

Jason Zhihuai Zhu **ARPES** study of the electronic structure of three-dimensional topological insulators Andrea Damascelli's group

UNIVERSITY OF BRITISH COLUMBIA

OUTLINE

3D topological insulator Bi₂Se₃

Angle-resolved photoemission spectroscopy

UBC ARPES group's work Surface instability control Entangled spin-orbital texture

UNIVERSITY OF BRITISH COLUMBIA

Introduction: **3D** Topological Insulators

Why "Topological"

Topological invariant: quantity that does not change under continuous deformation

Joel E. Moore, Nature (2010)

X.T. Zhu et al., PRL 107. 186102 (201

Liu et al, PRB 82, 045122 (2010)

Trivial to Topological Insulator: Spin-orbit-driven Transition

Trivial to non-trivial topological phase transition

Robust Topological Surface Dirac Fermions

Roushan et al. Nature 2009

Application Potential

Introduction: ARPES

Angle-Resolved Photoemission Spectroscopy

<u>Electrons in</u> <u>Reciprocal Space</u>

Angle-Resolved Photoemission Spectroscopy

Electrostatic hemispherical analyzer

X-ray tube

Gas discharge lamp

Laserourtesy of Y.L. Chesynchrotron

Angle-Resolved Photoemission Spectroscopy

Parallel multi-angle recording

- Improved energy resolution
- Improved momentum resolution
- Improved data-acquisition efficiency

	$\Delta E \ (meV)$	Δθ
past	20-40	2°
now	1-10	0.2°

A. Damascelli et al., PRL 85, 5194 (2000)

ARPES ON COMPLEX SYSTEMS

- High energy resolution
- ∆E<1meV • High angular precision
- ± 0.05° • Low base temperature
 - ~ 2 K
- Photon energies
- H₂, He, Ne • Polarization control
- linear

 Ultra-high vacuum
- ~ 10⁻¹¹ torr • Surface / Thin films
- Low Energy Electron Diffraction

New Developments: ARPES + Spin + Time

ARPES+Spin polarimeter

ARPES+Time of Fight

Nishide et a., New J. Phys. 12, 065011 (2010)

Wang et al., PRL 107, 207602 (2011)

Band Mapping and Fermi Contours

ARPES: Widespread Impact in Complex Materials

HTSC's

CMR's

CDW's

Quasicrystals

Nature 2000

Quantum Wells

C₆₀

Nanotubes

Nature 2003

Diamond

Nature 2005

How to discriminate bulk & surface?

How to discriminate bulk & surface?

Y.L. Chen et al., Science (2009)

UNIVERSITY OF BRITISH COLUMBIA

13

ARPES: 3D topological insulators

ARPES on 3D TIs since 2009

Theory: H.J. Zhang, et al., Nat. Phys. (2009)

ARPES on 3D TIs: MBE, 2DEG, warp, new materials.....

Y. Zhang, et al., Nat. Phys. (2010) M. Bianchi, et al., Nat. Comm. (2010) K. Kuroda, et al., RPL (2010)

- K. Kuroda, et al., RPL (2010)T. Sato, et al., RPL (2010)Y.L. Chen, et al., RPL (2010)
- L. Wary, et al., Nat. Phys. (2010) K. Kuroda, et al., RPL (2012) K. Miyamoto, et al., RPL (2012) M. Neupane, et al., RPB (2012) T. Arakane, et al., Nat. Comm. (2012)

Broken time-reversal symmetry: magnetic impurities

Y.L. Chen, et al., Science (2010)

Mn = 2.5%

MEB thin film: Mn-Bi₂Se₃ Mn = 0%Mn = 1.0% Magnetizes surface of Mn-Bi₂Se₃ 2.5% Mn Hysteresis Magnetization (z) (XMCD signal) (a.u.) Out-of-plane 0 $h_V L(R) CP$ Spin texture of DC -1 h di *H* field -200 -100 100 200 0 Chiral Hedgehog $\stackrel{\wedge}{H(z)}(Oe)$

S.Y. Xu, et al., Nat. Phys. (2012)

Impurities at the surface of Bi₂Se₃

Zhang et al., Nat. phys. 5, 438 (2009)

Problems on the materials:

- N-type bulk.
- Instability of the as-cleaved sample surface in UHV.
- Parabolic continuum of states: K_{//} is not a good quantum number.

Can we overcome these problems?

Dirac point (DP) moving with time

Z.-H. Zhu et al., Phys. Rev. Lett. 107, 186405 (2011)

K-deposited Bi₂Se₃: Spin-splitting control

K-evaporation induces Rashba states

$$E^{\pm}(k_{\parallel}) = E_{\bar{\Gamma}} + \frac{\hbar^2 k_{\parallel}^2}{2m^{\star}} \pm \alpha_R k_{\parallel}$$

Potassium-evaporation

Z.H. Zhu et al., PRL 107, 186405 (2011)

Spin texture of topological surface state

~85% Bi₂Se₃

M. Hasan and C. Kane, RMP (2010)

Phenomenological model: 100%

First principle calculations: 50-85%

~50% Bi₂X₃ (X=Se, Te) O.V. Yazyev et al. *PRL* (2010)

Y. Zhao et al. *Nano Lett.*

(2011) Measured spin polarization range: 10-80%

~30% $Bi_{1-x}Sb_x$ D. Hsieh et al. *Science* (2009) ~20% Bi_2Te_3 D. Hsieh et al. *Nature* (2009) ~10% Bi_2Se_3 T. Hirahara et al. *PRB* (2010) ~60% Bi_2Te_3 S. Souma et al. *PRL* (2011) ~75% Bi_2Se_3 Z.-H. Pan et al. *PRL* (2011) ~40% $BiTISe_2$ S.-Y. Xu et al. Science (2011) >80% Bi_2Se_3 C. Jozwiak et al. *PRB* (2011)

Absence of backscattering

Simple idea:

Point-like defect Metal Electron

Vol 466 15 July 2010 doi:10.1038/nature09189

nature

LETTERS

Transmission of topological surface states through surface barriers

Jungpil Seo¹, Pedram Roushan¹, Haim Beidenkopf¹, Y. S. Hor², R. J. Cava² & Ali Yazdani¹

Periodic table of topological materials

Existence or absence of topological phases depends on symmetry and dimensionality of the system.

 \mathcal{T} symmetry Θ , particle-hole symmetry Ξ and chiral symmetry $\Pi = \Xi \Theta$.

Conventional									Symmetry			
	8	7	6	5	4	3	2	1	Π	[I]	Θ	AZ
Chean insulators	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	0	0	0	A
Pølyacetylene	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	1	0	0	AIII
	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	0	0	0	0	0	1	AI
Quantum spin	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	0	0	0	\mathbb{Z}	1	1	1	BDI
insulators	\mathbb{Z}_2	0	\mathbb{Z}	0	0	0	$\mathbb Z$	\mathbb{Z}_2	0	1	0	D
	0	\mathbb{Z}	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	1	1	-1	DIII
Topological insulators	\mathbb{Z}	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	0	0	-1	AII
	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	1	-1	-1	CII
	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	0	0	-1	0	C
	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	0	0	1	-1	1	CI

Ryu, S., A. Schnyder, A. Furusaki, A. W. W. Ludwig, 2010, New J. Phys. **12**, 065010.

Kitaev, A., 2009, AIP Conf. Proc. 1134, 22.