1. (10 points) Charge conjugation symmetry C. Consider a general Bloch Hamiltonian

$$H = \sum_{\mathbf{k}} \mathcal{H}_{\alpha\beta}(\mathbf{k}) c^{\dagger}_{\mathbf{k}\alpha} c_{\mathbf{k}\beta}$$

where α and β are basis and orbital indices. Charge conjugation (also known as particle-hole) transformation C is defined as

$$c_{\mathbf{k}\alpha} = U_{\alpha\beta}(\mathbf{k})d^{\dagger}_{-\mathbf{k}\beta}.$$

The Hamiltonian is said to be particle-hole symmetric if a transformation $U_{\alpha\beta}(\mathbf{k})$ can be found so that H is the same when expressed in terms of electron operators c and hole operators d.

a) Similar to our discussion of \mathcal{T} and \mathcal{P} in class find the condition that must be imposed on $\mathcal{H}(\mathbf{k})$ so that H is p-h symmetric.

b) Show that, for a system with p-h symmetry defined as above, the energy eigenvalues come in pairs $(E_{\mathbf{k}}, -E_{\mathbf{k}})$, when in addition either \mathcal{T} or \mathcal{P} is present.

c) Find the representation of \mathcal{C} for the spinless graphene Hamiltonian discussed in class.

2. (10 points) Domain wall in the Semenoff mass.

Consider the low-energy theory of spinless graphene as derived in class with the Semenoff mass m_S . Analyze the structure of the low-energy electron states associated with a domain wall in $m_S(x)$, such that $m_S(x) \to \pm m_0$ as $x \to \pm \infty$. How many gapless modes are there? Sketch the energy spectrum as a function of k_y .