P525b

1. (15 points) Axion angle calculation.

The axion angle θ for a 3D topological insulator can be evaluated using a non-Abelian gauge connection but this technique is generally quite messy and except for very special cases must be carried out numerically. However, for a special class of Bloch Hamiltonians which can be expressed as

$$
\begin{equation*}
\mathcal{H}(\mathbf{k})=\sum_{\alpha=0}^{3} d_{\alpha}(\mathbf{k}) \gamma_{\alpha} \tag{1}
\end{equation*}
$$

where $d_{\alpha}(\mathbf{k})$ are real functions of \mathbf{k} and γ_{α} are mutually anticommuting 4×4 hermitian matrices with unit square ($\gamma_{\alpha}^{2}=1$), one can show that the axion angle can be written as

$$
\begin{equation*}
\theta=-\frac{1}{2 \pi} \int_{\mathrm{BZ}} d^{3} k \epsilon^{\alpha \beta \mu \nu} \frac{d_{\alpha}\left(\partial_{1} d_{\beta}\right)\left(\partial_{2} d_{\mu}\right)\left(\partial_{3} d_{\nu}\right)}{d^{4}} \tag{2}
\end{equation*}
$$

where $\epsilon^{\alpha \beta \mu \nu}$ represents the totally antisymmetric tensor with $\epsilon^{0123}=1$.
a) Consider a system described by Hamiltonian (1) at half filling with

$$
d(\mathbf{k})=\left(M_{\mathbf{k}}, \sin k_{x}, \sin k_{y}, \sin k_{z}\right),
$$

and $M_{\mathbf{k}}=\epsilon-2 t \sum_{i} \cos k_{i}$. Find the spectrum of $\mathcal{H}(\mathbf{k})$ and for a constant positive t identify the possible phase transitions between the insulating phases as a function of ϵ. Note that there is no need to assume a specific representation for the γ matrices: the spectrum only depends on their anticommutation property $\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 \delta_{\mu \nu}$ and can be obtained by the usual procedure of squaring the Hamiltonian.
b) When t and ϵ are small one can argue that the integral in Eq. (2) is dominated by regions close to the 8 TRIM. Here, the Hamiltonian can be linearized in \mathbf{k} and approximated by a simple Dirac form. Show that in this approximation each TRIM contributes

$$
\theta^{\ell}=-\frac{\pi}{2} \operatorname{sgn}\left(v_{x}^{\ell} v_{y}^{\ell} v_{z}^{\ell} m_{\ell}\right)
$$

to the total axion angle $\theta=\sum_{\ell=1}^{8} \theta^{\ell} \bmod 2 \pi$, where v_{i}^{ℓ} are the corresponding Dirac velocities and m_{ℓ} the Dirac mass.
c) Use the result of part (b) to assign θ to the insulating phases identified in part (a).
2. (15 points) Majorana chain.

In a tight-binding chain consisting of N sites with spinless fermions the Hilbert space has dimension of 2^{N} since each site can be empty or occupied. In that sense we can say that the
system has 2 states per site. In this problem we consider the analogous question for Majorana fermions. Consider the 'Majorana chain' described by the following 1D Hamiltonian

$$
\begin{equation*}
H=-t \sum_{j=1}^{N}\left(i \gamma_{j} \gamma_{j+1}+\text { h.c. }\right), \tag{3}
\end{equation*}
$$

with γ_{j} the Majorana fermion operators satisfying

$$
\left\{\gamma_{i}, \gamma_{j}\right\}=2 \delta_{i j}, \quad\left(\gamma_{j}\right)^{\dagger}=\gamma_{j}
$$

The Hilbert space of the Majorana chain forms a representation of the above anti-commuting algebra.
a) Consider now a chain with N even and antiperiodic boundary conditions $\gamma_{j+N}=-\gamma_{j}$. Define the momentum-space Majorana operators $\gamma(k)=N^{-1 / 2} \sum_{j} e^{-1 k j} \gamma_{j}$ and find their commutation relations as well as the relation between $\gamma^{\dagger}(k)$ and $\gamma(k)$. What are the allowed values of momentum k ?
b) Show that Hamiltonian (3) takes the form

$$
H=4 t \sum_{k>0} \sin k \gamma^{\dagger}(k) \gamma(k)+E_{g} .
$$

Sketch the spectrum.
c) On the basis of results in parts (a) and (b) construct the Hilbert space of the Majorana chain. Show that it has dimension of $2^{N / 2}$, corresponding to $\sqrt{2}$ states per site! Discuss this result in view of what we know about Majorana fermions.
3. Bonus problem (5 points) Interacting Majorana fermions.

Consider a system with 4 Majorana fermions γ_{j} where $j=1,2,3,4$. The system is described by the Hamiltonian

$$
H=J \gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}
$$

with J a positive constant. Find the energy of the ground state and its degeneracy.

