Spin-Charge Separation in the Quantum Spin Hall State", Phys. Rev. Lett. 101, 086802 (2008).  
  4. C. Weeks, J. Hu, J. Alicea, M. Franz, R. Wu, "Engineering a robust quantum spin Hall state in graphene via adatom deposition", Phys. Rev. X 1, 021001 (2011).
  5. J. Li, R.-L. Chu, J. K. Jain, and S.-Q. Shen, "Topological Anderson Insulator", Phys. Rev. Lett. 102, 136806 (2009). [ Philip Haupt]
  6. F. D. M. Haldane and S. Raghu, "Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry", Phys. Rev. Lett. 100, 013904 (2008). [Martin Cross]
  7.  N. H. Lindner,  G. Refael  & V. Galitski, "Floquet Topological Insulator in Semiconductor Quantum Wells",  Nature Physics 7, 490 (2011)[Sebastian Gitt]
  8. A. M. Essin, J. E. Moore, and D. Vanderbilt, "Magnetoelectric Polarizability and Axion Electrodynamics in Crystalline Insulators", Phys. Rev. Lett. 102, 146805 (2009). [Fan Yang]
  9. R. Li, J. Wang, X. Qi, S.-C. Zhang, "Dynamical Axion Field in Topological Magnetic Insulators", Nature Physics 6, 284 (2010)
  10. Y. Ran, Y. Zhang, and A. Vishwanath, "One-dimensional topologically protected modes in topological insulators with lattice dislocations", Nat. Phys. 5, 298 (2009).
  11. Y. L. Chen et al., "Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator", Science 329, 659 (2010).
  12. T. Hanaguri, K. Igarashi, M. Kawamura, H. Takagi, and T. Sasagawa, "Momentum-resolved Landau-level spectroscopy of Dirac surface state in Bi2Se3", Phys. Rev. B 82, 081305(R) (2010).  [Sydney Dufresne]
  13. B. Seradjeh, J.E. Moore, and M. Franz, "Exciton condensation and charge fractionalization in a topological insulator film", Phys. Rev. Lett 103, 066402 (2009).  
  14. H. Peng et al., "Aharonov–Bohm interference in topological insulator nanoribbons", Nat. Mater. 9, 225 (2010).
  15. Seo, J., Roushan, P., Beidenkopf, H., Hor, Y. S., Cava, R. J. & Yazdani, A., "Transmission of topological surface states through surface barriers", Nature 466, 343–346 (2010). [Max Werner]
  16. Ion Garate and M. Franz, "Inverse Spin-Galvanic Effect in a Topological-Insulator/Ferromagnet Interface",  Phys. Rev. Lett. 104, 146802 (2010).
  17. Qi, X., Li, R., Zang, J. & Zhang, S.-C., "Inducing a Magnetic Monopole with Topological Surface States", Science 323, 1184–1187 (2009). [Tarun Tummuru]
  18. A.A. Burkov, Leon Balents, "Weyl Semimetal in a Topological Insulator Multilayer", Phys. Rev. Lett. 107, 127205 (2011)[Oliver Yau Chuen Yam]
  19. Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla, "Chiral magnetic effect in ZrTe5", Nat. Phys. 12, 550 (2016).
  20. Y. Baum, E. Berg, S. A. Parameswaran, and A. Stern, "Current at a distance and resonant transparency in Weyl Semimetals", Phys. Rev. X 5, 041046 (2015).
  21. A. C. Potter, I. Kimchi, and A. Vishwanath, "Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals", Nat. Commun. 5, 5161 (2014). See also Nature (London) 535, 266 (2016) for a closely related experimental work.
  22. T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, L. Fu, "Topological Crystalline Insulators in the SnTe Material Class",   Nature Communications 3, Article number 982.
  23. J.D. Sau, R.M. Lutchyn, S. Tewari, S.D. Sarma, "Generic new platform for topological quantum computation using semiconductor heterostructures", Phys. Rev. Lett. 104, 040502  (2010); Y. Oreg, G. Refael, F. von Oppen,  "Helical liquids and Majorana bound states in quantum wires",  Phys. Rev. Lett. 105, 177002 (2010)[Vedangi Pathak]
  24. A. Cook, M. Franz, "Majorana Fermions in Proximity-coupled Topological Insulator Nanowires", Phys. Rev. B 84, 201105(R) (2011). [Tim Child]
  25. V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, L. P. Kouwenhoven, "Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices", Science 336, 1003 (2012). [Mohammad Khalifa]
  26. S. Nadj-Perge et al., "Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor", Science 346, 602 (2014). [Eddie Ji]
  27. A. A. Soluyanov, D. Gresch, Z. Wang, Q.-S. Wu, M. Troyer, Xi Dai & B. A. Bernevig, "Type-II Weyl semimetals" Nature vol. 527, 495498 (2015). [Brandon Stuart]
  28. Exponential protection of zero modes F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P. Parkin, B. A. Bernevig and T. Neupert, "Higher-order topological insulators" Science Advances, Vol. 4, no. 6,(2018).
  29. S. Imhof et al., "Topolectrical-circuit realization of topological corner modes", Nature Physics 14, 925–929 (2018).
  30. S. D. Huber, "Topological mechanics" Nature Physics 12, 621–623 (2016).  [Shadab Ahamed]
  31. Peng Zhang et al., "Observation of topological superconductivity on the surface of an iron-based superconductor", Science 360, 6385, pp. 182-186 (2018). [Ryan Roemer]
  32. P. Delplace, J. B. Marston, A. Venaille, " Topological origin of equatorial waves", Science 358, Issue 6366, pp. 1075-1077 (2017) . [Stepan Fomichev]
  33. Yuxuan Wang and Rahul M. Nandkishore, " Topological surface superconductivity in doped Weyl loop materials", Phys. Rev. B 95, 060506(R)  [Rafael Haenel]