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Abstract. We study the time scale for diffusion
on a correlated energy landscape using

models based on the generalized random energy model (GREM) studied earlier in the context

of spin glasses (Derrida B. and Gardner E., J. Phys. C lo (1986) 2253) with kinetically local

connections. The escape barrier and mean escape time are significantly reduced from the un-

correlated landscape (REM) values. Results for the mean escape time from a kinetic trap are

obtained for two models approximating random heteropolymers in different regimes, with linear

and bi-linear approximations to the configurational entropy versus similarity q with a given state.

In both cases, a correlated landscape results in a shorter escape time from a meta-stable state

than in the uncorrelated model (Bryngelson J-D. and Wolynes P.G., J. Phys. Chem. 93 (1989)
6902). Results are compared to simulations of the diffusion constant for 27-mers. In general,
there is a second transition temperature above the thermodynamic glass temperature, at and

above which kinetics becomes non-activated. In the special case of an entropy linear in q, there

is no escape barrier for a model preserving ultrametricity. However, in real heteropolymers a

barrier can result from the breaking of ultrarnetricity, as seen in our non-ultrarnetric model. The

distribution of escape times for a model preserving microscopic ultrametricity is also obtained,
and found to reduce to the uncorrelated landscape in well-defined limits.

1. Introduction

The study of biomolecular dynamics in general and protein folding in particular has inspired

a good deal of study of the dynamics of disordered systems [Ii. Statistically defined energy

landscapes naturally emerge in biouiolecular physics because of the heteropolymeric complexity
of a biomolecule's sequence. Many questions about the energy landscapes and dynamics of

biomolecules resemble the issues in the theory of ergodicity breaking in glasses and spin glasses

[2j but the mesoscopic scale of protein molecules means that hopping between globally distinct

minima, which in the thermodynamic limit would be strictly inaccessible, must be taken into

account, and may indeed dominate the experimental behavior iii. Starting with the work of

Bryngelson and Wolynes [3j the connection of the dynamics on statistical energy landscapes

and folding has been exploited both qualitatively to understand the perplexing complexity -of
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folding kinetics experiments and quantitatively in interpreting simulations [4,5j and developing
prediction algorithms [6j. Foldable proteins contain an energetic bias towards a folded state

which is likely due to selection by natural evolution. On the other hand, as in typical mean

field spin glasses, there are many uncorrelated states which can act as kinetic traps, at least

transiently. Dynamics in the glassy phase for these systems has been studied using random

energy models [7,8j. The escape from these traps determines the effective diffusion coefficient

for flow of the ensemble of protein structures towards the folded state needed to give fast folding

on biologically relevant timescales. This general picture has been confirmed semiquantitatively

through the use of lattice uiodels of minimally frustrated heteropolymers [9,10j. The original
BW analysis [3j assumed that the rugged parts of the energy landscape could be modeled in the

most extreme form as a completely random landscape described by the random energy model

of Derrida [iii. Superimposed on this was the bias due to minimal frustration. The random

energy model belongs to a general class of disordered systems which lack special symmetries
(e.g. time inversion symmetry in the Sherrington-Kirkpatrick model of a spin glass), and

having a discrete juuip in the order parameter q(x) describing the replica symmetry breaking,
such as that seen in Potts glasses [12j. Other aspects of the low energy states are universal,
such as the statistics of their non-self-averaging processes below the transition, and some of this

universality may carry over to the dynamics. The "first order" glass transition seen in random

heteropolymers (RHPS) by replica methods [13j puts these systems in the saute universality
class as the REM as far as issues of ergodicity breaking are concerned.

While the random energy model, being in the right universality class, describes in a renoruial-

ized sense the nature of a random heteropolymer (RHP) landscape, for a quantitative theory
(see for example [14j), it is certainly relevant to take into account the correlations in the land-

scape which are inherent in the polymeric nature of the problem. Recently Plotkin, Wang and

Wolynes have shown how the thermodynamics of glassy trapping [lsj and folding [16j can be

treated in this way. The thermodynamic glass transition temperatures are not much modified

in many cases, although the nature of the replica syuimetry breaking can change as a function

of the density. While the relevant transition temperatures are well determined by the random

energy model estimates, it was shown that the configurational entropy relevant to the nuuiber

of basins of attraction was significantly modified. In the original BW analysis, the Levinthal

paradox [17j arising from the consideration of the search time through possible conformational

states on a flat energy landscape was shown to be connected on a globally rough landscape
with the difficulties of escape from the traps on the random energy surface. Since the configu-
rational entropy of the basins is changed in the correlated model, it is relevant to ask whether

siuiilar modifications occur when the kinetics are examined. In this paper we discuss the ki-

netics of escape from traps on a correlated energy landscape for two uiodels approximating
random heteropolyuiers (RHP). The first (hereafter referred to as the REM strata model, RS

model, or
RSM) considers strata of states at a given similarity to a specified state, which are

uncorrelated to each other, but indeed correlated in energy to the specific state. In the second

model (hereafter the ultrametric model),
an ultrametric hierarchy is imposed on all of the states

(equilibrium or not), the statistics of which are analyzed in the context of the generalized ran-

doui energy model (GREM) [18]. This uiicroscopic ultrametrieity is somewhat different than

the conventional thermodynamic ultrarnetricity used to describe equilibrium states in mean

field spin-glasses. The regions of validity for both of these models as deteruiined by the accu-

racy of their description of the true organization of states of a random heteropolymer are an

important issue. We analyze the dynamics for both models to obtain the average escape time

front a metastable trap. In calculating this diffusion time, linear and bi-linear approximations

to the configurational entropy as a
function of similarity Sc(q)

are employed [lsj. These simple
forms are chosen primarily for their illustrative value;

more complex forms such
as those used
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We should also mention that the approach used in this paper, though arrived at in the

context of finite heteropolymers, is applicable as an approximation to any system describable

by a locally connected, correlated energy landscape.
We organize this paper as follows: in Section 2, we review the description of the correlations

in the landscape that are required to model the heteropolymer, and obtain the free energy

relative to a given state. Free energy functions are obtained in two approximations, which

in the following sections are used to calculate escape barriers from basins of attraction. In

Section 3, we analyze the ground states and glass transition temperatures in the two models

described in Section 2. In Section 4, we study the kinetics of escape processes for a small

random heteropolymer (RHP) using a linear approximation of entropy as a function of specific

contacts, which can be applied to lattice model 27-mers often used to mimic the protein folding

process. In Section 5, we calculate the mean escape time from a basin of attraction for large
RHP'S using a piece-wise linear approximation to the entropy.

2. Correlated Free Energy Landscapes

In this section, we review the description of the energy statistics of a random heteropolymer
(RHP) by a correlated energy landscape, highlighting those quantities used in the kinetic

analysis.
For an RHP, each pair of interacting monomers mn has an interaction energy em

n

that can be

taken to be a Gaussian random variable. The contact Hamiltonian 7i for a given configuration
is given by:

7~
"

~
6mnamn j2.i)

m<n

where amn =
I when there is a contact made between monouiers mn in the chain, and

amn =
0 otherwise. Here contact uieans that the two monomers mn are within a small distance

(contact radius) of each other. We assume as in lattice models that there is an additional part
of the Hamiltonian which keeps the chain connected, and represents hard constraints, I.e. all

connected configurations which are allowed have the same energy at least as far as this part
of the Hamiltonian is concerned. This is used for lattice models, and is likely a good approx-

imation for real proteins. In addition we assume the model contains hard excluded volume

forces, which again do not bias different allowed states. Both chain connectivity and excluded

volume contribute to the entropy, i-e- in the GREM approach we can separate the energetic
and entropic issues, taking chain connectivity and excluded volume into account through the

counting of states of a lattice chain as a function of imposed constraints~ S(q) (see Eq. (2.5)).
There are potentially interesting purely dynauiical effects connected with chain connectivity
and excluded volume, however these are likely to be small for real, finite size proteins because

so much of the protein actually lies on the surface.

Because of the small number of nearest neighbors for realistic lattice models of proteins, many
investigations have shown the move set in the configurational search does not greatly alter the

result, and the problem of self avoidance is not a primary one [9j. However the dynamical glass
temperature TA described later in this paper is expected to increase as a result of hard-core

interactions. Indeed the hard core fluid shows a transition to activated behavior that depends

on density alone [21j.
Since the total energy of the polymer is a sum of many random variables (contact energies),

it is approximately a Gaussian random variable with probability distribution

1 j~2
~~~~

(27r~hE2)1/2
~~~~ 2~hE2~' ~~'~~
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with variance in energy ~hE~
=

NzNe~, where zN is the number of contacts per monouier, and

e is the width of the Gaussian energy distribution of a single contact (which sets the roughness

energy scale of the random energy uiodel). If
we pick two different states of the polynier, and

ask for the joint probability of state I having energy Ei and state j having energy Ej, the

answer will depend on the two energy values chosen and also on how siniilar the states I and

j are. Because the energy is a sum of pair terms, the appropriate measure of similarity is the

overlap parameter q, defined as the fraction of contacts the two states I and j have in common

~ NzN
(~ °~~°~"' ~~'~~

where £~~~ a[~
=

£~~~ a[~
=

NzN.

Given two configurations (a[~ and (a[~ ), the probability that they have energies Ei and

Ej respectively is given by

(~ ilG ~i ii°uni)1~ i~J ~ ii°ini)i i'

where (. means an average over the bond energy distributions. Performing this average gives
the same joint probability distribution as in the GREM [18j

so that applying the thermodynamics of the GREM to the RHP with Gaussian interaction

distributions gives an accurate measure of the free energy up to pair correlations of the partition
function (Z (T) Z (T')).

By choosing a particular state I with energy Ei, we can study the thermodynamics of the

system relative to this state (Ej
=

E). We eventually wish to find the escape time from state

I via a barrier crossing process. To this end we obtain the free energy relative to this state,
parameterized by the similarity q. A free energy F(q) as a function of q (see Fig. 4 for some

possible curves) implies a collection of states at any q, since many states can have overlap

q with I. This is the idea behind the transition state ensemble used for couiplete folding of

minimally frustrated systems (see [16j and references therein). So there are many possible
kinetic paths of escape from I, the number being determined by the configurational entropy

Sc(q) at similarity q. In a calculation of the Sc(q) [lsj (summarized briefly in Appendix A),

we found that for small polymers, the entropy follows an approximately linear form, I.e.

sc(q)
=

so (i q) (2.5)

For larger polymers, the configurational entropy is approximated by a bi-linear (piece-wise
linear) form, I-e-

Sc(q)
=

So aq for q < qo

Sc(Q)
"

'f(l Q) for q > qo (2.6)

with j~tj < )a), or equivalently

S<
=

St ~~° ~~~
(q qt q < qts/

S>
=

St (q qt) q > qt (2.7)
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with St < So (I qf). We will use either of these notations depending on which one is more

advantageous in elucidating the results. Here go " q~ is the approximate crossover point where

the entropic behavior changes from bond formation to sequence melting [15] (see Appendix A).
The energies of the states at q are distributed according to equation (2.4), so that the

microcanonical entropy is given by [25j

S(E, q, Ei) Q in
exp

[Sc(q)]
~

)j(j~~~ (2.8)

In this model there is no explicit overlap q' between states in the stratum at q, so that their

correlations with each other are not considered. The mean and width of the Gaussian distribu-

tion of energies for the states at q are explicitly q dependent due to their correlations with state

I, but in writing (2.8) we assume the relative fluctuations in n(E, q, Ei)
= exp S(E, q, Ei) are

negligible, and n(E, q, E;) may be replaced by its average in the argument of the log (hence the

REM stratum model). This assumption is still reasonable when the number of states is large,
but for smaller n(E, q, E~), it becomes important to investigate the distribution P in (E, q, E~)),

or at least moments beyond the first, e.g. in (Ei, q, E,)n(E2, Q, Ei)). Another point to mention

regarding (2.8) is that the description allows for the existence of "non-ultrametric" states hav-

ing less overlap with each other than they do with state I. This description can be said to be

accurate when uncorrelated states (with q12 =
0 for states I and 2) predominate the number

distribution.

Proceeding within the REM strata model, we use the thermodynamic condition I IT
=

05(E, q, E,) /0E to obtain the thermal energy and the thermal entropy [26]

E (q, T)
=

qE~ ~)~ (l q~)

S (q, T)
=

Sc(q) f~)( (I q~) (2.9)

from which the free energy of the band of states having overlap q with a given one can now be

written as
~

Frs (q, Tl
=

qEi Tsclql
$ Ii q~) for T > Tc iq)

,

12.io)

where TG IQ) is given in equation (3.3). A free energy of this form was used to describe the

barrier in the folding transition [16j.
The free energy obtained this way has in it the a prioTi assertion that there exists a state I

with energy Ei, which induces or designs the aspect of minimal frustration into the heteropoly-

mer. This, coupled with the fact that there can exist states with overlaps < q at each stratum

(non-ultrarnetric states), allows there to be states with lower energy than the REM ground
state E(s

=
2So/~E2. This comes about because the ground state of the collection of

states having overlap q with I (E;
=

E(~) is actually lower than E(~, due to the fact that the

correlated average of the distribution approaches E(~ faster than its width decreases due to

the REM stratum approximation. Because of this the barrier comes from deep states that are

correlated to I, but only weakly correlated to each other. Clearly the barrier in this case must

be interpreted as escape from a basin of attraction rather than a specific state. The problem of

minimizing the number of these states which are correlated but distinct from a designed state

is related to the problem of negative design. This effect of a correlated landscape was recently
investigated in the context of optimized Hamiltonian approaches to structure prediction [27j.

For strata of highly similar states, it becomes increasingly likely that states in this band

are
correlated to each other as well. In this regime, an ultrarnetric structure is a better
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approximation to the organization of states of the heteropolymer. To this end we approximate
the free energy of the heteropolymer using the GREM hierarchy, which attributes contributions

to the energies of states on each branch of the ultrametric tree (see Ref. [18j and Appendix
B). This model has a well-defined ground state energy, and we expect that the escape barriers,
which in the RSM came from ultrametricity-breaking of meta-stable states, will be significantly
modified.

Appendix B contains calculations of: I) the distribution of escape times from a metastable

state at temperature T, 2) The distribution of free energy functions relative to a state I with

energy E~, both calculated in the context of the GREM, with an ultrametric organization of

states. The most probable form of the free energy as a function of q obtained there is

Fu(q, T)
=

qE~ TSC(q)
~~~

ii q) T > T(. (2.ll)

3. Ground States and Glass TeTnperatures

Below Tg, the kinetics is non-self averaging in that the rate of escape from a kinetic trap depends
not just on its energy but differs from one trap to another. More elaborate tools need to be

developed in order to account for these non-self-averaging effects, which have applications
to both molecqlar evolution and combinatorial synthesis. However we can make significant
headway by investigating the energies at the boundaries of statistical distributions of states,
and the temperatures at which the system is frozen into these energies.

The ground state of the system is the energy at which the number of states

n(E)
= exp (So P (E) m O II), where So is essentially the total number of states and PIE) is

given by equation (2.2):

E(s
=

~@@. (3.I)

The system reaches the negative root of (3.I) at temperature T$
=

~hE2 / (2So).
Asserting the existence of a state I with energy Ej modifies the ground state energies.

For the RS model, the ground state in each stratum q is the energy where the exponent
of (2.8)

=
0,

EGS (q)
=

qE~ ~ ~/2~hE2 II q2) Sc (q) (3.2)

which the system reaches at the q dependent glass temperature

~(3.3)
(1 Q~) /~E

TG (q)
" 2Sc (q)

For illustration, we approximate the configurational entropy as a linear function of con-

straint q, Sc(q)
=

So(I q) Ian accurate approximation for small polymers), and assume

a designed ground state I with Ei
=

E(s. The RS model predicts that the designed state

freezes first at v§Tj, and then a gradual freezing oicurs outward from the state I at Tjr'~a~
=

Ill + q) ~hE2 / (2So) to which the system is frozen into energy E[]~~~(q)
=

Ecs IQ + (I q)
@@), until a ground state at q =

0 of E(s is frozen in at T(. The free energy at T( then

has a minimum at q Q 0.48 of Q I.llE(s and maxima at q =
0 and q =

I of E[s.
In an ultrametric model we can somewhat more rigorously investigate the freezing of pairs

of states with overlap q. Let two states a
and b have energies Ea

=
#< + #[ and Eb

=
4< + #§

(as in Fig. 5 with #[
=

#[ and #>
=

#§). The log number of pairs with overlap q is

SpAiRs
=

So + Sc(q). The ground state energy of #< at q, for two states having energies Ea
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and Eb, is the value of fi< where the log number of pairs

~ ~~ ~~~'~°'~~~ ~° ~ ~~ ~~~ 2~E2 ~~ ~ ~~i -~~~ ~
~~l -~ ~~

vanishes. This gives

#(S
=

~ ~~~ ~ ~~~
~

~~~
[2 (1 q~) (So + Sc (q) ~hE~ (E( 2qEaEb + El)] ~~~ (3.4)

1+ q
+~

For a, b two ground states and a linear Sc(q), #(~ in (3.4) is frozen into its most probable value

(see Eq. (B.I))
#(S (q)

=

qE(s (3.5)

at a temperature given by

0 In Qq ii<, Ea, Eb
~ 04< jjs

or

~~~
/~

~~. (~.~)
°

An analogous calculation gives #)S
=

ii q) E(~ at T£>
=

~hE2 / (2So). So for an ultra-

metric model with a linear Sc(q), the freezing is q independent and equal to Tj,
as would be

the case from a direct calculation in the GREM model [18j. The q-independent free energy for

T < T( is equal to E(s,
so there are no states with lower energy than E[s. This will have

consequences for the kinetic escape barrier above T(, discussed in the next section.

4. Barriers and Escape Times for STnall PolyTners

In this section we calculate the mean escape time (T (T)) from a basin of attraction for a

small RHP, I, e. the average time required for the RHP to reconfigure to unrelated states by an

activated transition out of the basin of attraction. The inverse of this quantity is approximately
equal to the diffusion constant on a rugged but correlated landscape.

For small polymers such as those describable by 27-mer lattice models, Plotkin, Wang,
and Wolynes [lsj have shown that the configurational entropy crudely approximates a linear

function of constraint q (2.5). The mapping to lattice models should apply to significantly
larger proteins than the sequence length of the corresponding lattice model, depending on the

amount of secondary structure present [4].
For an ultrametric model, it is simple to see that for a purely linear configurational entropy

there are no escape barriers above the thermodynamic glass temperature; barriers only appear
below TG when the system is in the glass phase. The free energy (2.ll) is a linear function of

q with slope
~£ j~2

~~° ~
2T

~ ~

Now the largest escape barriers would occur when Ei happens to be a ground state, E~
=

E(s.
Letting T

=
XT( where

x > I, this slope becomes
cc

(-2 + x + I /x), which is > 0 for all x > I

(all T > T[). Then the maximum of the free energy F is at the state itself (q
=

I) and escape

is always a downhill diffusive process, with no activation barrier.
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The situation is significantly different when the free energy is better approximated by REM

strata cf. Eq. (2,10)). For the purpose of obtaining escape times, we have set fl(Q)
=

0 and

~hE2 (Q)
=

~hE~ to simplify the calculation. We first note that because of the gradual onset of

freezing (see comments after Eq. (3.3)) starting at viT( down to T[, The free energy (2.10)
is split into three temperature regimes:

T >V§T( F=Fm(q,E~,T)=qEj-TSO(I-q)-~~~(l-q~)

~o ~ ~ ~
/~o F

=
Fm lq, Ei, T) q < qG IT)

~ ~ F
=

Ff IQ, Ei)
=

qE~ Ii q) ~/2so~E2 ii + q) q > qc jTj

T <T( F=EGS=-fi~(q+(I-q)fi) (4.I)

where qG (T)
=

(2SoT~/~hE~) I is the q value at temperature T where the frozen and

unfrozen "melted") free energy meet, I.e. the inverse of TG (q) (Eq. (3.3) with a linear Sc(q)).
We seek the diffusion constant on the rough landscape of an RHP, approximated as

D(T)
m

II jr (T)), by calculating the mean escape time jr (T)) at temperature T:

IT IT))
= /(~~ dEiP lEi, TIT lE~, T) 14.2)

where P (E~, T) is the thermal distribution of energies at temperature T (see Eq. (B.6)), and

r
(Ei,T) is defined below. The structure of the free energy in this model is such that there

exists a free energy minimum at a value of q e ql between q =
0 and q =

I. The barrier to

escape from a given state (q
=

I) to unrelated states (q
=

0) is then just F(q
=

0) F (ql).
The escape time from a metastable state of energy E~ is essentially a Boltzmann factor of the

activation energy, times the number of ways to cross the barrier:

r (E~, T)
= To exp (~ ~~ ~'~~ ~ ~~~'~'~~ l(4.3)

~

where for proteins To is on the order of micro seconds [24j. The largest contributions to jr IT)
in (4.2) come from low energy states that have a barrier to escape. Higher energies that have

no barrier (downhill) have escape times Gt To

For purposes of calculation, we scale the temperature and energy to be in units of the REM

glass temperature and REM ground state:

T
=

xT( XII

E
=

vEis
=

-y@W o I v I I 14.41

First note that there are typically no macroscopic barriers above viT(. The argument is as

follows: for typical thermal energies E~
=

-~hE~ IT, the high temperature free energy (4.I)

is cc
j-x I/x) + q ix 2/x) + q~ lx. There is no macroscopic barrier when the free energy

minimum 0F/0q
=

0 occurs at ql
=

0 or x =

vi. So above T
=

viT(, kinetics is typically

non-activated.

A more detailed calculation in Appendix C using equation (4.2) achieves the same result, plus

the result that precisely at T
=

v§Tj, the mean escape time scales as a power law in system

size ((r (v§T()
+~

tJ (N~/~)). We mention again that in calculating the mean escape time,
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the integral over the region having an activation barrier dominates, and this region determines

the limits of the integral.
For temperatures Tj < T <

v§T( where the system is partially frozen, the free energy (4.I)
is split into two regimes: melted below qG lx)

=

x~ I and frozen above qG lx). Even within this

temperaturb range the calculation of the barrier and corresponding escape time must be split
again into two temperature regions. The higher temperature region is defined by qG lx) > ql
iv

=
I), which means that the minimum of the free energy is always in the melted region (since

ql iv)
= x (2y x) /2 < ql II )), and the barrier is always calculated from Fm in equation (4.I).

Then the form of the expression for the escape time is identical to that above v§T(, but

the expressions in the exponent are now > 0, resulting in barriers that are now exponentially
large below v§T(. The crossover temperature x#T(

occurs when qG (x#)
=

ql (y
=

I, x#)
or

x#
=

(I + vi) /3. Below this temperature of Q 1.22 T(, there are energies where the escape

barrier must be calculated between the frozen minimum Ff (q =
ql), and the melted maximum

Fm (q
=

0). Expressions for the escape time in this temperature regime are split into two terms,

one contribution from high energies and one
from low energies. As the temperature approaches

T( the mean escape time becomes

IT lTt)I
=

j exP1°.225 x So) 14.5)

and the activation energy (energetic barrier) to jump from trap to trap is

~hF (T()
=

~hE (T() a 0.l126 )E(s (4.6)

The escape time here is significantly smaller than in the REM, where (r (T()
~~

= To exp So,
although in both cases the escape barrier scales exponentially with system ~size N. For a

27-mer, (r (T())
m 2 x 10~To, whereas (7 (T())~~~ m 10~~ro. A correlated landscape is

smoother, which results in a reduced search time. A consequence of this is that the number

TF/TG, which characterizes the degree of minimal frustration in a heteropolymer, does not

need to be so large for natural proteins as would appear from previous estimates based on the

REM. The escape barrier at T( for a correlated landscape is also smaller than in the REM

(~hEr~m
=

T]So
=

EGS/2).
Figure 1 shows the log of the average diffusion time in units of To versus reduced temperature

x =

TIT(, using the parameter So appropriate for
a collapsed 27-mer (So

=
0.9 x 27). For the

correlated landscape the results of the calculation of Appendix C can be summarized as

To for v§TG
< T

To CTG ~~ (§i + I) TG T(
2fi$ T

~~~ ~~°
T T2

(~ (j~)) ~ (~ j~ /j~ 3j~2 ~j~2
+ ~~ l exp So

4 @ j)
for TG < T < v§TG

2 (T /TG) T 4T~

2~k lc l) ~~~ ~~° ~~~ ~~ ~°~ ~ ~ ~~

~
(4.7)

where TG %
T(

=
~hE2 / (2So), and c and gi are defined in Appendix C and are numerically

given by c Gt 1.477 and gi H 1.l13. We mention again that we neglect the coupling of polymer
density with temperature, which can play a significant role. Also plotted in Figure I are
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the results from the uncorrelated random energy landscape [3j:

~~ ~~~~~~~
To exp

So
2
() j) ~ OT]j

for TG < T < 2TG '

~~'~~

G

To exp So for T < TG

and the results from simulations on the 27-mer [5j measuring the diffusion constant for a

specific 3-letter sequence II ID is plotted here, where D
=

~hQ2 /room m I/room is the diffusion

constant in Q-space). Our theory does not estimate the number To in the simulations, which

depends on the details of the move set. Hence the values of the simulation data are normalized

so that at high temperatures the measufied correlation time coincides with To, the barrier-less

escape time. Notice that the escape time on the correlated landscape is much lower than

the uncorrelated result. In addition there is a temperature TA above which kinetics is non-

activated, again differing from the REM. Escape times calculated for the correlated model by
the analytic theory underestimate the escape times obtained in lattice simulations, but are

much closer to the simulated values than the simple REM results.

Notice again that the diffusion time drops to To at v§T(, where the dynamics is no longer
activated. Thus the correlated energy model possesses a transition which the REM does not,

from
a high temperature regime with essentially no escape barriers to a low temperature regime

with escape barriers. This kind of behaviour with two characteristic temperatures (Tg and TA)
is expected for the Potts glass and some of the more sophisticated models of the random

heteropolymer [12, 20j. The behavior in the correlated energy model considered here is similar,
but the transition is not sharp for finite N. There are always some activated transitions from

traps.

For studying the special case of diffusion in a minimally frustrated polymer, we let Q rep-

resent the overlap with the native state, and q represent overlap among states with a given Q
(there

are still many conformational states with a given overlap Q with respect to the native

state). In other words, folding progresses along the native order parameter by a typically
activated diffusional rate R(Q), which is evaluated by finding the escape time of meta-stable

states at each stratum Q. In each stratum, the energy distribution of states is given by

P(E~)
m exp (E~ E (Q))~ /2~hE2 IQ)

,

and the configurational entropy is S(Q). In gen-

eral, states must have energies higher than E)~
=

E(Q) ~/2~hE2(Q)S(Q) and lower than

E)+
=

fi + ~/2~hE2(Q)S(Q), where the statistical numbers are macroscopic.

To a first approximation, the folding time of a minimally frustrated heteropolymer can then

be estimated as

~°~~ " i~~
~

~~~ ~~~ ~~~~ ~~'~~

where ~hF
=

F(Q) F(Qunfoid) is the thermodynamic folding free energy barrier, and
r

IQ) is

the escape (diffusion) time in a particular stratum of similarity Q to the ground state. It is this

quantity T(Q) which is calculated below. The REM estimate for the escape time is given by

equation (4.8). The calculations in the remainder of this paper improve on these estimates of

the escape time (the exponentially large prefactor to the folding time due to transient trapping

in Eq. (4.9)), by taking into account correlations in the energy landscape. The time r(Q)
is related to the diffusion constant D in the Kramers theory of folding [5] by r(Q)

m I ID,
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to within a constant of order one determined by the mean squared change ofthe order parameter
in a single escape event.

5. Barriers and Escape TiTnes for Larger HeteropolyTners

As mentioned in Section 2, the configurational entropy for larger polymers can be approximated
by a bilinear form [lsj (cf. Eqs. (2.6, 2.7)). We can proceed with this form of the entropy to

find the average diffusion time at temperature T for larger heteropolymers. Here the effects of

the form of the configurational entropy on the kinetic glass temperature can be readily seen,
and in the appropriate limit the REl/I result can be re-obtained.

5.I. DiffusioN AMONG ULTRAMETRICALLY ORGANIzED STATES. The analysis is similar

to that in the previous section with the simplification that the free energy is linear in q, however

it is a piece-wise function of q. Using the scaling in equation (4.4), the piece-wise free energy
relative to state I with energy E~ is

~
@j I jl Stj x jj

~ 2
~ x~~ x~

So qt ~Y ~~~

fit St I I St
~~

~

2
~soli-qtl~~i~~ i~soli-qtl~~~~ ~~~' ~~'~~

This piece-wise linear free energy has no escape barrier from I at q =
I when the slope of F>

is > 0. This occurs naturally at high energies or y < yA (x) where

~~ ~~~ 2So

~~-
qtj ~ + lx ~~'~~

Equation (5.2) sets an upper limit to the energies contributing to the escape time.

Using the typical (thermal) energies at temperature T in (5.2), I.e. E~
=

-~hE2 IT or

yA =
I /fA, gives a crude estimate of the temperature flA above which escape barriers vanish

and kinetics is non-activated. While this estimate will turn out not to give very accurate

numerical values of the kinetic transition temperature TA, it is useful in describing the trends

in TA in the limits of linear configurational entropy (St /So
=

I qt) and a cratered, REM-like
landscape (St,qt

~ 0). The results will be numerically crude because energies deeper than

the thermal energy contribute most to the escape time.

Solving (5.2) for fA gives

xi
=

[
=

fi
G

or

y
~

~ 2St
(5.3)

Note IA
~ cc when St

~ 0. Losing all the entropy at qt
means that the system must

jump out of a large energetic barrier before it gains entropy to compensate (but note in this

approximation q' needs not ~ 0). This means that effectively
we have a "cratered" free energy

landscape, on which kinetics is always activated at all temperatures. This limit reproduces the

result of the REM analysis, which also has such a pock-marked landscape because states are

uncorrelated, and there is no "knowledge" of the existence of a low energy state until that

state is reached.
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When St /So
=

I qt, Sc(q) is a purely linear function of q. For this special case flA
=

T]
as obtained in the last section, and there are no activation barriers until T < T(. Energetic
losses are always exactly balanced by entropic gains. A more accurate calculation of TA will

be given below.

Equation (5.3) is precisely the higher temperature scale of the two step GREM for a given
bilinear Sc(q). [18j Following Derrida's analysis of the GREM, a bilinear Sc(q) with St /So <

I qt, has only one thermodynamic glass temperature T(
=

~hE2/(2So) above which the

system is in its unfrozen phase. The above analysis gives significance to the higher temperature
TA, which did not enter into the thermodynamic analyses.

The barrier height (over T) to escape from a state I at temperature XT( is

~hF 2 (1- qt) St (I qt)
I ~°

x

~ So x2
~~'~~

which vanishes for high energy states Ei > yAE(~, and is largest at T(
x =

I and y =
I)

when it is given by

/~F
-

fit
Ii Qt

II
15.51

Note that (5.5) equals the REM barrier of T] So
=

E(~ /2 when St, qt ~ 0 (again,
a cratered

landscape), and that when St /So
=

I qt la linear Sc(q)), ~hF
=

0, as obtained in the last

section.

The average escape time from equation (4.2) is then

i~ (xii
- ro lo exp -so

II
+

I II
x

[<~,
dv exP So 2Y ~~

~~~ ~i

=

j
exp s~

2 3qt + ~t 2 ~~

~~ So

~~~ ~
(2 qt

~j

~~~~
° ~

~~~
i

~~t
~~ ~~

The integral is dominated by the ground state energy y =
I, I.e. the lowest energies contribute

most to the average escape time. Using a large N approximation for the error functions, the

mean escape (diffusion) time for a long RHP with ultrametric states is given by

To
for TA < T

~fi 12
q~)

j
II

~~~~~~~
~~P~0(2(2~~~)~/~(2~~~)~ ~~

~~~~G~~~~~

~A ii ~ti -~
exP So Ii ~t Ill for T < TG

IS-?)

where TG e
T(. TA, the temperature above which kinetics is typically non-activated, is given

by the vanishing of the exponent in IS.?)

y~~ m

~~ ~
~f + (~ qf) (i qf

~~ l. (5_8)
1 + (~~/~0) ~0
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Fig. 2. The escape time in the correlated model approaches the REM result in the limit of a cratered

landscape. Plotted here is equation (5.6) with the parameters of a typical 64-mer So G£ 0.9 x 64,
Si

=
0A x 640 and qi

=
0.290, where a =

1, 2/3,1/3, 0. The a =
0 result essentially coincides with

the REM result, with the small deviation coming from the prefactor.

The point iA given earlier (fA in Eq. (5.3)) is a point of inflection for the curve marking the

onset of the decay of activation barriers for a finite system. However the escape time at these

temperatures is still large. More accurate values of TA can be obtained from (5.8), which give
good agreement to the temperature where jr (x)) becomes Gt To It can be seen from (5.8) that

when the configurational entropy is purely linear (St /So
=

1- qt), TA ~
T(,

as obtained in the

previous section. When Sc(q) is linear (St /So
=

I qt), the escape times are non-exponential
and scale as +~

N~~/2.

When St, qf ~ 0 the free energy landscape is highly cratered, and the escape time becomes

(~ (j~0 $
~0

~SQ (~ g)
G ~ ~~

which reproduces the REM scaling with entropy. In other words, even though the landscape is

correlated, the escape time agrees with the REM because the polymer must entirely reconfigure

to escape a kinetic trap there is little entropic gain until many bonds are broken. To obtain

the behavior of TA in the limit of
a cratered landscape, we must use equation (5.6) rather

than IS.?) since xA is large and thus the error functions are small but not insignificant. For

St, qt ~ 0, the value of y maximizing the integrand in (5.7) is ymax =
2 lx (the energies with

largest contribution become the statistically most probable energies for a cratered landscape),
from which (5.7) becomes

jr (x))~~~~
+~ exp (~)

,

(5.10)
x

from which we can see that kinetics is still activated as in the Ferry law, with exponentially
large barriers, until x ~ cc or TA ~ cc.

The mean escape time from a basin of attraction, as given by equations (5.6, 5.7) is signifi-
cantly less than the REM. In Figure 2, results are shown using equation (5.6) for the 64-mer

with S(~ Gt 0.4 x 64 and q(~ Gt 0.29. Results are also plotted as the landscape goes over to the

REM (cratered) one, by taking St
=

oS(~ and qt
=

oq(~ and letting a ~ 0.

The log of the mean escape time, using parameters appropriate for the 64-mer and 125-mer

in equation (5.6), are shown in Figures 3a and 3b. The steepest descents approximation (5.7)
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Fig. 3. al Logarithm of average diffusion (escape) time for the correlated landscape model of a 64

mer RHP versus reduced temperature x =

TIT(. A bi-linear approximation to the configurational
entropy is used, with total entropy So * 0.9 x 64. Solid line: (T ix)) for the ultrametric model.

Dashed line: (T ix)) for the REM stratum approximation. (The parameters used in the bilinear

entropy formulae (2.6, 2.7)
are o =

64 x 1.55, 1= 64 x 0.56, or
Si

=
0.4 x 64 and qi

=
0.29.) b)

Average escape time from a basin for a correlated landscape imitating a 125-mer. The curves are as

in the 64-mer case.
(The parameters used in the bilinear entropy formulae (2.6, 2.7) are a =

125 x 2,

1= 125 x 0.48, Si
=

0.36 x 125 and qt
=

0.24).

is nearly coincident with equation IS.6). Also plotted are the results of the RS model, described

in the next section.

5.2. DiffusioN IN THE UNCORRELATED STRATUM APPROXIMATION. The methods and

results of this section are somewhat involved, and the reader less interested in the detailed

calculation may skip to the illustrative numerical results.

Now let us again examine the free energy expression as function of q, T and E~ in the

uncorrelated stratum approximation (Eq. (2.10)). Knowing the free energy, we can calculate

the rate for escaping from a given reference state of the energy E~. To start, we search for the

extrema of the free energy. The maximum of the free energy locates the barrier for the escape

from a particular deep state we have chosen. Then the diffusion constant or mean life time

can be calculated. The transition state position ql, where the maximum occurs, defines the

kinetic size of the basin of attraction for the given state. States inside this range (ql < q < I)
have to overcome a free energy barrier to move to another basin. The new basin will be almost

uncorrelated to the current one. We locate the barrier by taking the derivative of the free

energy and setting it equal to zero. For a reference state with energy E~, this gives:

Ei + ~hE~q IT TdS/dq
=

0. (5.ll)

With the piece-wise linear entropy expression that mimics the random heteropolyiner, this

gives for q < qt:

~llin
"

~~ )ji~~ 15.121

and for q > qt:

q$j~
=

~~ ~
jj'~~~. (5.13)
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Fig. 4. The 9 possible situations of the free energies versus overlap or fraction of contacts q are

shown for the piece-wise linear approximation for the entropy.

It turns out that in these two regions the free energy may exhibit a minimum, but the only
possible maximum will be at either qt where the low entropy formula and high entropy formula

meet or at two ends (q
=

0 and q =
I). A variety of cases must be analyzed since the two

minima at q[~~ and q$~~ behave differently in several different regimes. We give the detailed

discussion in Appendix D.

We can classify the form of the free energy for all possible temperatures, reference energy
and overlap regimes into 9 possible situations summarized in Figure 4. Detailed results for the

various cases are shown in the Appendix D.

For the situation where the free energy in the high q regime is monotonically increasing and

the free energy in the low q regime is either monotonically increasing (situation 6), monoton-

ically decreasing (situation 5) or having a minimum (situation 4) of Appendix D, there is no

barrier to escape away from the chosen state E~. The general expressions of the parts of the

thermally averaged escape time contributed by the given ranges of energies can be written as

(assuming E(Q)
=

0 and ~hE(Q)
=

~hE):

~/4>,<5j,<6) =

/
rap(E Tj ~o

~hE2 + TX

~
~~ Vi~hET (5,14)

X is the integration limit of the energy E~, given in the Appendix D.

For the situation where free energy in the high q regime is monotonically decreasing and

free energy in the low q regime is either monotonically increasing (situation 9), monotonically
decreasing (situation 8) or having a minimum (situation 7), there is indeed a barrier for escape.
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For the situations (7) and (9) of Appendix D, the barrier is given by F(q =qt) -F(q
=

I),
this contribution to the escape time from the appropriate energy ranges is

r(~j
~g~

=

fro exp[ ~~~"~ ]p(E, T),

~j~~ ~~, =

+ expi j~11 qtj2 ~ji qt)ierfi~E~ijjjj ~'~i isis)

where X is the integration limit for the energy E~, given in the Appendix D.

For situation (8) of Appendix D, the free energy barrier is given by F(q
=

0) F(q
=

I), the

escape time contribution to the given energy range is r(~j =

fro exp[ ~ ~"~ ]p(E, T).
The result is:

~~~ ~~~~~~ ~°~~~~~~~~~~ ~~'~~~

where X is the integration limit for energy E~, given in the Appendix D.

For the situation where the free energy in the high q regime gives a minimum while the

free energy in the low q regime is either monotonically increasing (situation 3), monotonically
decreasing (situation 2) or has a minimum (situation I), there is again a barrier for escape
from the vicinity of the minimum. This gives results similar to those discussed just above.

For situation II) and (3) of the Appendix D, the free energy barrier is given by
F(q

=

qt) F(q
=

qmin) where qmin is the minimum of F(q) at q > qt. The escape time

contribution to the gi,>en energy range is r(~j ~~j =

fro exp[~~~"~~J~j$~~"~~'~~]p(E, T). The

result is: '

where X is the integration limit for E~, given in the Appendix D.

For situation (2), the free energy barrier is given by F(q
=

0) F(q
=

qmm) where qmin is

the minimum of F(q) at q > qt. The escape time contribution to the given energy range is

r(~> =
fexpjf(Q=Q~J-JIQ=Qm,n)jpjE, T). The result is:

~~~ /fi(~~~~hE2) ~~~~'~ ~° ~'~~~~~~~~~~~ ~~~~~~~~~~

x exp[(~tT/(~hE~) I /T)X] (5.18)

where X is the integration limit for energy E~, given in the Appendix D.

The thermally averaged escape time from traps is contributed from the combinations of rjij,

r~2>, r~~,, T(4j, r~sj, r~sj, r~7j, rjs, and r~g, (see details give in the Appendix D).
To determine the configurational diffusion coefficient, we must discuss also the integration

limits on the energy E~. There are six energy values which control whether the free energy in

region of q < qf and q > qf is monotonically increasing, decreasing or exhibits a minimum.

These six energy values are: El
=

-q~~hE2 IT oT, E2
=

-aT, E3
=

-~hE~ IT ~tT,

E4
=

-q~~hE2 IT ~tT, El
#

-fiW and Eh
#

fiW. The differing orders of these

energies values in different temperature ranges naturally define the integration limits for the

average escape times.

The algebraic results for escape times in the different temperature ranges are shown in

Appendix D.
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5.3. ILLUSTRATIVE NUMERICAL RESULTS. When we increase the size of a RHP, a bi-

linear form well approximates the configurational entropy, with parameters a
and ~t

(or qf

and Stj adjusted to fit the actual entropy curve as calculated by the methods summarized

in Appendix A. To illustrate the results, the average escape time versus reduced temperature

T/TG is shown in Figure 3a for 64 mers and Figure 3b for 125 mers (in the case of
a > i and

qt < 0.5).
We again see that the average escape time still does not follow the Arrhenius law. As tem-

perature is lowered, the escape time exponentially grows leading to effective kinetic trapping.
The results obtained by the RSM and ultrametric models become more comparable as chain

length increases. In both cases correlation effects result in a significantly smaller escape time

than for landscapes without correlations. There exists an N dependent temperature TA (given
in the ultrametric case by Eq. (5.8)) above the thermodynamic glass transition temperature

where the dynamics becomes non-activated, and the diffusion time approaches To

6. Conclusion and Discussion

We have given a
detailed analysis of the kinetics of a locally connected generalized random

energy model using the random heteropolymer as an illustration. However, the methods used

here can be readily applied to study dynamics in any rugged system, e.g. spin glasses. We can

see that the escape time for a correlated energy landscape is shorter than for an uncorrelated

surface, the search time at Tg being reduced but still exponential in the size of the system. The

distribution of escape times for an ultrametric RHP was obtained. A second temperature scale

emerges in the analyses, analogous to the temperature TA in Potts spin-glasses above which

kinetics is non-activated.

The calculation of the configurational diffusion or escape time on a non-biased correlated

energy landscape in this paper can be straightforwardly generalized to study minimally frus-

trated protein folding, where biasing towards the folded state (minimum frustration) is also

taken into account. We leave the detailed treatment of this to issue to future work.

Trap escape and unfolding are mathematically analogous, in that escaping from a large
basin or funnel on the energy landscape must involve escaping from a series of smaller basins

or funnels, as in the minimally frustrated problem. Escaping from
a macro funnel requires

escape from a series of micro funnels, which requires escaping from nano funnels, etc. until the

escape time from the smallest basins or funnels reaches the fundamental microscopic time scale.

In this paper, we have renormalized all smaller basin escapes into the microscopic time scale To

A more complete treatment of diffusion on a rugged landscape would require a renormalization

group analysis for the diffusion rate in a hierarchy of funnels, which we leave to future work.

The result presented here probably overestimates the trapping escape rate while the random

energy model result clearly underestimates it. Thus for example the temperature TA, even

for 27-mers, may well exceed T(
as suggested also by replica variational methods [22j. We

also point out that topological constraints in longer chains will increase the barriers over the

present illustrative results which assume no such prohibitions on kinetics.

The present methods and results, by including correlations, continue beyond the REM in

describing diffusion on a rugged landscape. The formalism can flexibly include detailed poly-
meric effects only sketched here. We believe it should be a valuable next step in understanding
complex free energy landscape models both for biopolymers and other systems.
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Appendix A

We sketch here the calculation of the configurational entropy Sc(q), and refer the interested

reader to our earlier work [lsj.
In the low overlap q limit, that is for a weakly constrained polymer, the entropy can be

decomposed into several terms:

sl
"

sclfl) + ~scontact + ~smix + ~SAB' (A.i)

The first term is the entropy of all states given a specified degree of collapse. It is purely a

function of packing fraction q [19j

~
Uo

~/
l)

II ~~ ~~Sc in)
= °g j

q
°~ ~

The second term comes from the loss of entropy involved in formation of specific individual

contacts:

~hscontact
=

~Nq~z [log C I + log(qz~)j (A.3)

where C
=

)($)~/~, jr is the volume corresponding to the interaction range or the bond

distance between two residues, b is the persistence length of the polymer.
The third term comes from the combinatorics of choosing which q, z, i N contacts overlap

with a total of z~N contacts in the collapsed state. z is the near neighbor coordination number

and N is the total number of monomers in the polymer.

~hsmix
=

-Nz~ [q log q + II q) log(I q)j. (A.4)

The fourth term is associated with the fact Nz~ qNz~ contacts of the reference state must

not have been formed so that the overlap is no more than q:

~ c~

/~SAB
- u

~~~
dxi°~ii x~/~i IASi

The effect of confinement of the polymer chain is to change the constant in this expression
from C to C' where C'

=
(12/7r) (jr /b~)~/~). (This term cancels to some extent the coIi1bina-

torial term.

Notice that there is a value of q less than one, qv, at which Si (qv)
=

0. This value qv +~

II (z~)
is rather close to where the entropy of a given contact pattern in the mean field would vanish.

It is related to the Flory [28j vulcanization value for contacts. Somewhat before this point

the polymer is overconstrained and the counting arguments used in deriving the expression
for entropy above are invalid. For 27 mer lattices qv is close to one. But for large polymers,

qv becomes significantly less than one. The weak constraint assumption breaks down near

qv. Important configurations with q > qv must have significant clustering of the contacts or

equivalently melted out regions. The dilute contact representation is not good for such large

q, so another approximation was developed to take into account the fact that contacts must be

formed or broken simultaneously in groups. For q > qv this melting out is described by changing

the representation for low q in terms of an interacting gas of contacts to, at high q, an atomistic

description in which the reference state is one where all the contacts are formed. Here entropy

arises because contiguous parts of the frozen polymer are melted out and unconstrained. The

melted parts carry a certain entropy but there is also a combinatorial entropy associated with

the choice of the different places where a given melted piece can occur along the sequence of

the polymer. A complete form of the entropy taking into account also the end effects was thus

obtained [15j.
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Fig. 5. Diagram of the GREM hierarchy used in the ultrarnetric model.

Appendix B

Consider the GREl/I hierarchy in Figure 5. Suppose we find a state with energy Ei and look

for the free energy relative to it as a function of q. We do this in order to find the escape time

from I. As in Figure 5,

E~
=

fi< + fi[ and E
=

fi< + fi>.

We wish to find the number of states with energy E and overlap q with state I, N (E, q, Ej).
This depends on how much energy came from d<, since both E~ and E have this contribution.

For the ensemble of states with energy E~, the distribution of fi< is given by the conditional

probability distribution

p (~j~ E~)
~~~ 2/~2q) ~~~ 2~)2

~ ~)

~ ~~~ ~~~~
P ()~) ~ E)

~~~ 2~hE2

" ~~~ 2~~2q
~~~)~

~~'~~

(Notice (B.I) has the correct limits of d (fi<) and d (fi< E~) when q ~ 0 and q ~ l respec-

tively.) Now suppose we have found a state I with E~ and a given contribution fi<. The log
number of states having overlap q with it and energy E are

in N (E, q, E~)
~

s~ (qj ~j[j (<i~
iB.2j

with fi< chosen from the distribution (B.I). Using I IT
=

0 In N/0E gives the free energy

F jq, 4<)
"

4< TSC l~l $~
~~ ~~' ~~ ~~

so that the escape time for a given realization of fi<, E~, is

T = To exp (~ ~~j ~
(B.4)

where F (q*) is where the free energy has its maximum, given that it is a fluctuating quantity

since at a given q, #< fluctuates depending on which state with E~ we picked

F (q*j
~ max F iqj
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q* also follows a distribution for the different I having E~, which we will approximate by taking
q* at its most probable value. (B.I), (B.3) and (B.4) together give the distribution for

T given
E~:

~ ~

~~ (T In + II Q*) (Ei +
~)

p (~j j~ ~~
~ ~~~ (~ $)
~

r
2~hE2q* II q*)

where r'
= To exp -Sc (q*). The distribution of escape times is obtained by averaging (B.5)

over the thermal distribution of energies

E(s
PT (r)

=

/
dEi PT (Ei) P (rjEi) (B.6)

Eis

where E(s
=

~fi@ and

j~ ~

hE~j~

~~ ~~~ " ~~~

~

2~h/

The integrand is extensive and steepest descents can be taken, with the largest contribution

to Fir) coming from

E)
=

-~)~ Tln (B.7)
T

(the dominant energies contributing to the escape time are always lower than the thermal

energy) and the distribution of escape times at temperature T is then given by

(T In ~) ~

~~ ~~~ "

T

~~~ 2~hE2
if-

q*)
~~'~~

Note that as q* ~ l, I.e. diffusion becomes a non-activated, downhill process, E) ~
-~hE~ IT

arid PT IT) ~ ~ (T T0)
Equations (B.I, B.3) together allow one to consider the probability distribution of the free

energy as a function of q

~ ~~~
~

~~~
~hE2/(1

q) ~~ ~~ ~ ~~~ ~~~ ~ ~~ ~~

~~
'

~~'~~

with the mean and most probable free energy function F*(q) given by equation (2.ll).

Appendix C

The high temperature free energy (4.I) for T > v§T( is

Fm
=

@(-x
+ q ix 2y) +

~ (C.1)
2 x

with a minimum at

q~ =
12y x) (C.2)
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The upper bound to energies with activated barriers occurs when ql
=

0 or

x

y = j

Using the thermal distribution of energies

in quation
(4.2)

gives

for
the ean

cape

(T (X)) = To

which for x > v§, is of O (e~'~). So (for a large system) there are no macroscopic barriers

above v§T( (even though states with barriers exist, at these high temperatures they are not

macroscopically populated).
Note that at T

=

v§T[, the mean escape time scales as a power law with system size

l~ l~~°tl1
" ~°

l ~ §)
~

~ l~~~~l ~~'~~

As long as the escape barrier is calculated from the melted free energy Fm in (4.I), expression
(C.3) is true. This condition is that the free energy minimum is always in the melted region of

the piece-wise free energy of (4.1),
or that ql (y

=
Ii < qG (xi,

or x > x#
=

(I + vi) /3. For

x <
v§ however, expression (C.3) dictates the escape times scale exponentially with system

size IT IT))
m~

O (e'~).
For low temperatures such that I < x < x#, there is an energy yl (x) E(s below which the

free energy minimum is evaluated from the frozen formula Ff in (4.I). yl ix) is given by the

condition that the minima of Fm and Ff occur at the same place, I.e. q(
=

q), or

~~2 ~yt (x)
=

(c.5)

This value of energy splits the integral in (4.2) into two parts, thus

j~jx)j
~ ~ ~ jc 61

~~

where H is the integral over higher energies x/2 < y < yl (xi, when the barrier is in the

unfrozen regime:

_~ ~
~_fi

1 ~
y 1 ~ 2~

~
/~

~ ~
~~~ ~~

~

~~
~

~~~
~~

X ~ ~

y=~/2

~~ ~~

Note H becomes smaller at lower temperatures, and H ~ 0 when x ~ l.

L is the contribution to the escape time from low energies yl (x) < y < I, and the barrier

must be calculated from the minimum of the frozen free energy (Ff in (4.I)), to the maximum

of the melted free energy Fm at q =
0. This calculation gives

L
=

~° /~
~

dy exp So
~9(v)

-1-
y )~j

(C.8)
~r ~~i x x x

2x
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where

~
l ~

~ ~~~

2f
~ ~2

yfi)
(~ + Y~ ~

~~~

+
jy

(4v~ 6 ~
~Y~~

For the range of temperatures I < x < x#, the largest contribution to IT (T)) in the integral is

from y =
I, or the ground state energy E(s. Approximating the integral by steepest descents

gives

~ '~

2i~
~~

~ ~~~~~°
~ ~~~

x

~ ~ 2
~ '~~~ ~~° ~~

~
~'

=~xjj2
~~'~~

where

g11)
=

(2Vi 1) +
l (2vi 1)) (1+ (2vi 1))

~~~

Gt 1.l13
9 9

~

~
~
~ /~ ~

~ ~~ ~~~ ~
~

~~
~ ~'~~~'

L and IT IT)) continue to increase as the temperature is lowered, until at T( (~
=

l), H
=

0

and

Note that the efficient in the ponent

Appendix D

For the piece-wise linear entropy function, the minimum of the free energy can be located

in different regions of q depending on the chosen Ei and temperature T. In region I, if

q[~~ < 0~ this corresponds to E~ > E2
=

-To, the free energy function is monotonically
increasing between 0 and qt. On the other hand, if 0 < q[~~ < qt, this corresponds with

El
=

-To qt~hE2 IT < Ei < -To, the free energy now has a minimum between 0 and qt.
If q[~~ > l, this corresponds with Ei < El, the free energy now is monotonically decreasing
between 0 and qt. In regime 2, if q$~~ < qt, this corresponds with E~ > E4

=
-T~t

qt~hE2 IT, the free energy now monotonically increases. If qt < q$i~ < I, this corresponds
with E3

=
-T~t ~hE2 IT < Ei < E4, the free energy has a minimum. If q[~~ > l, this

corresponds to Ei < E3, the free energy is monotonically decreasing. So there are 3 possible
situations for the free energy in the low q (regime I) with monotonically decreasing, minimum,

monotonically increasing behaviour and 3 possible situations for free energy at high q (regime
2) with monotonically decreasing, minimum, monotonically increasing behaviour.

There are altogether 9 possible combinations of situations for the free energy as a whole in

high and low q regime. We discuss these below.

The 9 situations for the free energy are shown in Figure 4. We term them situations 11),
(2), (3), (4), (5), (6), (7), (8), (9) respectively. The only differences among these 9 different
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F F F

, i ,

, i , ,

qo
~

qo
~

qo
~

(i) (3) (6)

Fig. 6. The free energy profiles of different energy ranges versus overlap or fraction of contacts q

are shown for 64 mers with the piece-wise linear approximation for the entropy of temperature range

Tg < T < To.

shapes of the free energies are the ranges of the chosen energy E~. The ranges of Ei for the

free energy of situation ii are El < E~ < E2 and E3 < Ej < E4i the ranges of Ei for the free

energy of situation (2) are E~ < El and E~ < E~ < E4i the ranges of Ei for the free energy of

situation (3) are Ei > E2 and E3 < E~ < E4i the ranges of E~ for the free energy of situation

(4) are El < Ei < E2 and E~ > E4i the ranges of E~ for the free energy of situation (5) are

E~ < El and Ei > E4i the ranges of Ei for the free energy of situation (6) are Ej > E2 and

Ei > E4i the ranges of Ei for the free energy of situation (7) are El < Ei < E2 and E~ < E3i

the ranges of Ei for the free energy of situation (8) are Ei < El and Ei < E3i the ranges of

Ei for the free energy of situation (9) are Ei > E2 and Ei < E3.

The four energy scales which control whether the free energy in region of q < qt and q > qt

is monotonically increasing, decreasing or has a minimum are: El
=

-Qt~hE~ IT aT, E2
#

-aT, E3
=

-~hE2 IT ~tT, E4
=

-Qt~hE~ IT ~tT. As discussed earlier at a given Q, the

heteropolymer also has a low and a high energy cut off given by: El
=

E(Q) 25(Q)~hE2

and Eh
#

E(Q) + 25(Q)~hE2. We will simplify the algebra by assuming from now on that

@
=

0, ~hE
=

~hE. This simplification changes nothing significant since we only care about

general diffusion or escaping time of the locally connected correlated energy landscape here.

These energy ranges depend on temperature. By comparing Eli E2, E3 and E4, we see that

different orders of these energy values correspond with different temperature ranges.

For the purpose of this paper, we concentrate our discussion on the diffusion time with the

parameters appropriate for the 64 unit and 125 unit polymers where qt < 0.5 and a > ~t the

slope of the initial entropy loss for low q is greater than the slope of the final entropy loss for

high q with the parameters of the corresponding random heteropolymer). We found that for

64 mers El > E3 always; El > El always; El < E2 at temperature To where To is determined

by the equation El
=

E2. In other words, we see that in the temperature range Tg < T < To,

El < E2 < E4 < Ehi in the temperature range To < T, El < E4 < Eh. For 125 mers, we

found that for T > Tg, El > E3 always; Ei > El always; El > E2 always; then we
obtain that

El < E4 < Eh.

As mentioned earlier, for each temperature zone, there are 6 energy values (El, El, E2,

E3, E4, Eh) which define different regions of energies each giving a different shape of the free

energies. This provides naturally the integration limit for the averaged escape times. These

different shapes of the free energies in various of temperature ranges are
shown in Figures 6, 7

and 8.

For 64 mers, qt < 0.5 and a > ~t, we obtain the thermally averaged escape time for temper-

ature Tg < T < To, (T~)
=

T/ + T] + T( where the upper case of
T

refers to the temperature

range and the lower case of
T

refers to sequentially the energy regions (low to high) which
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' ,

qo I qo

(3) (6)

Fig. 7. Fig. 8.

Fig. 7. The free energy profiles of different energy ranges versus overlap or fraction of contacts q

are shown for 64 mers with the piece-wise linear approximation for the entropy of temperature range
To < T.

Fig. 8. The free energy profiles of different energy ranges versus overlap or fraction of contacts q

are shown for 125 mers with the piece-wise linear approximation for the entropy of temperature range

Tg < T.

give the integration limits for the escape time. T~i), T~2j, Tj~,, T~4,, T~s,, T~5), T~7>, T~s) and
T~gj

correspond to expressions for T(~j, T'~j, T(~ , T(~~, T(~~, T(~j, T(~~, T(j and
T(g~

mentioned in Sec-

tion 4.I with the integration limits )or different temperature and energy ranges now explicitly

put in:

T/
# Tjl)

~
~~~~)j expjrf~T~ /j2~E~j + ~fqt I qt~~E~ /(2T~jj

x
e)j)-~E~

j2~~jjje~~jj~fT/~E~
+ jqt IT I /Tjjj-aTjj

expjj~fT/~E~ + (qt IT I /Tjjj- @wjjj jD,lj

T(
# T~3)

~~
~~@)j

~~ ~~~

exPi'i~T~/(2~E~) +'iq~ + q~~~E~/(2T~)1

x
exp)-~E2

j2T2)j(e~pjjr~T/~E2
+ iqt IT i /T)) (-qt~E2 IT r~T)j

exPil'iT/~E~ + (q~/T I/T))(-°T)i) iD.2)

T(
# T~6)

1 ~hE2 + TfiW ~hE2 ~tT2 qt~hE~
2~~~~~~ v§~hET ~~~~ v§~hET ~~

~~'~~

For 64 mers, in the temperature range To < T, the thermally averaged escape time

(T~)
#

T/ + Tjl

T/
# T~3)

/fi(~tT2~~~~2 ii qt)j
~~~~'~~~~~~~~~~~ ~'~~~ ~ ~~~~~~~~~~~~~

x
exp[-~IE~ /(2T~)j (exp[(~tT/~hE~ + (qt IT 1IT) )(-qt~lE~ IT ~tT)]

expii~tT/~hE~ + iqt IT i/Tii i-@Wii) iD.4)
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Tj
" T<6j

~°~~~~~~~~ ~j~h~~~~~
~~~~~~~ ~~E/~~~~

~~
~~'~~

For 125 mers, in the temperature range T > Tg, the thermally averaged escape time

(T)
# Tl +T2~

Ti = T13j

/fi(~tT2~~~~ (1 qt))
~~~~'~~~~~~~~~~~ ~'~~~ ~ ~~~~~~~~~~~~~

x
exp[-~hE~ /(2T~)j(exp[(~tT/~hE~ + (qt IT I IT)) (-qt~hE~ IT ~tT)j

expii~tT/~E~ + iqt/T i/T))i-@W)i) IDfi)

~2 " ~<6j

~~~~~~~~~ ~j~h~~~~~
~~~~~~~ j~~E/~~~~~~ ~~ ~~
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